Decidability and Undecidability

Exposition by William Gasarch—U of MD

Recall Turing Machines

| am not going to bother defining TM’s again.

Recall Turing Machines

| am not going to bother defining TM's again.

Here is all you need to know:

Recall Turing Machines

| am not going to bother defining TM's again.
Here is all you need to know:

1. TM’s are Java Programs.

Recall Turing Machines

| am not going to bother defining TM's again.
Here is all you need to know:

1. TM’s are Java Programs.

2. We have a listing of them My, M>,

Recall Turing Machines

| am not going to bother defining TM's again.
Here is all you need to know:

1. TM’s are Java Programs.

2. We have a listing of them My, M>,

3. If you run Mc(d) it might not halt.

Recall Turing Machines

| am not going to bother defining TM's again.
Here is all you need to know:
1. TM’s are Java Programs.
2. We have a listing of them My, M>,
3. If you run Mc(d) it might not halt.
4. Everything computable is computable by some TM.

Recall Turing Machines

| am not going to bother defining TM's again.

Here is all you need to know:

1.

AR

TM's are Java Programs.

We have a listing of them My, M5,

If you run Mc(d) it might not halt.

Everything computable is computable by some TM.
A TM that halts on all inputs is called total.

Computable Sets

Definition A set A is computable if there exists a Turing Machine
M that behaves as follows:

Y ifxcA
M(X):{N if x ¢ A)

Computable Sets

Definition A set A is computable if there exists a Turing Machine
M that behaves as follows:

Y ifxeA
M(X):{N if x ¢ A (1)

Computable sets are also called decidable or solvable. A machine
such as M above is said to decide A.

Computable Sets

Definition A set A is computable if there exists a Turing Machine
M that behaves as follows:

Y ifxcA
M(X):{N if x ¢ A)

Computable sets are also called decidable or solvable. A machine
such as M above is said to decide A.

Notation DEC is the set of Decidable Sets.

Notation and Examples

Notation and Examples

Notation Me s(d) is the result of running Mc(d) for s steps.

Notation and Examples

Notation Me s(d) is the result of running Me(d) for s steps.
Me(d) | means M.(d) halts.

Notation and Examples

Notation Me s(d) is the result of running Me(d) for s steps.
Me(d) | means M.(d) halts.
Me(d) T means M. (d) does not halts.

Notation and Examples

Notation Me s(d) is the result of running Me(d) for s steps.
Me(d) | means M.(d) halts.

Me(d) T means M. (d) does not halts.

Me s(d) | means Mc(d) halts within s steps.

Notation and Examples

Notation Me s(d) is the result of running Me(d) for s steps.
Me(d) | means M.(d) halts.

Me(d) T means M. (d) does not halts.

Me s(d) | means Mc(d) halts within s steps.

Me s(d) = z means M.(d) halts within s steps and outputs z.

Notation and Examples

Notation Me s(d) is the result of running Me(d) for s steps.
Me(d) | means M.(d) halts.

Me(d) T means M. (d) does not halts.

Me s(d) | means Mc(d) halts within s steps.

Me s(d) = z means M.(d) halts within s steps and outputs z.
Me s(d) T means Mc(d) has not halted within s steps.

Notation and Examples

Notation Me s(d) is the result of running Me(d) for s steps.
Me(d) | means M.(d) halts.

Me(d) T means M. (d) does not halts.

Me s(d) | means Mc(d) halts within s steps.

Me s(d) = z means M.(d) halts within s steps and outputs z.
Me s(d) T means Mc(d) has not halted within s steps.

Some examples of computable sets.

Notation and Examples

Notation Me s(d) is the result of running Me(d) for s steps.
Me(d) | means M.(d) halts.

Me(d) T means M. (d) does not halts.

Me s(d) | means Mc(d) halts within s steps.

Me s(d) = z means M.(d) halts within s steps and outputs z.
Me s(d) T means Mc(d) has not halted within s steps.

Some examples of computable sets.

1. Primes, Evens, Fibonacci numbers, most sets that you know.

Notation and Examples

Notation Me s(d) is the result of running Me(d) for s steps.
Me(d) | means M.(d) halts.

