The Cook-Levin Theorem

Exposition by William Gasarch—U of MD

Variants of SAT

1. SAT is the set of all boolean formulas that are satisfiable.
That is, ¢(X) € SAT if there exists a vector b such that
o(b) = TRUE.

2. CNFSAT is the set of all boolean formulas in SAT of the form
Ci A -+ A Cp, where each C; is an V of literals.

3. k-SAT is the set of all boolean formulas in SAT of the form
Ci A -+ A Gy, where each C; is an V of exactly k literals.

4. DNFSAT is the set of all boolean formulas in SAT of the form
Ci V-V G, where each C; is an A of literals.

5. k-DNFSAT is the set of all boolean formulas in SAT of the
form C1 vV ---V Cy, where each C; is an A of exactly k literals.

Conventions for our Turing Machines

AR

Tape has a left endpoint; however, the tape goes off to
infinity to the right.

The alphabet has symbols {0,1,#,$ Y, N}.
is the blank symbol.
$ is a separator symbol.

Y and N are only used when the machine goes into a halt
state. They are YES and NO.

The input is written on the left. So the input abba would be
on the tape as

abbatt#HH# - - -

. The head is initially on the rightmost symbol of the input. So

it he above it wold be on the a just before the # symbol.

How to Represent any Computation

Let M be a Turing Machine and x € ¥*. We represent the
computation M(x) as follows:

Example The tape has:

abba#abcab#a#+# - - -

If the machine is in state g and the head is looking at the ¢ then
we represent this by:

abba#ab(c, q)ab#a#H#H# - - -

Convention—extend alphabet and allow symbols X x Q. The
symbol (¢, g) means the symbol is c, the state is g, and that
square is where the head of the machine is.

Configurations

We need a term for strings like:

abba#ab(c, q)a

Definition Strings in (X x Q)XL* are configuration.

The Computation M(x) is represented by a sequence of configs.
Key A config is finite since what we don't see is #.

Example

If §(s, b) = (g, L) and 6(q, b) = (p, a)

b b |(bs)|#
b|(bygq)| b |#
bl(ap)| b |#

» The left endpoint is the end of the tape.
» The unseen symbols on the right are all #

How to Represent an NP Computation

Let X € NP.

How to Represent an NP Computation

Let X € NP.
Then there exists a poly p and a TM that runs in time poly g such
that

X = {x| (3y)lly| = p(Ix|) AND M(x,y) = Y]}

How to Represent an NP Computation

Let X € NP.
Then there exists a poly p and a TM that runs in time poly g such
that

X = {x| Gy)llyl = p(Ix]) AND M(x,y) = Y1}
M(x,y) runs in time < q(|x| + |y|) = a(|x| + p(|x])).

How to Represent an NP Computation

Let X € NP.
Then there exists a poly p and a TM that runs in time poly g such

that
X = {x | Gy)lly| = p(x]) AND M(x,y) = Y1}

M(x, y) runs in time < (|| + [¥1) = q(1x] + p(1x])).
Let t(n) = q(n+ p(n)), a poly.

How to Represent an NP Computation

Let X € NP.
Then there exists a poly p and a TM that runs in time poly g such
that

X = {x| (3y)lly| = p(Ix|) AND M(x,y) = Y]}

M(x, y) runs in time < q(lx| + Iy1) = q(1x| + p(|x])).
Let t(n) = q(n+ p(n)), a poly.
Here is ALL that matters:
» Numb of steps M(x, y) takes is < t(|x]). Hence < t(|x|)
configs.
» Computation can only look at the first t(|x|) tapes squares on
any config.

New Convention

Old Convention

(#lalalb][b](sb)|#]

means that off to the right there are an infinite number of #.

New Convention

Old Convention

(#lalalb][b](sb)|#]

means that off to the right there are an infinite number of #.
New Convention

(#]alalb[b[(sb) [#] - [#]

Tape is t(|x|) long so know when stops. Can include entire tape.
Key Config is finite since what we don't see is never used.

