Review For the Final

May 12, 2020

Turing Machines and DTIME

May 12, 2020

Turing Machines

1. For this review we omit definitionand conventions.
2. There is a JAVA program for function f iff there is a TM that computes f.
3. Everything computable can be done by a TM.

Decidable Sets

Def A set A is DECIDABLE if there is a Turing Machine M such that

$$
\begin{aligned}
& x \in A \rightarrow M(x)=Y \\
& x \notin A \rightarrow M(x)=N
\end{aligned}
$$

Terrible Def of DTIME

Def Let $T(n)$ be a computable function (think increasing). A is in $\operatorname{DTIME}(T(n))$ if there is a TM M that decides A and also, for all $x, M(x)$ halts in time $\leq O(T(|x|))$.
Terrible Def since depends to much on machine model.

- Prove theorems about DTIME ($T(n)$) where the model does not matter. (Time hierarchy theorem)).
- Define time classes that are model-independent (P, NP stuff)

Time Hierarchy Thm

Thm (The Time Hierarchy Thm) For all computable increasing $T(n)$ there exists a decidable set A such that $A \notin \operatorname{DTIME}(T(n))$. Proof Let M_{1}, M_{2}, \ldots, represent all of $\operatorname{DTIME}(T(n))$ (obtain by listing out all Turing Machines and putting a time bound on them). Here is our algorithm for A. It will be a subset of 0^{*}.

1. Input 0^{i}.
2. Run $M_{i}\left(0^{i}\right)$. If the results is 1 then output 0 . If the results is 0 then output 1.
For all i, M_{i} and A DIFFER on 0^{i}. Hence A is not decided by any M_{i}. So $A \notin \operatorname{DTIME}(T(n))$.
End of Proof

P, NP, Reductions

May 12, 2020

P and EXP

Def

1. $\mathrm{P}=\operatorname{DTIME}\left(n^{O(1)}\right)$.
2. $\operatorname{EXP}=\operatorname{DTIME}\left(2^{n^{0(1)}}\right)$.
3. PF is the set of functions that are computable in poly time.

NP

Def A is in NP if there exists a set $B \in \mathrm{P}$ and a polynomial p such that

$$
A=\{x \mid(\exists y)[|y|=p(|x|) \wedge(x, y) \in B]\} .
$$

NP

Def A is in NP if there exists a set $B \in \mathrm{P}$ and a polynomial p such that

$$
A=\{x \mid(\exists y)[|y|=p(|x|) \wedge(x, y) \in B]\} .
$$

Intuition. Let $A \in \mathrm{NP}$.

- If $x \in A$ then there is a SHORT (poly in $|x|$) proof of this fact, namely y, such that x can be VERIFIED in poly time. So if I wanted to convince you that $x \in L$, I could give you y. You can verify $(x, y) \in B$ easily and be convinced.

NP

Def A is in NP if there exists a set $B \in \mathrm{P}$ and a polynomial p such that

$$
A=\{x \mid(\exists y)[|y|=p(|x|) \wedge(x, y) \in B]\} .
$$

Intuition. Let $A \in$ NP.

- If $x \in A$ then there is a SHORT (poly in $|x|$) proof of this fact, namely y, such that x can be VERIFIED in poly time. So if I wanted to convince you that $x \in L$, I could give you y. You can verify $(x, y) \in B$ easily and be convinced.
- If $x \notin A$ then there is NO proof that $x \in A$.

Examples of Sets in NP

$$
\begin{gathered}
\mathrm{SAT}=\{\phi:(\exists \vec{y})[\phi(\vec{y})=T]\} \\
3 \mathrm{COL}=\{G: G \text { is 3-colorable }\} \\
\mathrm{CLIQ}=\{(G, k): G \text { has a clique of size } k\}
\end{gathered}
$$

$$
H A M=\{G: G \text { has a Hamiltonian Cycle }\}
$$

$$
E U L=\{G: G \text { has an Eulerian Cycle }\}
$$

Note These all ask if something EXISTS. To FIND the (say) 3-coloring one can make queries to (say) 3COL. Note $E U L \in P$. The rest are NPC hence likely NOT in P.

Reductions

Def Let X, Y be languages. A reduction from X to Y is a polynomial-time computable function f such that

$$
x \in X \text { iff } f(x) \in Y
$$

We express this by writing $X \leq Y$.

Reductions

Def Let X, Y be languages. A reduction from X to Y is a polynomial-time computable function f such that

$$
x \in X \text { iff } f(x) \in Y
$$

We express this by writing $X \leq Y$.
Reductions are transitive.
Easy Lemma If $X \leq Y$ and $Y \in \mathrm{P}$ then $X \in \mathrm{P}$.

Reductions

Def Let X, Y be languages. A reduction from X to Y is a polynomial-time computable function f such that

$$
x \in X \text { iff } f(x) \in Y
$$

We express this by writing $X \leq Y$.
Reductions are transitive.
Easy Lemma If $X \leq Y$ and $Y \in \mathrm{P}$ then $X \in \mathrm{P}$.
Contrapositive If $X \leq Y$ and $X \notin \mathrm{P}$ then $Y \notin \mathrm{P}$.