Me(d) T means M. (d) does not halts.

Me s(d) | means Mc(d) halts within s steps.

Me s(d) = z means M.(d) halts within s steps and outputs z.
Me s(d) T means Mc(d) has not halted within s steps.

Some examples of computable sets.

1. Primes, Evens, Fibonacci numbers, most sets that you know.

2. {(e,d,s) : Mes(d) |}

Notation and Examples

Notation Me s(d) is the result of running Me(d) for s steps.
Me(d) | means M.(d) halts.

Me(d) T means M. (d) does not halts.

Me s(d) | means Mc(d) halts within s steps.

Me s(d) = z means M.(d) halts within s steps and outputs z.
Me s(d) T means Mc(d) has not halted within s steps.

Some examples of computable sets.

1. Primes, Evens, Fibonacci numbers, most sets that you know.

2. {(e,d,s) : Mes(d) |}
3. {(e,d;s): es() T}

Notation and Examples

Notation Me s(d) is the result of running Me(d) for s steps.
Me(d) | means M.(d) halts.

Me(d) T means M. (d) does not halts.

Me s(d) | means Mc(d) halts within s steps.

Me s(d) = z means M.(d) halts within s steps and outputs z.
Me s(d) T means Mc(d) has not halted within s steps.

Some examples of computable sets.

1. Primes, Evens, Fibonacci numbers, most sets that you know.
2. {(e,d,s) : Mes(d) 1}.

3. {(e,d,s) : Mcs(d) 1}

4. {e: M, has a prime number of states }.

Noncomputable Sets

Are there any noncomputable sets?

Noncomputable Sets

Are there any noncomputable sets?

1. Yes—if not then my PhD thesis would have been a lot shorter.

Noncomputable Sets

Are there any noncomputable sets?
1. Yes—if not then my PhD thesis would have been a lot shorter.

2. Yes—ALL SETS: uncountable. DEC Sets: countable, hence
there exists an uncountable number of noncomputable sets.

Noncomputable Sets

Are there any noncomputable sets?
1. Yes—if not then my PhD thesis would have been a lot shorter.

2. Yes—ALL SETS: uncountable. DEC Sets: countable, hence
there exists an uncountable number of noncomputable sets.

3. That last answer is true but unsatisfying. We want an actual
example of an noncomputable set.

The HALTING Problem

Definition The HALTING set is the set

HALT = {(e, d) | Me(d) halts }.

The HALTING Problem

Definition The HALTING set is the set

HALT = {(e, d) | Me(d) halts }.

Thought Experiment Here is one way you might want to
determine if (e, d) € HALT.
Given (e, d) run Mc(d). If it halts say YES.

The HALTING Problem

Definition The HALTING set is the set

HALT = {(e, d) | Me(d) halts }.

Thought Experiment Here is one way you might want to
determine if (e, d) € HALT.

Given (e, d) run Mc(d). If it halts say YES.
Does not work since do not know when to stop running it.

The HALTING Problem

Definition The HALTING set is the set

HALT = {(e, d) | Me(d) halts }.

Thought Experiment Here is one way you might want to
determine if (e, d) € HALT.

Given (e, d) run Mc(d). If it halts say YES.
Does not work since do not know when to stop running it.
Is there some way to solve this?

The HALTING Problem

Definition The HALTING set is the set

HALT = {(e, d) | Me(d) halts }.

Thought Experiment Here is one way you might want to
determine if (e, d) € HALT.

Given (e, d) run Mc(d). If it halts say YES.
Does not work since do not know when to stop running it.
Is there some way to solve this? No.

The HALTING Problem

Definition The HALTING set is the set

HALT = {(e, d) | Me(d) halts }.

Thought Experiment Here is one way you might want to
determine if (e, d) € HALT.

Given (e, d) run Mc(d). If it halts say YES.
Does not work since do not know when to stop running it.
Is there some way to solve this? No.

We need to prove this. We must show that it is NOT the case that
some clever person can look at the code and figure out that its
NOT going to halt.

