
The Cook-Levin Theorem

Exposition by William Gasarch—U of MD

Variants of SAT

1. SAT is the set of all boolean formulas that are satisfiable.
That is, φ(~x) ∈ SAT if there exists a vector ~b such that
φ(~b) = TRUE .

2. CNFSAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. k-SAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.

4. DNFSAT is the set of all boolean formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all boolean formulas in SAT of the
form C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.

Conventions for our Turing Machines

1. Tape has a left endpoint; however, the tape goes off to
infinity to the right.

2. The alphabet has symbols {0, 1,#, $Y ,N}.
3. # is the blank symbol.

4. $ is a separator symbol.

5. Y and N are only used when the machine goes into a halt
state. They are YES and NO.

6. The input is written on the left. So the input abba would be
on the tape as

abba### · · ·

7. The head is initially on the rightmost symbol of the input. So
it he above it wold be on the a just before the # symbol.

How to Represent any Computation

Let M be a Turing Machine and x ∈ Σ∗. We represent the
computation M(x) as follows:

Example The tape has:

abba#abcab#a### · · ·

If the machine is in state q and the head is looking at the c then
we represent this by:

abba#ab(c , q)ab#a### · · ·

Convention—extend alphabet and allow symbols Σ× Q. The
symbol (c , q) means the symbol is c , the state is q, and that
square is where the head of the machine is.

Configurations

We need a term for strings like:

abba#ab(c , q)a

Definition Strings in Σ∗(Σ× Q)Σ∗ are configuration.

The Computation M(x) is represented by a sequence of configs.
Key A config is finite since what we don’t see is #.

Example

If δ(s, b) = (q, L) and δ(q, b) = (p, a)

a a b b (b, s) #

a a b (b, q) b #

a a b (a, p) b #

I The left endpoint is the end of the tape.

I The unseen symbols on the right are all #

How to Represent an NP Computation

Let X ∈ NP.

Then there exists a poly p and a TM that runs in time poly q such
that

X = {x | (∃y)[|y | = p(|x |) AND M(x , y) = Y]}

M(x , y) runs in time ≤ q(|x |+ |y |) = q(|x |+ p(|x |)).
Let t(n) = q(n + p(n)), a poly.
Here is ALL that matters:

I Numb of steps M(x , y) takes is ≤ t(|x |). Hence ≤ t(|x |)
configs.

I Computation can only look at the first t(|x |) tapes squares on
any config.

How to Represent an NP Computation

Let X ∈ NP.
Then there exists a poly p and a TM that runs in time poly q such
that

X = {x | (∃y)[|y | = p(|x |) AND M(x , y) = Y]}

M(x , y) runs in time ≤ q(|x |+ |y |) = q(|x |+ p(|x |)).
Let t(n) = q(n + p(n)), a poly.
Here is ALL that matters:

I Numb of steps M(x , y) takes is ≤ t(|x |). Hence ≤ t(|x |)
configs.

I Computation can only look at the first t(|x |) tapes squares on
any config.

How to Represent an NP Computation

Let X ∈ NP.
Then there exists a poly p and a TM that runs in time poly q such
that

X = {x | (∃y)[|y | = p(|x |) AND M(x , y) = Y]}

M(x , y) runs in time ≤ q(|x |+ |y |) = q(|x |+ p(|x |)).

Let t(n) = q(n + p(n)), a poly.
Here is ALL that matters:

I Numb of steps M(x , y) takes is ≤ t(|x |). Hence ≤ t(|x |)
configs.

I Computation can only look at the first t(|x |) tapes squares on
any config.

How to Represent an NP Computation

Let X ∈ NP.
Then there exists a poly p and a TM that runs in time poly q such
that

X = {x | (∃y)[|y | = p(|x |) AND M(x , y) = Y]}

M(x , y) runs in time ≤ q(|x |+ |y |) = q(|x |+ p(|x |)).
Let t(n) = q(n + p(n)), a poly.

Here is ALL that matters:

I Numb of steps M(x , y) takes is ≤ t(|x |). Hence ≤ t(|x |)
configs.

I Computation can only look at the first t(|x |) tapes squares on
any config.