Def of NP-Complete

Def A language Y is NP-complete

- $Y \in \mathrm{NP}$
- If $X \in$ NP then $X \leq Y$.

Def of NP-Complete

Def A language Y is NP-complete

- $Y \in N P$
- If $X \in$ NP then $X \leq Y$.

Easy Lemma If Y is NP-complete and $Y \in \mathrm{P}$ then $\mathrm{P}=\mathrm{NP}$.

Def of NP-Complete

Def A language Y is NP-complete

- $Y \in N P$
- If $X \in$ NP then $X \leq Y$.

Easy Lemma If Y is NP-complete and $Y \in \mathrm{P}$ then $\mathrm{P}=\mathrm{NP}$. Honesty When I first saw the definition of NP-completeness I thought (1) there are no NP-complete sets or (2) there are no natural NP-complete sets.

Def of NP-Complete

Def A language Y is NP-complete

- $Y \in N P$
- If $X \in$ NP then $X \leq Y$.

Easy Lemma If Y is NP-complete and $Y \in \mathrm{P}$ then $\mathrm{P}=\mathrm{NP}$. Honesty When I first saw the definition of NP-completeness I thought (1) there are no NP-complete sets or (2) there are no natural NP-complete sets.
The condition:

$$
\text { for EVERY } X \in \text { NP, } X \leq Y ?
$$

seemed very hard to meet.

SAT is NP-Complete

In 1971 Stephen Cook and Leonid Levin Independently showed: CNF-SAT is NP-complete

SAT is NP-Complete

In 1971 Stephen Cook and Leonid Levin Independently showed: CNF-SAT is NP-complete
Thoughts on this:

SAT is NP-Complete

In 1971 Stephen Cook and Leonid Levin Independently showed: CNF-SAT is NP-complete
Thoughts on this:

1. The proof is not hard, but it involves looking at actual TMs. We will prove it next lecture. SAT was the first NP-complete problem. You could not use some other problem.

SAT is NP-Complete

In 1971 Stephen Cook and Leonid Levin Independently showed: CNF-SAT is NP-complete
Thoughts on this:

1. The proof is not hard, but it involves looking at actual TMs. We will prove it next lecture. SAT was the first NP-complete problem. You could not use some other problem.
2. Once we have SAT is NP-complete we will NEVER use TMs again. To show Y NP-complete: (1) $Y \in N P$, (2) SAT $\leq Y$.

SAT is NP-Complete

In 1971 Stephen Cook and Leonid Levin Independently showed: CNF-SAT is NP-complete
Thoughts on this:

1. The proof is not hard, but it involves looking at actual TMs. We will prove it next lecture. SAT was the first NP-complete problem. You could not use some other problem.
2. Once we have SAT is NP-complete we will NEVER use TMs again. To show Y NP-complete: (1) $Y \in N P$, (2) SAT $\leq Y$.
3. Thousands of problems are NP-complete. If any are in P then they are all in P .

The Cook-Levin Thm

May 12, 2020

What does the Proof Involve

Proof involved coding a TM into a Boolean Formula which had parts:

1. $z_{i, j, \sigma}=T$ iff the j th symbol in the i th configuration is σ.
2. First config: input x, start state, SOME y of the right length.
3. Last config: accepts
4. C_{i+1} follows from C_{i}.

Closure Properties of P and NP

May 12, 2020

Closure of P

May 12, 2020

Easy Closure Propetries of \mathbf{P}

Assume $L_{1}, L_{2} \in P$.

1. $L_{1} \cup L_{2} \in P$. EASY. Uses polys closed under addition.
2. $L_{1} \cap L_{2} \in P$. EASY. Uses polys closed under addition.
3. $\overline{L_{1}} \in P$. EASY.
4. $L_{1} L_{2} \in P$. EASY. Uses $p(n)$ poly then $n p(n)$ poly.

Closure of P Under *

Thm If $L \in \mathrm{P}$ then $L^{*} \in \mathrm{P}$.
Proof
First lets talk about what you should not do:
The technique of looking at all ways to break up x into pieces takes roughly 2^{n} steps, so we need to do something clever.

Dyn Prog

Dynamic Programming We solve a harder problem but get lots of information in the process.

Dyn Prog

Dynamic Programming We solve a harder problem but get lots of information in the process.
Original Problem Given $x=x_{1} \cdots x_{n}$ want to know if $x \in L^{*}$

Dyn Prog

Dynamic Programming We solve a harder problem but get lots of information in the process.
Original Problem Given $x=x_{1} \cdots x_{n}$ want to know if $x \in L^{*}$ New Problem Given $x=x_{1} \cdots x_{n}$ want to know:
$e \in L^{*}$
$x_{1} \in L^{*}$
$x_{1} x_{2} \in L^{*}$
$x_{1} x_{2} \cdots x_{n} \in L^{*}$.
Intuition $x_{1} \cdots x_{i} \in L^{*}$ IFF it can be broken into TWO pieces, the first one in L^{*}, and the second in L.