The HALTING Problem

Definition The HALTING set is the set

HALT = {(e, d) | Me(d) halts }.

Thought Experiment Here is one way you might want to
determine if (e, d) € HALT.

Given (e, d) run Mc(d). If it halts say YES.
Does not work since do not know when to stop running it.
Is there some way to solve this? No.

We need to prove this. We must show that it is NOT the case that
some clever person can look at the code and figure out that its
NOT going to halt.

Recall You all thought there was no small NFA for {a' : i # n}
and were wrong. Hence lower bounds need proof.

HALT is Undecidable

Theorem HALT is not computable.
Proof Assume HALT computable via TM M.

Y if M(d
Me.d)={ " ML) @)
N if Mc(d) T
We use M to create the following machine which is M.
1. Input d
2. Run M(d,d)

3. If M(d,d) = Y then RUN FOREVER.
4. 1f M(d,d) = N then HALT.

Mc(e) | = M(e,e) =Y = Mc(e)
Ms(e) T = M(e,e) =N = M.(e) |
We now have that M,(e) cannot | and cannot 1. Contradiction.

Other Undecidable Problems

Using that HALT is undecidable we can prove the following
undecidable:

Other Undecidable Problems

Using that HALT is undecidable we can prove the following
undecidable:

{e : M. halts on at least 12 numbers } (at most,exactly)

Other Undecidable Problems

Using that HALT is undecidable we can prove the following
undecidable:

{e : M. halts on at least 12 numbers } (at most,exactly)

{e : M. halts on an infinite number of numbers}

Other Undecidable Problems

Using that HALT is undecidable we can prove the following
undecidable:

{e : M. halts on at least 12 numbers } (at most,exactly)
{e : M. halts on an infinite number of numbers}

{e : M. halts on a finite number of numbers}

Other Undecidable Problems

Using that HALT is undecidable we can prove the following
undecidable:

{e : M. halts on at least 12 numbers } (at most,exactly)
{e : M. halts on an infinite number of numbers}
{e : M. halts on a finite number of numbers}

{e : M. does the Hokey Pokey and turns itself around }

Other Undecidable Problems

Using that HALT is undecidable we can prove the following
undecidable:

{e : M. halts on at least 12 numbers } (at most,exactly)
{e : M. halts on an infinite number of numbers}

{e : M. halts on a finite number of numbers}

{e : M. does the Hokey Pokey and turns itself around }
TOT = {e: M, halts on all inputs}

Other Undecidable Problems

Using that HALT is undecidable we can prove the following
undecidable:

{e : M. halts on at least 12 numbers } (at most,exactly)
{e : M. halts on an infinite number of numbers}

{e : M. halts on a finite number of numbers}

{e : M. does the Hokey Pokey and turns itself around }
TOT = {e: M, halts on all inputs}

Proofs by reductions. Similar to NPC. We will not do that.

HALT and SAT

Why will we not be doing reductions in computability theory?

HALT and SAT

Why will we not be doing reductions in computability theory?
Contrast

1. Once SAT is proven NPC we can show 3COL NPC by a
reduction:

HALT and SAT

Why will we not be doing reductions in computability theory?
Contrast

1. Once SAT is proven NPC we can show 3COL NPC by a
reduction:

Given a formula ¢ we can find a graph G such that ¢ € SAT
iff G € 3COL.

HALT and SAT

Why will we not be doing reductions in computability theory?
Contrast
1. Once SAT is proven NPC we can show 3COL NPC by a
reduction:
Given a formula ¢ we can find a graph G such that ¢ € SAT
iff G € 3COL.
Is this interesting?

HALT and SAT

Why will we not be doing reductions in computability theory?
Contrast

1. Once SAT is proven NPC we can show 3COL NPC by a
reduction:
Given a formula ¢ we can find a graph G such that ¢ € SAT
iff G € 3COL.
Is this interesting? Yes Formulas related to Graphs!