How to Represent an NP Computation

Let X ∈ NP.
Then there exists a poly p and a TM that runs in time poly q such
that

X = {x | (∃y)[|y | = p(|x |) AND M(x , y) = Y]}

M(x , y) runs in time ≤ q(|x |+ |y |) = q(|x |+ p(|x |)).
Let t(n) = q(n + p(n)), a poly.
Here is ALL that matters:

I Numb of steps M(x , y) takes is ≤ t(|x |). Hence ≤ t(|x |)
configs.

I Computation can only look at the first t(|x |) tapes squares on
any config.

New Convention

Old Convention

a a b b (s, b)

means that off to the right there are an infinite number of #.

New Convention

a a b b (s, b) # · · ·

Tape is t(|x |) long so know when stops. Can include entire tape.
Key Config is finite since what we don’t see is never used.

New Convention

Old Convention

a a b b (s, b)

means that off to the right there are an infinite number of #.
New Convention

a a b b (s, b) # · · ·

Tape is t(|x |) long so know when stops. Can include entire tape.
Key Config is finite since what we don’t see is never used.

Summary of What’s Important

Let X ∈ NP via poly q and TM M, so

X = {x : (∃y)[|y | = q(|x |) ∧M(x , y) = Y]

x ∈ X implies (∃y)[|y | = q(|x |) ∧M(x , y) = Y] implies
(∃C1, . . . ,Ct)[C1, . . . ,Ct is an accepting comp of M(x , y)]

Summary of What’s Important

Let X ∈ NP via poly q and TM M, so

X = {x : (∃y)[|y | = q(|x |) ∧M(x , y) = Y]

x ∈ X implies (∃y)[|y | = q(|x |) ∧M(x , y) = Y] implies
(∃C1, . . . ,Ct)[C1, . . . ,Ct is an accepting comp of M(x , y)]

Cook-Levin Theorem

Theorem
SAT is NP-complete.

We need to prove two things:

1. SAT ∈ NP.

SAT = {φ : (∃~y)[φ(~y) = T]}

Formally

B = {(φ, ~y) : φ(~y) = T}

The satisfying assignment is the witness.

2. For all X ∈ NP, X ≤ SAT. This is the bulk of the proof.

x ∈ X → . . .

If x ∈ X then there is a y of length q(|x |) such that M(x , y) = Y .
If x ∈ X then there is a y and a sequence of configurations
C1,C2, . . . ,Ct such that

I C1 is the configuration that says ‘input is x#y , and I am in
the starting state.’

I For all i , Ci+1 follows from Ci (note that M is deterministic)
using δ.

I Ct is the configuration that is in state h and the output is Y.

I t = q(|x |+ p(|x |)).

How to make all of this into a formula?

How to Represent Sequence of Configs as Fml

KEY 1: We have variables for every possible entry in every
possible configuration. The variables are

{zi ,j ,σ : 1 ≤ i , j ≤ t, σ ∈ Σ ∪ (Q × Σ)}

If there is an accepting sequence of configurations then
zi ,j ,σ = T iff the jth symbol in the ith configuration is σ.

Making the zi ,j ,σ Make Sense

Need that for all 1 ≤ i , j ≤ t there exists exactly one σ such that
zijσ is TRUE. ∨

σ∈Σ∪(Σ×Q)

zi ,j ,σ

for each σ ∈ Σ ∪ (Σ× Q)

zi ,j ,σ →
∧

τ∈Σ∪(Σ×Q)−{σ}

¬zi ,j ,τ

C1 is Start Config

C1 is the
∧

of the following:
C1 starts with x . Let x = x1 · · · xn.

z1,1,x1 ∧ · · · ∧ z1,n−1,xn−1 , z1,n,(xn,s) ∧ z1,n+1,$

C1 then has q(|x |) non-# symbols:

n+q(|x |)+1∧
i=n+2

∨
σ∈Σ−{#,$,Y ,N}

z1,i ,σ

C1 then has all blanks:

∧z1,q(n)+n+2,(#,s) ∧
t(n)∧

i=q(n)+n+3

z1,i ,#

C1 is Start Config: Example

x = ab, p(n) = n2, and q(n) = 2n
|y | = 4. Input to M is of length 2 + 4 + 1 = 7, so M(x , y) runs
≤ 2× 7 = 14 steps.
Formula saying C1 codes x as input is

z1,1,a ∧ z1,2,b ∧ z1,3,$∧

(z1,4,a ∨ z1,4,b) ∧ (z1,5,a ∨ z1,5,b) ∧ (z1,6,a ∨ z1,6,b) ∧ (z1,7,a ∨ z1,7,b)∧

z1,8,# ∧ · · · ∧ z1,23,#

Ct is an Accept Config

Convention M(x , y) accepts means M(x , y) leaves a Y on the left
most square and the head is on the left most square.
The state in Ct is h, the halt state,

zt,1,(Y ,h)

Ci leads to Ci+1

Thought Experiment: What if δ(q, a) = (p, b). Then:

σ1 (a, q) σ2

σ1 (b, p) σ2

Formula is a
∧

over relevant i , j , σ1, σ2 of:

(zijσ1 ∧ zi(j+1),(a,q) ∧ zi ,(j+2)σ2
)→

(z(i+1)jσ1
∧ z(i+1)(j+1),(b,p) ∧ z(i+1),(j+2)σ2

)

Ci leads to Ci+1

Thought Experiment: What if δ(q, a) = (p, L). Then:

σ1 (a, q) σ2

(σ1, p) a σ2

One can make a formula out of this as well. (Leave for HW.)

Ci leads to Ci+1

Note that only the symbols at or near the head get changed.

Also need a formula saying that if the (i , j) spot is NOT near the
head and zi ,j ,σ then zi+1,j ,σ.

Putting it All Together

On input x you output a formula φ constructed as follows

1. t(|x |) = q(|x |+ p(|x |)). We call this t.

2. Variables {zi ,j ,τ : 1 ≤ i , j ≤ t, τ ∈ Σ ∪ (Σ× Q)}.
3. Formula saying:

3.1 For all 1 ≤ i , j ≤ t, exists ONE σ with zi,j,σ = T .
3.2 C1 is the start config with x .
3.3 Ct is the accept config.
3.4 For each instruction of the TM have a formula saying Ci goes

to Ci+1 if that instruction is relevant.
3.5 If head is not within 2 square of (i , j) and zijσ then z(i+1)jσ.

Important Upshot

I If SAT ∈ P then every set in NP is in P, so we would have
P = NP.

I We will soon have more NP-complete problems.

I If any NP-complete problem is in P then P = NP.

I In the year 2000 the Clay Math Institute posted seven math
problems and offered $1,000,000 for the solution to any of
them. Resolving P vs NP was one of them.

Variants of SAT: Which ones are Hard? I

1. SAT is the set of all boolean formulas that are satisfiable.
That is, φ(~x) ∈ SAT if there exists a vector ~b such that
φ(~b) = TRUE .

NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals. NP-complete.
The proof of Cook-Levin yields a CNF formula.

3. k-SAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.
3-SAT is NP-complete, 2-SAT is in Poly Time.

Variants of SAT: Which ones are Hard? I

1. SAT is the set of all boolean formulas that are satisfiable.
That is, φ(~x) ∈ SAT if there exists a vector ~b such that
φ(~b) = TRUE . NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

NP-complete.
The proof of Cook-Levin yields a CNF formula.

3. k-SAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.
3-SAT is NP-complete, 2-SAT is in Poly Time.

Variants of SAT: Which ones are Hard? I

1. SAT is the set of all boolean formulas that are satisfiable.
That is, φ(~x) ∈ SAT if there exists a vector ~b such that
φ(~b) = TRUE . NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals. NP-complete.
The proof of Cook-Levin yields a CNF formula.

3. k-SAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.

3-SAT is NP-complete, 2-SAT is in Poly Time.

Variants of SAT: Which ones are Hard? I

1. SAT is the set of all boolean formulas that are satisfiable.
That is, φ(~x) ∈ SAT if there exists a vector ~b such that
φ(~b) = TRUE . NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals. NP-complete.
The proof of Cook-Levin yields a CNF formula.

3. k-SAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.
3-SAT is NP-complete, 2-SAT is in Poly Time.