Final Algorithm

$A[i]$ stores if $x_{1} \cdots x_{i}$ is in $L^{*} . M$ is poly-time Alg for L, poly p.

Final Algorithm

$A[i]$ stores if $x_{1} \cdots x_{i}$ is in $L^{*} . M$ is poly-time Alg for L, poly p.
Input $x=x_{1} \cdots x_{n}$
$A[1]=A[2]=\ldots=A[n]=$ FALSE
$A[0]=$ TRUE
for $i=1$ to n do
for $j=0$ to $i-1$ do
if $A[j]$ AND $M\left(x_{j+1} \cdots x_{i}\right)=Y$ then $A[i]=$ TRUE output $A[n]$

Final Algorithm

$A[i]$ stores if $x_{1} \cdots x_{i}$ is in $L^{*} . M$ is poly-time Alg for L, poly p.
Input $x=x_{1} \cdots x_{n}$
$A[1]=A[2]=\ldots=A[n]=$ FALSE
$A[0]=$ TRUE
for $i=1$ to n do
for $j=0$ to $i-1$ do
if $A[j]$ AND $M\left(x_{j+1} \cdots x_{i}\right)=Y$ then $A[i]=$ TRUE output $A[n]$
$O\left(n^{2}\right)$ calls to M on inputs of length $\leq n$. Runtime $\leq O\left(n^{2} p(n)\right)$.

Final Algorithm

$A[i]$ stores if $x_{1} \cdots x_{i}$ is in $L^{*} . M$ is poly-time Alg for L, poly p.
Input $x=x_{1} \cdots x_{n}$
$A[1]=A[2]=\ldots=A[n]=\mathrm{FALSE}$
$A[0]=$ TRUE
for $i=1$ to n do

$$
\text { for } j=0 \text { to } i-1 \text { do }
$$

if $A[j]$ AND $M\left(x_{j+1} \cdots x_{i}\right)=Y$ then $A[i]=$ TRUE
output $A[n]$
$O\left(n^{2}\right)$ calls to M on inputs of length $\leq n$. Runtime $\leq O\left(n^{2} p(n)\right)$. Note Key is that the set of polynomials is closed under mult by n^{2}.

Closure of NP

May 12, 2020

Closure of NP under Union

Thm If $L_{1} \in N P$ and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in N P$.

Closure of NP under Union

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in$ NP.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right.$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right.$

Closure of NP under Union

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in$ NP.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right.$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right.$
The following defines $L_{1} \cup L_{2}$ in an NP-way.
$L_{1} \cup L_{2}=\{x:(\exists y):$

- $|y|=p_{1}(|x|)+p_{2}(|x|)+1 . y=y_{1} \$ y_{2}$ where $\left|y_{1}\right|=p_{1}(|x|)$ and $\left|y_{2}\right|=p_{2}(|X|)$.
- $\left.\left(x, y_{1}\right) \in B_{1} \vee\left(x, y_{2}\right) \in B_{2}\right)$

Closure of NP under Union

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in$ NP.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right.$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right.$
The following defines $L_{1} \cup L_{2}$ in an NP-way.
$L_{1} \cup L_{2}=\{x:(\exists y):$

- $|y|=p_{1}(|x|)+p_{2}(|x|)+1 . y=y_{1} \$ y_{2}$ where $\left|y_{1}\right|=p_{1}(|x|)$
and $\left|y_{2}\right|=p_{2}(|X|)$.
- $\left.\left(x, y_{1}\right) \in B_{1} \vee\left(x, y_{2}\right) \in B_{2}\right)$

Witness: $|y|=p_{1}(|x|)+p_{2}(|x|)+1$ is short.

Closure of NP under Union

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in$ NP.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right.$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right.$
The following defines $L_{1} \cup L_{2}$ in an NP-way.
$L_{1} \cup L_{2}=\{x:(\exists y):$

- $|y|=p_{1}(|x|)+p_{2}(|x|)+1 . y=y_{1} \$ y_{2}$ where $\left|y_{1}\right|=p_{1}(|x|)$
and $\left|y_{2}\right|=p_{2}(|X|)$.
- $\left.\left(x, y_{1}\right) \in B_{1} \vee\left(x, y_{2}\right) \in B_{2}\right)$

Witness: $|y|=p_{1}(|x|)+p_{2}(|x|)+1$ is short.
Verification: $\left.\left(x, y_{1}\right) \in B_{1} \vee\left(x, y_{2}\right) \in B_{2}\right)$, is quick.

Closure of Concatenation

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} L_{2} \in \mathrm{NP}$.