2. Once HALT is proven undecidable we can show TOT is
undecidable by a reduction:

HALT and SAT

Why will we not be doing reductions in computability theory?
Contrast

1. Once SAT is proven NPC we can show 3COL NPC by a
reduction:
Given a formula ¢ we can find a graph G such that ¢ € SAT
iff G € 3COL.
Is this interesting? Yes Formulas related to Graphs!

2. Once HALT is proven undecidable we can show TOT is
undecidable by a reduction:
Given (e, d) we can €' such that (e,d) € HALT iffe' € TOT
Is this interesting?

HALT and SAT

Why will we not be doing reductions in computability theory?
Contrast

1. Once SAT is proven NPC we can show 3COL NPC by a
reduction:
Given a formula ¢ we can find a graph G such that ¢ € SAT
iff G € 3COL.
Is this interesting? Yes Formulas related to Graphs!

2. Once HALT is proven undecidable we can show TOT is
undecidable by a reduction:
Given (e, d) we can €' such that (e,d) € HALT iffe' € TOT
Is this interesting? No Machines related to other machines.

HALT and SAT

Why will we not be doing reductions in computability theory?
Contrast

1. Once SAT is proven NPC we can show 3COL NPC by a
reduction:
Given a formula ¢ we can find a graph G such that ¢ € SAT
iff G € 3COL.
Is this interesting? Yes Formulas related to Graphs!

2. Once HALT is proven undecidable we can show TOT is
undecidable by a reduction:
Given (e, d) we can €' such that (e,d) € HALT iffe' € TOT
Is this interesting? No Machines related to other machines.

Reductions in Computability theory came first by several decades.
Complexity theory borrowed ideas from Computability theory for
the basic definitions.

What Sets of TMs Are Decidable?

Decidable sets:

{e : M has a prime number of states }

What Sets of TMs Are Decidable?

Decidable sets:

{€ : M. has a prime number of states }

{e : M, has a square number of alphabet symbols}

What Sets of TMs Are Decidable?

Decidable sets:

{€ : M. has a prime number of states }

{e : M, has a square number of alphabet symbols}

{e : M no transition does a MOVE-L}

What Sets of TMs Are Decidable?

Decidable sets:

{€ : M. has a prime number of states }

{e : M, has a square number of alphabet symbols}

{e : M no transition does a MOVE-L}

Key Difference:

» Semantic Question: What does M, do? is usually
undecidable.

» Syntactic Question: What does M, look like? is usually
decidable.

> 1 Sets
HALT is undecidable.

> 1 Sets
HALT is undecidable. How undecidable?

> 1 Sets

HALT is undecidable. How undecidable? Measure with quants:

> 1 Sets

HALT is undecidable. How undecidable? Measure with quants:

HALT = {(e, d) : (35)[Mes(d) JI}

> 1 Sets

HALT is undecidable. How undecidable? Measure with quants:

HALT = {(e, d) : (35)[Mes(d) JI}

Let

B ={(e,d,s): Mcs(d) |}

> 1 Sets

HALT is undecidable. How undecidable? Measure with quants:

HALT = {(e, d) : (35)[Mes(d) JI}

Let

B ={(e,d,s): Mcs(d) |}
B is decidable and

HALT ={(e,d) : (3s)[(e, d,s) € B]}

> 1 Sets

HALT is undecidable. How undecidable? Measure with quants:

HALT = {(e, d) : (35)[Mes(d) JI}

Let

B={(e,d,s): Mes(d) |}
B is decidable and

HALT ={(e,d) : (3s)[(e, d,s) € B]}

B is decidable. This inspires the following definition.

> 1 Sets

HALT is undecidable. How undecidable? Measure with quants:

HALT = {(e, d) : (35)[Mes(d) JI}

Let

B ={(e,d,s): Mcs(d) |}
B is decidable and

HALT ={(e,d) : (3s)[(e, d,s) € B]}

B is decidable. This inspires the following definition.
Definition A € X1 if there exists decidable B such that

A={x:(Fy)l(x,y) € Bl}

> 1 Sets
HALT is undecidable. How undecidable? Measure with quants:

HALT = {(e, d) : (35)[Mes(d) JI}

Let

B={(e,d,s): Mes(d) |}
B is decidable and
HALT ={(e,d) : (3s)[(e, d,s) € B]}

B is decidable. This inspires the following definition.
Definition A € X1 if there exists decidable B such that

A={x:(Fy)l(x,y) € Bl}

Does this definition remind you of something?