Summary of What's Important

Let X € NP via poly g and TM M, so

X = {x: Gy)llyl = a(lx) A M(x.y) = Y]

Summary of What's Important

Let X € NP via poly g and TM M, so
X ={x:(3)llyl = al(lx]) A M(x,y) = Y]

x € X implies (3y)[|ly| = q(|x|]) A M(x,y) = Y] implies
(3G, ..., C)[CG,. .., G is an accepting comp of M(x, y)]

Cook-Levin Theorem

Theorem
SAT is NP-complete.

We need to prove two things:
1. SAT € NP.

SAT = {¢: (y)lo(y) = T1}

Formally

B={(¢,y): ¢(y) =T}
The satisfying assignment is the witness.
2. For all X € NP, X < SAT. This is the bulk of the proof.

xCc X —...

If x € X then there is a y of length q(|x|) such that M(x,y) =Y.
If x € X then there is a y and a sequence of configurations
G, G, ..., G such that

» (3 is the configuration that says ‘input is x#y, and | am in
the starting state.’

» For all i, Ci;1 follows from C; (note that M is deterministic)
using 4.

» C; is the configuration that is in state h and the output is Y.

> t = q(|x] + p(|x]))-
How to make all of this into a formula?

How to Represent Sequence of Configs as Fml

KEY 1: We have variables for every possible entry in every
possible configuration. The variables are

{zijo:1<ij<toerU(QxX)}

If there is an accepting sequence of configurations then
zi jo = T iff the jth symbol in the ith configuration is o.

Making the z; ; , Make Sense

Need that for all 1 </, j < t there exists exactly one ¢ such that
Zjjo is TRUE.

\/ Zij,o
sEXU(EX Q)
for each o € LU (X x Q)

Zijo =7 /\ TZijr
TEXU(IX Q)—{o}

C; is Start Config

(1 is the A of the following:
(7 starts with x. Let x = xq1 - - - x,.

Z11q N A Z1,n—1,%p—15 21,n,(xn,s) A Z1,n+1,%
C1 then has g(|x|) non-# symbols:

n+q(|x])+1

A Voo oau

i=nt2 oex—{#$,Y,N}
(7 then has all blanks:

t(n)

/\Zl,q(n)+n+2,(#,s) A /\ 21,i,#
i=q(n)+n+3

C; is Start Config: Example

x = ab, p(n) = n?, and q(n) = 2n
ly| = 4. Input to M is of length 2+4+1 =7, so M(x, y) runs
< 2 X 7 =14 steps.

Formula saying (7 codes x as input is

711N 2126 N Z1 35/

(z142V z14p) N(Z152V Z156) A (2160 V Z16,6) AN (217, V 21,7,6) N

2184 N NZ123

C; is an Accept Config

Convention M(x, y) accepts means M(x,y) leaves a Y on the left
most square and the head is on the left most square.
The state in C; is h, the halt state,

Zt,1,(Y,h)

C; leads to Cj 3

Thought Experiment: What if (g, a) = (p, b). Then:

01 (a7q) 02
o1 | (b,p) | o2

Formula is a)\ over relevant i, j, 01,07 of:

(Zijor A Zij11),(a,9) N Zi (j+2)02) =

(Z(i+1)jor N Z(i41)(j+1),(bp) D Z(i41),(+2)0)

C; leads to Cj 3

Thought Experiment: What if §(q,a) = (p, L). Then:

01 (a,9) | o2
(017 p) a g2

One can make a formula out of this as well. (Leave for HW.)

C; leads to Cj 3

Note that only the symbols at or near the head get changed.

Also need a formula saying that if the (/,/) spot is NOT near the
head and z; ; , then z 1 .

Putting it All Together

On input x you output a formula ¢ constructed as follows

1. t(|x]) = q(|x| + p(]x|)). We call this t.