Closure of Concatenation

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} L_{2} \in \mathrm{NP}$.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right.$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right.$

Closure of Concatenation

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} L_{2} \in$ NP.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right.$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right.$
The following defines $L_{1} L_{2}$ in an NP-way.

$$
\left\{x:\left(\exists x_{1}, x_{2}, y_{1}, y_{2}\right)\right.
$$

- $x=x_{1} x_{2}$
$-\left|y_{1}\right|=p_{1}\left(\left|x_{1}\right|\right)$
- $\left|y_{2}\right|=p_{2}\left(\left|x_{2}\right|\right)$
- $\left(x_{1}, y_{1}\right) \in B_{1}$
- $\left(x_{2}, y_{2}\right) \in B_{2}$

Is NP closed under Complementation?

Unknown to Science!
But the common opinion is NO.

Is NP closed under Complementation?

Unknown to Science!
But the common opinion is NO. Unlikely that there is a short poly-verifiable witness to G NOT being 3-colorable.

$\mathrm{CLIQ} \leq \mathrm{SAT}$

Does G have a clique of size k ?

$\mathrm{CLIQ} \leq \mathrm{SAT}$

Does G have a clique of size k ?
We rephrase that:

$\mathrm{CLIQ} \leq \mathrm{SAT}$

Does G have a clique of size k ?
We rephrase that:
Let $G=(V, E)$.

$\mathrm{CLIQ} \leq \mathrm{SAT}$

Does G have a clique of size k ?
We rephrase that:
Let $G=(V, E)$.
G has a clique of size k is EQUIVALENT TO:
There is a 1-1 function $\{1, \ldots, k\} \rightarrow V$ such that for all
$1 \leq a, b \leq k,(f(a), f(b)) \in E$.

$\mathrm{CLIQ} \leq \mathrm{SAT}$

Given G and k We want to know:
There is a 1-1 function $\{1, \ldots, k\} \rightarrow V$ such that for all $1 \leq a, b \leq k,(f(a), f(b)) \in E$.

$\mathrm{CLIQ} \leq \mathrm{SAT}$

Given G and k We want to know:
There is a 1-1 function $\{1, \ldots, k\} \rightarrow V$ such that for all
$1 \leq a, b \leq k,(f(a), f(b)) \in E$.
We formulate this as a Boolean Formula:

1. For $1 \leq i \leq k, 1 \leq j \leq n$, have Boolean Vars $x_{i j}$. Intent:

$$
x_{i j}= \begin{cases}T & \text { if vertex } i \text { maps to vertex } j \tag{1}\\ F & \text { if vertex } i \text { does not maps to vertex } j\end{cases}
$$

2. Part of formula says $x_{i j}$ is a bijection.
3. Part of formula says that the k points map to a clique.

Decidability and Undecidability

May 12, 2020

Recall Turing Machines

Recall Turing Machines

1. TM's are Java Programs.

Recall Turing Machines

1. TM's are Java Programs.
2. We have a listing of them M_{1}, M_{2}, \ldots.

Recall Turing Machines

1. TM's are Java Programs.
2. We have a listing of them M_{1}, M_{2}, \ldots.
3. If you run $M_{e}(d)$ it might not halt.

Recall Turing Machines

1. TM's are Java Programs.
2. We have a listing of them M_{1}, M_{2}, \ldots.
3. If you run $M_{e}(d)$ it might not halt.
4. Everything computable is computable by some TM.

Recall Turing Machines

1. TM's are Java Programs.
2. We have a listing of them M_{1}, M_{2}, \ldots.
3. If you run $M_{e}(d)$ it might not halt.
4. Everything computable is computable by some TM.
5. A TM that halts on all inputs is called total.

Computable Sets

Def A set A is computable if there exists a Turing Machine M that behaves as follows:

$$
M(x)= \begin{cases}Y & \text { if } x \in A \tag{2}\\ N & \text { if } x \notin A\end{cases}
$$

Computable Sets

Def A set A is computable if there exists a Turing Machine M that behaves as follows:

$$
M(x)= \begin{cases}Y & \text { if } x \in A \tag{2}\\ N & \text { if } x \notin A\end{cases}
$$

Computable sets are also called decidable or solvable. A machine such as M above is said to decide A.

Computable Sets

Def A set A is computable if there exists a Turing Machine M that behaves as follows:

$$
M(x)= \begin{cases}Y & \text { if } x \in A \tag{2}\\ N & \text { if } x \notin A\end{cases}
$$

Computable sets are also called decidable or solvable. A machine such as M above is said to decide A.
Notation DEC is the set of Decidable Sets.

Notation
4ロ〉4句

Notation

Notation $M_{e, s}(d)$ is the result of running $M_{e}(d)$ for s steps.

Notation

Notation $M_{e, s}(d)$ is the result of running $M_{e}(d)$ for s steps. $M_{e}(d) \downarrow$ means $M_{e}(d)$ halts.

Notation

Notation $M_{e, s}(d)$ is the result of running $M_{e}(d)$ for s steps. $M_{e}(d) \downarrow$ means $M_{e}(d)$ halts.
$M_{e}(d) \uparrow$ means $M_{e}(d)$ does not halts.

Notation

Notation $M_{e, s}(d)$ is the result of running $M_{e}(d)$ for s steps. $M_{e}(d) \downarrow$ means $M_{e}(d)$ halts.
$M_{e}(d) \uparrow$ means $M_{e}(d)$ does not halts.
$M_{e, s}(d) \downarrow$ means $M_{e}(d)$ halts within s steps.