> 1 Sets
HALT is undecidable. How undecidable? Measure with quants:

HALT = {(e, d) : (35)[Mes(d) JI}

Let

B={(e,d,s): Mes(d) |}
B is decidable and
HALT ={(e,d) : (3s)[(e, d,s) € B]}

B is decidable. This inspires the following definition.
Definition A € X1 if there exists decidable B such that

A={x:(Fy)l(x,y) € Bl}
Does this definition remind you of something? YES- NP.

Compare NP to 3

A € NP if there exists B € P and poly p such that

A= {x: 3y, lyl <p(Ix)I(x,y) € Bl}

Compare NP to 3

A € NP if there exists B € P and poly p such that
A= {x:(3y,lyl < p(Ix)I(x.y) € Bl}
A € Y if there exists B € DEC such that

A={x:(3y)l(x,y) € Bl}

Compare NP to 3

Compare NP to 3

1. Both use a quantifier and then something easy. So the sets
are difficult because of the quantifier.

Compare NP to 3

1. Both use a quantifier and then something easy. So the sets
are difficult because of the quantifier.

2. 2.1 For NP easy means P and the quantifier is over an exp size set.

Compare NP to 3

1. Both use a quantifier and then something easy. So the sets
are difficult because of the quantifier.

2. 2.1 For NP easy means P and the quantifier is over an exp size set.
2.2 For ¥; easy means DEC and the quantifier is over N.

Compare NP to 3

1. Both use a quantifier and then something easy. So the sets
are difficult because of the quantifier.

2. 2.1 For NP easy means P and the quantifier is over an exp size set.
2.2 For ¥; easy means DEC and the quantifier is over N.

3. X1 came first by several decades. Complexity theory borrowed
ideas from Computability theory for the basic definitions.

Compare NP to 3

1. Both use a quantifier and then something easy. So the sets
are difficult because of the quantifier.

2. 2.1 For NP easy means P and the quantifier is over an exp size set.
2.2 For ¥; easy means DEC and the quantifier is over N.

3. X1 came first by several decades. Complexity theory borrowed
ideas from Computability theory for the basic definitions.

4. Are ideas from Computability theory useful in complexity
theory?

Compare NP to 3

1. Both use a quantifier and then something easy. So the sets
are difficult because of the quantifier.

2. 2.1 For NP easy means P and the quantifier is over an exp size set.
2.2 For ¥; easy means DEC and the quantifier is over N.

3. X1 came first by several decades. Complexity theory borrowed
ideas from Computability theory for the basic definitions.

4. Are ideas from Computability theory useful in complexity
theory? Yes, to a limited extent.

Compare NP to 3

1. Both use a quantifier and then something easy. So the sets
are difficult because of the quantifier.

2. 2.1 For NP easy means P and the quantifier is over an exp size set.
2.2 For ¥; easy means DEC and the quantifier is over N.

3. X1 came first by several decades. Complexity theory borrowed
ideas from Computability theory for the basic definitions.

4. Are ideas from Computability theory useful in complexity
theory? Yes, to a limited extent. My thesis was on showing
some of those limits.

More on X4

Theorem Let A be any set. The following are equivalent:
(1) Ais 3.
(2) There exists a TM such that A = {x : (3s)[Me s(x)]}
(3) There exists a total TM such that

A= {y:(3e, 5)[Mes(x) I=y1}-

Because of (3) X; is often called recursively enumerable or
computably enumerable.

Beyond 3;

Definition B is always a decidable set.

Beyond 3;

Definition B is always a decidable set.
Aclif A= {x:(Yy)l(x,y) € B]}.

Beyond 3;

Definition B is always a decidable set.
Aclif A= {x:(Yy)l(x,y) € B]}.
A€ X, if A={x:(Gy)(vy2)l(x,11,y2) € Bl}.