2. Variables {zj ;.1 <i,j<t,7€XU(Xx Q)}.

3. Formula saying:
3.1 Forall 1 <i,j<t, exists ONE o with z;j , = T.
3.2 (i is the start config with x.
3.3 C; is the accept config.
3.4 For each instruction of the TM have a formula saying C; goes

to Ci41 if that instruction is relevant.
3.5 If head is not within 2 square of (/,;) and zj, then zj 1)jo-

Important Upshot

» If SAT € P then every set in NP is in P, so we would have
P = NP.

> We will soon have more NP-complete problems.

v

If any NP-complete problem is in P then P = NP.

» In the year 2000 the Clay Math Institute posted seven math
problems and offered $1,000,000 for the solution to any of
them. Resolving P vs NP was one of them.

Variants of SAT: Which ones are Hard? |

1. SAT is the set of all boolean formulas that are satisfiable.
That is, ¢(X) € SAT if there exists a vector b such that

-,

¢(b) = TRUE.

Variants of SAT: Which ones are Hard? |

1. SAT is the set of all boolean formulas that are satisfiable.
That is, ¢(X) € SAT if there exists a vector b such that

-,

¢(b) = TRUE. NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form
Ci A--- A Gy, where each C; is an V of literals.

Variants of SAT: Which ones are Hard? |

1. SAT is the set of all boolean formulas that are satisfiable.
That is, ¢(X) € SAT if there exists a vector b such that

-,

¢(b) = TRUE. NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form
Ci A -+ A Cyy where each G is an V of literals. NP-complete.
The proof of Cook-Levin yields a CNF formula.

3. k-SAT is the set of all boolean formulas in SAT of the form
Ci A -+ A Cyy where each G is an V of exactly k literals.

Variants of SAT: Which ones are Hard? |

1. SAT is the set of all boolean formulas that are satisfiable.
That is, ¢(X) € SAT if there exists a vector b such that

-,

¢(b) = TRUE. NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form
Ci A -+ A Cyy where each G is an V of literals. NP-complete.
The proof of Cook-Levin yields a CNF formula.

3. k-SAT is the set of all boolean formulas in SAT of the form
Ci A -+ A Cyy where each G is an V of exactly k literals.
3-SAT is NP-complete, 2-SAT is in Poly Time.

Variants of SAT: Which ones are Hard? ||

1. DNFSAT is the set of all boolean formulas in SAT of the form
GV ---V Cy where each C; is an A of literals.

Variants of SAT: Which ones are Hard? ||

1. DNFSAT is the set of all boolean formulas in SAT of the form
G V-V Cy where each C; is an A of literals. Poly Time. If
some C; does not have (say) both x and —x then satisfiable,
else not.

2. k-DNFSAT s the set of all boolean formulas in SAT of the
form Gy V---V G, where each C; is an A of exactly k literals.

Variants of SAT: Which ones are Hard? ||

1. DNFSAT is the set of all boolean formulas in SAT of the form
G V-V Cy where each C; is an A of literals. Poly Time. If
some C; does not have (say) both x and —x then satisfiable,
else not.

2. k-DNFSAT s the set of all boolean formulas in SAT of the
form Gy V---V G, where each C; is an A of exactly k literals.
Poly Time since DNFSAT is Poly Time.

CNFSAT Hard;DNFSAT Easy.
CNFSAT — DNFSAT. Collect $1,000,000

Idea Given ¢ in CNF form, convert to DNF form, solve DNF-SAT
problem in Poly time, and now know if ¢ is in SAT.

CNFSAT Hard;DNFSAT Easy.
CNFSAT — DNFSAT. Collect $1,000,000

Idea Given ¢ in CNF form, convert to DNF form, solve DNF-SAT
problem in Poly time, and now know if ¢ is in SAT.

Show me the Money! $1,000,000 is mine!