Notation

Notation $M_{e, s}(d)$ is the result of running $M_{e}(d)$ for s steps. $M_{e}(d) \downarrow$ means $M_{e}(d)$ halts.
$M_{e}(d) \uparrow$ means $M_{e}(d)$ does not halts.
$M_{e, s}(d) \downarrow$ means $M_{e}(d)$ halts within s steps.
$M_{e, s}(d) \downarrow=z$ means $M_{e}(d)$ halts within s steps and outputs z.

Notation

Notation $M_{e, s}(d)$ is the result of running $M_{e}(d)$ for s steps. $M_{e}(d) \downarrow$ means $M_{e}(d)$ halts.
$M_{e}(d) \uparrow$ means $M_{e}(d)$ does not halts.
$M_{e, s}(d) \downarrow$ means $M_{e}(d)$ halts within s steps.
$M_{e, s}(d) \downarrow=z$ means $M_{e}(d)$ halts within s steps and outputs z.
$M_{e, s}(d) \uparrow$ means $M_{e}(d)$ has not halted within s steps.

Notation

Notation $M_{e, s}(d)$ is the result of running $M_{e}(d)$ for s steps. $M_{e}(d) \downarrow$ means $M_{e}(d)$ halts.
$M_{e}(d) \uparrow$ means $M_{e}(d)$ does not halts.
$M_{e, s}(d) \downarrow$ means $M_{e}(d)$ halts within s steps.
$M_{e, s}(d) \downarrow=z$ means $M_{e}(d)$ halts within s steps and outputs z.
$M_{e, s}(d) \uparrow$ means $M_{e}(d)$ has not halted within s steps.

Noncomputable Sets

Are there any noncomputable sets?

1. Yes-ALL SETS: uncountable. DEC Sets: countable, hence there exists an uncountable number of noncomputable sets.
2. YES-HALT is undecidabe, and once you have that you have many other sets undec.
3. YES-the problem of telling if a $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ has an int solution is undecidable.

The HALTING Problem

Def The HALTING set is the set

$$
H A L T=\left\{(e, d) \mid M_{e}(d) \text { halts }\right\}
$$

HALT is Undecidable

Thm HALT is not computable.
Proof Assume HALT computable via TM M.

$$
M(e, d)= \begin{cases}Y & \text { if } M_{e}(d) \downarrow \tag{3}\\ N & \text { if } M_{e}(d) \uparrow\end{cases}
$$

We use M to create the following machine which is M_{e}.

1. Input d
2. Run $M(d, d)$
3. If $M(d, d)=Y$ then RUN FOREVER.
4. If $M(d, d)=N$ then HALT.
$M_{e}(e) \downarrow \Longrightarrow M(e, e)=Y \Longrightarrow M_{e}(e) \uparrow$
$M_{e}(e) \uparrow \Longrightarrow M(e, e)=N \Longrightarrow M_{e}(e) \downarrow$
We now have that $M_{e}(e)$ cannot \downarrow and cannot \uparrow. Contradiction.

Other Undecidable Problems

Using that HALT is undecidable we can prove the following undecidable:

Other Undecidable Problems

Using that HALT is undecidable we can prove the following undecidable:
$\left\{e: M_{e}\right.$ halts on at least 12 numbers $\}$ (at most,exactly)

Other Undecidable Problems

Using that HALT is undecidable we can prove the following undecidable:
$\left\{e: M_{e}\right.$ halts on at least 12 numbers $\}$ (at most,exactly)
$\left\{e: M_{e}\right.$ halts on an infinite number of numbers $\}$

Other Undecidable Problems

Using that HALT is undecidable we can prove the following undecidable:
$\left\{e: M_{e}\right.$ halts on at least 12 numbers $\}$ (at most,exactly)
$\left\{e: M_{e}\right.$ halts on an infinite number of numbers $\}$
$\left\{e: M_{e}\right.$ halts on a finite number of numbers $\}$

Other Undecidable Problems

Using that HALT is undecidable we can prove the following undecidable:
$\left\{e: M_{e}\right.$ halts on at least 12 numbers $\}$ (at most,exactly)
$\left\{e: M_{e}\right.$ halts on an infinite number of numbers $\}$
$\left\{e: M_{e}\right.$ halts on a finite number of numbers $\}$
$\left\{e: M_{e}\right.$ does the Hokey Pokey and turns itself around $\}$

Other Undecidable Problems

Using that HALT is undecidable we can prove the following undecidable:
$\left\{e: M_{e}\right.$ halts on at least 12 numbers $\}$ (at most,exactly)
$\left\{e: M_{e}\right.$ halts on an infinite number of numbers $\}$
$\left\{e: M_{e}\right.$ halts on a finite number of numbers $\}$
$\left\{e: M_{e}\right.$ does the Hokey Pokey and turns itself around $\}$
$T O T=\left\{e: M_{e}\right.$ halts on all inputs $\}$

Other Undecidable Problems

Using that HALT is undecidable we can prove the following undecidable:
$\left\{e: M_{e}\right.$ halts on at least 12 numbers $\}$ (at most,exactly)
$\left\{e: M_{e}\right.$ halts on an infinite number of numbers $\}$
$\left\{e: M_{e}\right.$ halts on a finite number of numbers $\}$
$\left\{e: M_{e}\right.$ does the Hokey Pokey and turns itself around \}
$T O T=\left\{e: M_{e}\right.$ halts on all inputs $\}$
Proofs by reductions. Similar to NPC. We will not do that.