Beyond 3;

Definition B is always a decidable set.
Aclif A= {x:(Yy)l(x,y) € B]}.

A€ Xz if A= {x:(3n)(Vy2)[(x,y1,y2) € B]}.
A€y if A= {x:(Yy1)(3y2)l(x,y1,y2) € Bl}.

Beyond 3;

Definition B is always a decidable set.
Aclif A= {x:(Yy)l(x,y) € B]}.

A€ Xz if A= {x:(3n)(Vy2)[(x,y1,y2) € B]}.
A€y if A= {x:(Yy1)(3y2)l(x,y1,y2) € Bl}.

TOT = {x: (Vy)(3s)[Ms(y) I} € M2.

Beyond 3;

Definition B is always a decidable set.
Aclif A= {x:(Yy)l(x,y) € B]}.

A€ Xz if A= {x:(3n)(Vy2)[(x,y1,y2) € B]}.
A€y if A= {x:(Yy1)(3y2)l(x,y1,y2) € Bl}.

TOT = {x: (Vy)(3s)[Mx,s(y) H} € Mo.
Known: TOT ¢ ¥; UT;.

Beyond 3;

Definition B is always a decidable set.
Aclif A= {x:(Yy)l(x,y) € B]}.

A€ Xz if A= {x:(3n)(Vy2)[(x,y1,y2) € B]}.
A€y if A= {x:(Yy1)(3y2)l(x,y1,y2) € Bl}.

TOT = {x: (Vy)(3s)[Mx,s(y) H} € Mo.
Known: TOT ¢ ¥; UT;.

Known:
21C22CZ3-“
|_|1C|_|2C|_|3--'

Beyond 3;

Definition B is always a decidable set.
Aclif A= {x:(Yy)l(x,y) € B]}.

A€ Xz if A= {x:(3n)(Vy2)[(x,y1,y2) € B]}.
A€y if A= {x:(Yy1)(3y2)l(x,y1,y2) € Bl}.

TOT = {x: (Vy)(3s)[Mxs(y) I} € Na.
Known: TOT ¢ ¥; UT;.

Known:

21 CYXyCX3---

My crl C |_|3 s

TOT is harder than HALT.

Natural Undecidable Sets

Are there any undecidable sets that are not about computation?

Natural Undecidable Sets

Are there any undecidable sets that are not about computation?
Yes—

Natural Undecidable Sets

Are there any undecidable sets that are not about computation?
Yes—a few.

Hilbert’'s Tenth Problem

In the year 1900 David Hilbert proposed 23 problems for
Mathematicians to work.

Hilbert’'s Tenth Problem

In the year 1900 David Hilbert proposed 23 problems for
Mathematicians to work.

Definition Z[x, ..., xs] is the set of all polys in variables
X1, ..., Xp With coefficients in Z.

Hilbert’'s Tenth Problem

In the year 1900 David Hilbert proposed 23 problems for
Mathematicians to work.

Definition Z[x, ..., xs] is the set of all polys in variables
X1, ..., Xp With coefficients in Z.

Example 13x” 4+ 8x% — 19x% + 19

Hilbert’s Tenth Problem
In the year 1900 David Hilbert proposed 23 problems for
Mathematicians to work.
Definition Z[x, ..., xs] is the set of all polys in variables
X1, ..., Xp With coefficients in Z.
Example 13x” 4+ 8x% — 19x% + 19
Hilbert’s 10th problem (in modern language) Give an
algorithm that will, given p(xi,...,x,) € Z[x1, ..., x,] determine if
there exists a1, ..., a, € Z such that p(ai1,...,a,) =0.

Hilbert’s Tenth Problem
In the year 1900 David Hilbert proposed 23 problems for
Mathematicians to work.
Definition Z[x, ..., x,] is the set of all polys in variables
X1,...,Xp with coefficients in Z.
Example 13x” 4+ 8x% — 19x% + 19
Hilbert’s 10th problem (in modern language) Give an
algorithm that will, given p(xi,...,x,) € Z[x1, ..., x,] determine if
there exists a1, ..., a, € Z such that p(ai1,...,a,) =0.
Hilbert thought this would inspire interesting Number Theory.