CNFSAT Hard;DNFSAT Easy.
CNFSAT — DNFSAT. Collect $1,000,000

Idea Given ¢ in CNF form, convert to DNF form, solve DNF-SAT
problem in Poly time, and now know if ¢ is in SAT.

Show me the Money! $1,000,000 is mine!
Bad News This does not work.

CNFSAT Hard;DNFSAT Easy.
CNFSAT — DNFSAT. Collect $1,000,000

Idea Given ¢ in CNF form, convert to DNF form, solve DNF-SAT
problem in Poly time, and now know if ¢ is in SAT.

Show me the Money! $1,000,000 is mine!
Bad News This does not work.

Good News The reason it does not work is interesting.

CNFSAT Hard;DNFSAT Easy.
CNFSAT — DNFSAT. Collect $1,000,000

Idea Given ¢ in CNF form, convert to DNF form, solve DNF-SAT
problem in Poly time, and now know if ¢ is in SAT.

Show me the Money! $1,000,000 is mine!

Bad News This does not work.

Good News The reason it does not work is interesting.

Bad News I'd rather have the $1,000,000 than be enlightened.

Vote on CNF vs DNF

Vote on whether the following statement is TRUE or FALSE:
There is a proof that CNFSAT < DNFSAT is NOT true. That is,
there is NO poly time algorithm that will transform ¢ in CNF form
to 1 in DNF form such that ¢ € SAT iff¢ € SAT.

Vote on CNF vs DNF

Vote on whether the following statement is TRUE or FALSE:
There is a proof that CNFSAT < DNFSAT is NOT true. That is,
there is NO poly time algorithm that will transform ¢ in CNF form
to 1 in DNF form such that ¢ € SAT iff¢ € SAT.

TRUE, we Do have a proof!. Hard to believe.

Work on in Breakout Rooms

Convert the following into DNF form

(x1 V1)

(A Vyi) A (e V)

(A Vi) A Vy2)A(xsVys3)

S (aVy) A V) A(xsVys)A(xa A ya)

[y

B~ N

CNF vs DNF

Convert the following into DNF form
1. (X1 Vv y1)

CNF vs DNF

Convert the following into DNF form
1. (X1 \% y1)
x1Vy
2. (X1 V y1) A (X2 V yg)

CNF vs DNF

Convert the following into DNF form
1. (X1 \/y1)
x1Vy
2. (Xl V y1) A (X2 V yg)
(CaAx)VaAy)VnAxe)V(nVy).
3. (Xl V y1) VAN (X2 V y2) VAN (X3 Vy3)

CNF vs DNF

Convert the following into DNF form

1. (X1 Vv y1)
x1Vy

2. (X1 V y1) A\ (X2 V yg)
(i Ax)V(xiAy2) V(1 Ax)V (V)

3. (Xl V y1) A (X2 vV y2) A (X3 Vy3)

(X1 /\X2/\X3)/\(X1 A X2 /\y3)/\(X1 /\y2/\X3)/\(X1 %) /\y3)/\

i AXAX) AL A AY3)A(Yi Ay2 Ax3)A(yr Ay2 Ays)

4. (X1 V yl) A (X2 vV y2) A (X3 \/y3) A (X4 A y4)

CNF vs DNF

Convert the following into DNF form
1. (X1 \% y1)
x1Vy

2. (X1 V y1) A\ (X2 V yg)
(i Ax)V(xiAy2) V(1 Ax)V (V)

3. (Xl V y1) A (X2 vV y2) A (X3 Vy3)

(X1 /\X2/\X3)/\(X1 A X2 /\y3)/\(X1 /\y2/\X3)/\(X1 %) /\y3)/\

i AXAX) AL A AY3)A(Yi Ay2 Ax3)A(yr Ay2 Ays)

4. (X1 V yl) A (X2 vV y2) A (X3 \/y3) A (X4 A y4)
Not going to do it but it would take 16 clauses.