Σ_{1} Sets

HALT is undecidable.

Σ_{1} Sets

HALT is undecidable. How undecidable?

Σ_{1} Sets

HALT is undecidable. How undecidable? Measure with quants:

Σ_{1} Sets

HALT is undecidable. How undecidable? Measure with quants:

$$
H A L T=\left\{(e, d):(\exists s)\left[M_{e, s}(d) \downarrow\right]\right\}
$$

Σ_{1} Sets

HALT is undecidable. How undecidable? Measure with quants:

$$
H A L T=\left\{(e, d):(\exists s)\left[M_{e, s}(d) \downarrow\right]\right\}
$$

Let

$$
B=\left\{(e, d, s): M_{e, s}(d) \downarrow\right\}
$$

Σ_{1} Sets

HALT is undecidable. How undecidable? Measure with quants:

$$
H A L T=\left\{(e, d):(\exists s)\left[M_{e, s}(d) \downarrow\right]\right\}
$$

Let

$$
B=\left\{(e, d, s): M_{e, s}(d) \downarrow\right\}
$$

B is decidable and

$$
H A L T=\{(e, d):(\exists s)[(e, d, s) \in B]\}
$$

Σ_{1} Sets

HALT is undecidable. How undecidable? Measure with quants:

$$
H A L T=\left\{(e, d):(\exists s)\left[M_{e, s}(d) \downarrow\right]\right\}
$$

Let

$$
B=\left\{(e, d, s): M_{e, s}(d) \downarrow\right\}
$$

B is decidable and

$$
H A L T=\{(e, d):(\exists s)[(e, d, s) \in B]\}
$$

B is decidable. This inspires the following definition.

Σ_{1} Sets

HALT is undecidable. How undecidable? Measure with quants:

$$
H A L T=\left\{(e, d):(\exists s)\left[M_{e, s}(d) \downarrow\right]\right\}
$$

Let

$$
B=\left\{(e, d, s): M_{e, s}(d) \downarrow\right\}
$$

B is decidable and

$$
H A L T=\{(e, d):(\exists s)[(e, d, s) \in B]\}
$$

B is decidable. This inspires the following definition.
Def $A \in \Sigma_{1}$ if there exists decidable B such that

$$
A=\{x:(\exists y)[(x, y) \in B]\}
$$

Σ_{1} Sets

HALT is undecidable. How undecidable? Measure with quants:

$$
H A L T=\left\{(e, d):(\exists s)\left[M_{e, s}(d) \downarrow\right]\right\}
$$

Let

$$
B=\left\{(e, d, s): M_{e, s}(d) \downarrow\right\}
$$

B is decidable and

$$
H A L T=\{(e, d):(\exists s)[(e, d, s) \in B]\}
$$

B is decidable. This inspires the following definition.
Def $A \in \Sigma_{1}$ if there exists decidable B such that

$$
A=\{x:(\exists y)[(x, y) \in B]\}
$$

Does this definition remind you of something?

Σ_{1} Sets

HALT is undecidable. How undecidable? Measure with quants:

$$
H A L T=\left\{(e, d):(\exists s)\left[M_{e, s}(d) \downarrow\right]\right\}
$$

Let

$$
B=\left\{(e, d, s): M_{e, s}(d) \downarrow\right\}
$$

B is decidable and

$$
H A L T=\{(e, d):(\exists s)[(e, d, s) \in B]\}
$$

B is decidable. This inspires the following definition.
Def $A \in \Sigma_{1}$ if there exists decidable B such that

$$
A=\{x:(\exists y)[(x, y) \in B]\}
$$

Does this definition remind you of something? YES- NP.

Compare NP to Σ_{1}

$A \in$ NP if there exists $B \in \mathrm{P}$ and poly p such that

$$
A=\{x:(\exists y,|y| \leq p(|x|))[(x, y) \in B]\}
$$

Compare NP to Σ_{1}

$A \in$ NP if there exists $B \in \mathrm{P}$ and poly p such that

$$
A=\{x:(\exists y,|y| \leq p(|x|))[(x, y) \in B]\}
$$

$A \in \Sigma_{1}$ if there exists $B \in \mathrm{DEC}$ such that

$$
A=\{x:(\exists y)[(x, y) \in B]\}
$$

Compare NP to Σ_{1}

Compare NP to Σ_{1}

1. Both use a quantifier and then something easy. So the sets are difficult because of the quantifier.

Compare NP to Σ_{1}

1. Both use a quantifier and then something easy. So the sets are difficult because of the quantifier.
2. 2.1 For NP easy means P and the quantifier is over an exp size set.