Hilbert’'s Tenth Problem

In the year 1900 David Hilbert proposed 23 problems for
Mathematicians to work.

Definition Z[x, ..., x,] is the set of all polys in variables
X1,...,Xp with coefficients in Z.

Example 13x” 4+ 8x% — 19x% + 19
Hilbert’s 10th problem (in modern language) Give an

algorithm that will, given p(xi,...,x,) € Z[x1, ..., x,] determine if
there exists a1, ..., a, € Z such that p(ai1,...,a,) =0.

Hilbert thought this would inspire interesting Number Theory.

In 1959

Martin Davis (a Logician)

Hillary Putnam (a philosopher, though he knew quite a lot of
math)

Julia Robinson (a Logician and, unusual for the time, a woman)
worked together and showed that if you also allow exponentials the
problem is undecidable.

Hilbert’'s Tenth Problem

In the year 1900 David Hilbert proposed 23 problems for
Mathematicians to work.

Definition Z[x, ..., x,] is the set of all polys in variables
X1,...,Xp with coefficients in Z.

Example 13x” 4+ 8x% — 19x% + 19

Hilbert’s 10th problem (in modern language) Give an
algorithm that will, given p(xi,...,x,) € Z[x1, ..., x,] determine if
there exists a1, ..., a, € Z such that p(ai1,...,a,) =0.

Hilbert thought this would inspire interesting Number Theory.

In 1959

Martin Davis (a Logician)

Hillary Putnam (a philosopher, though he knew quite a lot of
math)

Julia Robinson (a Logician and, unusual for the time, a woman)
worked together and showed that if you also allow exponentials the
problem is undecidable.

Martin Davis was asked who might take their work and extend it
A ~nt +hAatr 10 ~anmnAay A cALhiAaA A ~~1A

Hilbert’'s Tenth Problem

In the year 1900 David Hilbert proposed 23 problems for
Mathematicians to work.

Definition Z[x, ..., x,] is the set of all polys in variables
X1,...,Xp with coefficients in Z.

Example 13x” 4+ 8x% — 19x% + 19

Hilbert’s 10th problem (in modern language) Give an
algorithm that will, given p(xi,...,x,) € Z[x1, ..., x,] determine if
there exists a1, ..., a, € Z such that p(ai1,...,a,) =0.

Hilbert thought this would inspire interesting Number Theory.

In 1959

Martin Davis (a Logician)

Hillary Putnam (a philosopher, though he knew quite a lot of
math)

Julia Robinson (a Logician and, unusual for the time, a woman)
worked together and showed that if you also allow exponentials the
problem is undecidable.

Martin Davis was asked who might take their work and extend it
A ~nt +hAatr 10 ~anmnAay A cALhiAaA A ~~1A

Yuri Matiyasevich

In 1979 a young Russian named Yuri Matiyasevich finished the
proof.

Yuri Matiyasevich

In 1979 a young Russian named Yuri Matiyasevich finished the
proof.

It is often said

H10 was proven undecidable by

Martin Davis, Hillary Putnam, Julia Robinson, and Yuri
Matiyasevich.

Yuri Matiyasevich

In 1979 a young Russian named Yuri Matiyasevich finished the
proof.

It is often said

H10 was proven undecidable by

Martin Davis, Hillary Putnam, Julia Robinson, and Yuri
Matiyasevich.

Since then various combinations of the four of them have had
papers simplifying the proof.

Yuri Matiyasevich

In 1979 a young Russian named Yuri Matiyasevich finished the
proof.

It is often said

H10 was proven undecidable by

Martin Davis, Hillary Putnam, Julia Robinson, and Yuri
Matiyasevich.

Since then various combinations of the four of them have had
papers simplifying the proof.
The proof involved coding Turing Machines into Polynomials.

Upshot This problem of, given p(xi,...,xs) € Z[x1, ..., x,] does it
have an integer solution is a natural question that is undecidable.