Variants of SAT: Which ones are Hard? II

1. DNFSAT is the set of all boolean formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

Poly Time. If
some Ci does not have (say) both x and ¬x then satisfiable,
else not.

2. k-DNFSAT is the set of all boolean formulas in SAT of the
form C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.
Poly Time since DNFSAT is Poly Time.

Variants of SAT: Which ones are Hard? II

1. DNFSAT is the set of all boolean formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals. Poly Time. If
some Ci does not have (say) both x and ¬x then satisfiable,
else not.

2. k-DNFSAT is the set of all boolean formulas in SAT of the
form C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.

Poly Time since DNFSAT is Poly Time.

Variants of SAT: Which ones are Hard? II

1. DNFSAT is the set of all boolean formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals. Poly Time. If
some Ci does not have (say) both x and ¬x then satisfiable,
else not.

2. k-DNFSAT is the set of all boolean formulas in SAT of the
form C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.
Poly Time since DNFSAT is Poly Time.

CNFSAT Hard;DNFSAT Easy.
CNFSAT → DNFSAT. Collect $1,000,000

Idea Given φ in CNF form, convert to DNF form, solve DNF-SAT
problem in Poly time, and now know if φ is in SAT.

Show me the Money! $1,000,000 is mine!

Bad News This does not work.

Good News The reason it does not work is interesting.

Bad News I’d rather have the $1,000,000 than be enlightened.

CNFSAT Hard;DNFSAT Easy.
CNFSAT → DNFSAT. Collect $1,000,000

Idea Given φ in CNF form, convert to DNF form, solve DNF-SAT
problem in Poly time, and now know if φ is in SAT.

Show me the Money! $1,000,000 is mine!

Bad News This does not work.

Good News The reason it does not work is interesting.

Bad News I’d rather have the $1,000,000 than be enlightened.

CNFSAT Hard;DNFSAT Easy.
CNFSAT → DNFSAT. Collect $1,000,000

Idea Given φ in CNF form, convert to DNF form, solve DNF-SAT
problem in Poly time, and now know if φ is in SAT.

Show me the Money! $1,000,000 is mine!

Bad News This does not work.

Good News The reason it does not work is interesting.

Bad News I’d rather have the $1,000,000 than be enlightened.

CNFSAT Hard;DNFSAT Easy.
CNFSAT → DNFSAT. Collect $1,000,000

Idea Given φ in CNF form, convert to DNF form, solve DNF-SAT
problem in Poly time, and now know if φ is in SAT.

Show me the Money! $1,000,000 is mine!

Bad News This does not work.

Good News The reason it does not work is interesting.

Bad News I’d rather have the $1,000,000 than be enlightened.

CNFSAT Hard;DNFSAT Easy.
CNFSAT → DNFSAT. Collect $1,000,000

Idea Given φ in CNF form, convert to DNF form, solve DNF-SAT
problem in Poly time, and now know if φ is in SAT.

Show me the Money! $1,000,000 is mine!

Bad News This does not work.

Good News The reason it does not work is interesting.

Bad News I’d rather have the $1,000,000 than be enlightened.

Vote on CNF vs DNF

Vote on whether the following statement is TRUE or FALSE:
There is a proof that CNFSAT ≤ DNFSAT is NOT true. That is,
there is NO poly time algorithm that will transform φ in CNF form
to ψ in DNF form such that φ ∈ SAT iff ψ ∈ SAT.

TRUE, we Do have a proof!. Hard to believe.

Vote on CNF vs DNF

Vote on whether the following statement is TRUE or FALSE:
There is a proof that CNFSAT ≤ DNFSAT is NOT true. That is,
there is NO poly time algorithm that will transform φ in CNF form
to ψ in DNF form such that φ ∈ SAT iff ψ ∈ SAT.
TRUE, we Do have a proof!. Hard to believe.

Work on in Breakout Rooms

Convert the following into DNF form

1. (x1 ∨ y1)

2. (x1 ∨ y1) ∧ (x2 ∨ y2)

3. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3)

4. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3) ∧ (x4 ∧ y4)

CNF vs DNF

Convert the following into DNF form

1. (x1 ∨ y1)

x1 ∨ y1

2. (x1 ∨ y1) ∧ (x2 ∨ y2)
(x1 ∧ x2) ∨ (x1 ∧ y2) ∨ (y1 ∧ x2) ∨ (y1 ∨ y2).

3. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3)

(x1 ∧ x2 ∧ x3)∧ (x1 ∧ x2 ∧ y3)∧ (x1 ∧ y2 ∧ x3)∧ (x1 ∧ y2 ∧ y3)∧

(y1 ∧ x2 ∧ x3) ∧ (y1 ∧ x2 ∧ y3) ∧ (y1 ∧ y2 ∧ x3) ∧ (y1 ∧ y2 ∧ y3)

4. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3) ∧ (x4 ∧ y4)
Not going to do it but it would take 16 clauses.

CNF vs DNF

Convert the following into DNF form

1. (x1 ∨ y1)
x1 ∨ y1

2. (x1 ∨ y1) ∧ (x2 ∨ y2)

(x1 ∧ x2) ∨ (x1 ∧ y2) ∨ (y1 ∧ x2) ∨ (y1 ∨ y2).

3. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3)

(x1 ∧ x2 ∧ x3)∧ (x1 ∧ x2 ∧ y3)∧ (x1 ∧ y2 ∧ x3)∧ (x1 ∧ y2 ∧ y3)∧

(y1 ∧ x2 ∧ x3) ∧ (y1 ∧ x2 ∧ y3) ∧ (y1 ∧ y2 ∧ x3) ∧ (y1 ∧ y2 ∧ y3)

4. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3) ∧ (x4 ∧ y4)
Not going to do it but it would take 16 clauses.

CNF vs DNF

Convert the following into DNF form

1. (x1 ∨ y1)
x1 ∨ y1

2. (x1 ∨ y1) ∧ (x2 ∨ y2)
(x1 ∧ x2) ∨ (x1 ∧ y2) ∨ (y1 ∧ x2) ∨ (y1 ∨ y2).

3. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3)

(x1 ∧ x2 ∧ x3)∧ (x1 ∧ x2 ∧ y3)∧ (x1 ∧ y2 ∧ x3)∧ (x1 ∧ y2 ∧ y3)∧

(y1 ∧ x2 ∧ x3) ∧ (y1 ∧ x2 ∧ y3) ∧ (y1 ∧ y2 ∧ x3) ∧ (y1 ∧ y2 ∧ y3)

4. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3) ∧ (x4 ∧ y4)
Not going to do it but it would take 16 clauses.

CNF vs DNF

Convert the following into DNF form

1. (x1 ∨ y1)
x1 ∨ y1

2. (x1 ∨ y1) ∧ (x2 ∨ y2)
(x1 ∧ x2) ∨ (x1 ∧ y2) ∨ (y1 ∧ x2) ∨ (y1 ∨ y2).

3. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3)

(x1 ∧ x2 ∧ x3)∧ (x1 ∧ x2 ∧ y3)∧ (x1 ∧ y2 ∧ x3)∧ (x1 ∧ y2 ∧ y3)∧

(y1 ∧ x2 ∧ x3) ∧ (y1 ∧ x2 ∧ y3) ∧ (y1 ∧ y2 ∧ x3) ∧ (y1 ∧ y2 ∧ y3)

4. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3) ∧ (x4 ∧ y4)

Not going to do it but it would take 16 clauses.

CNF vs DNF

Convert the following into DNF form

1. (x1 ∨ y1)
x1 ∨ y1

2. (x1 ∨ y1) ∧ (x2 ∨ y2)
(x1 ∧ x2) ∨ (x1 ∧ y2) ∨ (y1 ∧ x2) ∨ (y1 ∨ y2).

3. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3)

(x1 ∧ x2 ∧ x3)∧ (x1 ∧ x2 ∧ y3)∧ (x1 ∧ y2 ∧ x3)∧ (x1 ∧ y2 ∧ y3)∧

(y1 ∧ x2 ∧ x3) ∧ (y1 ∧ x2 ∧ y3) ∧ (y1 ∧ y2 ∧ x3) ∧ (y1 ∧ y2 ∧ y3)

4. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3) ∧ (x4 ∧ y4)
Not going to do it but it would take 16 clauses.