Compare NP to Σ_{1}

1. Both use a quantifier and then something easy. So the sets are difficult because of the quantifier.
2. 2.1 For NP easy means P and the quantifier is over an exp size set.
2.2 For Σ_{1} easy means DEC and the quantifier is over \mathbb{N}.

Compare NP to Σ_{1}

1. Both use a quantifier and then something easy. So the sets are difficult because of the quantifier.
2. 2.1 For NP easy means P and the quantifier is over an exp size set. 2.2 For Σ_{1} easy means DEC and the quantifier is over \mathbb{N}.
3. Σ_{1} came first by several decades. Complexity theory borrowed ideas from Computability theory for the basic definitions.

Compare NP to Σ_{1}

1. Both use a quantifier and then something easy. So the sets are difficult because of the quantifier.
2. 2.1 For NP easy means P and the quantifier is over an exp size set.
2.2 For Σ_{1} easy means DEC and the quantifier is over \mathbb{N}.
3. Σ_{1} came first by several decades. Complexity theory borrowed ideas from Computability theory for the basic definitions.
4. Are ideas from Computability theory useful in complexity theory?

Compare NP to Σ_{1}

1. Both use a quantifier and then something easy. So the sets are difficult because of the quantifier.
2. 2.1 For NP easy means P and the quantifier is over an exp size set.
2.2 For Σ_{1} easy means DEC and the quantifier is over \mathbb{N}.
3. Σ_{1} came first by several decades. Complexity theory borrowed ideas from Computability theory for the basic definitions.
4. Are ideas from Computability theory useful in complexity theory? Yes, to a limited extent.

Compare NP to Σ_{1}

1. Both use a quantifier and then something easy. So the sets are difficult because of the quantifier.
2. 2.1 For NP easy means P and the quantifier is over an exp size set.
2.2 For Σ_{1} easy means DEC and the quantifier is over \mathbb{N}.
3. Σ_{1} came first by several decades. Complexity theory borrowed ideas from Computability theory for the basic definitions.
4. Are ideas from Computability theory useful in complexity theory? Yes, to a limited extent. My thesis was on showing some of those limits.

Beyond Σ_{1}

Def B is always a decidable set.

Beyond Σ_{1}

Def B is always a decidable set.
$A \in \Pi_{1}$ if $A=\{x:(\forall y)[(x, y) \in B]\}$.

Beyond Σ_{1}

Def B is always a decidable set.
$A \in \Pi_{1}$ if $A=\{x:(\forall y)[(x, y) \in B]\}$.
$A \in \Sigma_{2}$ if $A=\left\{x:\left(\exists y_{1}\right)\left(\forall y_{2}\right)\left[\left(x, y_{1}, y_{2}\right) \in B\right]\right\}$.

Beyond Σ_{1}

Def B is always a decidable set.
$A \in \Pi_{1}$ if $A=\{x:(\forall y)[(x, y) \in B]\}$.
$A \in \Sigma_{2}$ if $A=\left\{x:\left(\exists y_{1}\right)\left(\forall y_{2}\right)\left[\left(x, y_{1}, y_{2}\right) \in B\right]\right\}$.
$A \in \Pi_{2}$ if $A=\left\{x:\left(\forall y_{1}\right)\left(\exists y_{2}\right)\left[\left(x, y_{1}, y_{2}\right) \in B\right]\right\}$.

Beyond Σ_{1}

Def B is always a decidable set.
$A \in \Pi_{1}$ if $A=\{x:(\forall y)[(x, y) \in B]\}$.
$A \in \Sigma_{2}$ if $A=\left\{x:\left(\exists y_{1}\right)\left(\forall y_{2}\right)\left[\left(x, y_{1}, y_{2}\right) \in B\right]\right\}$.
$A \in \Pi_{2}$ if $A=\left\{x:\left(\forall y_{1}\right)\left(\exists y_{2}\right)\left[\left(x, y_{1}, y_{2}\right) \in B\right]\right\}$.

$$
T O T=\left\{x:(\forall y)(\exists s)\left[M_{x, s}(y) \downarrow\right]\right\} \in \Pi_{2}
$$

Beyond Σ_{1}

Def B is always a decidable set.
$A \in \Pi_{1}$ if $A=\{x:(\forall y)[(x, y) \in B]\}$.
$A \in \Sigma_{2}$ if $A=\left\{x:\left(\exists y_{1}\right)\left(\forall y_{2}\right)\left[\left(x, y_{1}, y_{2}\right) \in B\right]\right\}$.
$A \in \Pi_{2}$ if $A=\left\{x:\left(\forall y_{1}\right)\left(\exists y_{2}\right)\left[\left(x, y_{1}, y_{2}\right) \in B\right]\right\}$.
$T O T=\left\{x:(\forall y)(\exists s)\left[M_{x, s}(y) \downarrow\right]\right\} \in \Pi_{2}$.
Known: TOT $\notin \Sigma_{1} \cup \Pi_{1}$.

Beyond Σ_{1}

Def B is always a decidable set.
$A \in \Pi_{1}$ if $A=\{x:(\forall y)[(x, y) \in B]\}$.
$A \in \Sigma_{2}$ if $A=\left\{x:\left(\exists y_{1}\right)\left(\forall y_{2}\right)\left[\left(x, y_{1}, y_{2}\right) \in B\right]\right\}$.
$A \in \Pi_{2}$ if $A=\left\{x:\left(\forall y_{1}\right)\left(\exists y_{2}\right)\left[\left(x, y_{1}, y_{2}\right) \in B\right]\right\}$.
$T O T=\left\{x:(\forall y)(\exists s)\left[M_{x, s}(y) \downarrow\right]\right\} \in \Pi_{2}$.
Known: TOT $\notin \Sigma_{1} \cup \Pi_{1}$.
Known:
$\Sigma_{1} \subset \Sigma_{2} \subset \Sigma_{3} \ldots$
$\Pi_{1} \subset \Pi_{2} \subset \Pi_{3} \cdots$

Beyond Σ_{1}

Def B is always a decidable set.
$A \in \Pi_{1}$ if $A=\{x:(\forall y)[(x, y) \in B]\}$.
$A \in \Sigma_{2}$ if $A=\left\{x:\left(\exists y_{1}\right)\left(\forall y_{2}\right)\left[\left(x, y_{1}, y_{2}\right) \in B\right]\right\}$.
$A \in \Pi_{2}$ if $A=\left\{x:\left(\forall y_{1}\right)\left(\exists y_{2}\right)\left[\left(x, y_{1}, y_{2}\right) \in B\right]\right\}$.
$T O T=\left\{x:(\forall y)(\exists s)\left[M_{x, s}(y) \downarrow\right]\right\} \in \Pi_{2}$.
Known: TOT $\notin \Sigma_{1} \cup \Pi_{1}$.
Known:
$\Sigma_{1} \subset \Sigma_{2} \subset \Sigma_{3} \cdots$
$\Pi_{1} \subset \Pi_{2} \subset \Pi_{3} \cdots$
TOT is harder than HALT.

WS1S Formulas and Sentences

1. Variables x, y, z range over \mathbb{N}, X, Y, Z range over finite subsets of \mathbb{N}.
2. Symbols: $<, \in$ (usual meaning), S (meaning $S(x)=x+1$).
3. A Formula allows variables to not be quantified over. A Formula is neither true or false. Example: $(\exists x)[x+y=7]$.
4. A Sentence has all variables quantified over. Example: $(\forall y)(\exists x)[x+y=7]$. So a Sentence is either true or false IF domain is
WS1S: Weak Second order Theory of One Successor. Weak Second order means quantify over finite sets.

Atomic Formulas

An Atomic Formula is:

1. For any $c \in \mathbb{N}, x=y+c$ is an Atomic Formula.
2. For any $c \in \mathbb{N}, x<y+c$ is an Atomic Formula.
3. For any $c, d \in \mathbb{N}, x \equiv y+c(\bmod d)$ is an Atomic Formula.
4. For any $c \in \mathbb{N}, x+c \in X$ is an Atomic Formula.
5. For any $c \in \mathbb{N}, X=Y+c$ is an Atomic Formula.

WS1S Formulas

A WS1S Formula is:

1. Any Atomic Formula is a WS1S Formula.
2. If ϕ_{1}, ϕ_{2} are WS1S Formulas then so are
$2.1 \phi_{1} \wedge \phi_{2}$,
$2.2 \phi_{1} \vee \phi_{2}$
$2.3 \neg \phi_{1}$
3. If $\phi\left(x_{1}, \ldots, x_{n}, X_{1}, \ldots, X_{m}\right)$ is a WS1S Formula then so are
$3.1\left(\exists x_{i}\right)\left[\phi\left(x_{1}, \ldots, x_{n}, X_{1}, \ldots, X_{m}\right)\right]$
$3.2\left(\exists X_{i}\right)\left[\phi\left(x_{1}, \ldots, x_{n}, X_{1}, \ldots, X_{m}\right)\right]$

PRENEX NORMAL FORM

A formulas is in Prenex Normal Form if it is of the form

$$
\left(Q_{1} v_{1}\right)\left(Q_{2} v_{2}\right) \cdots\left(Q_{n} v_{m}\right)\left[\phi\left(v_{1}, \ldots, v_{n}\right)\right]
$$

where the v_{i} 's are either number of finite-set variables, and ϕ has no quantifiers. (There are m quantifiers and $n \geq m$ variables since this is a formula- there could be variables that are not quantified over.)
Every formula can be put into this form using the following rules

1. $(\exists x)\left[\phi_{1}(x)\right] \vee(\exists y)\left[\phi_{2}(y)\right]$ is equiv to $(\exists x)\left[\phi_{1}(x) \vee \phi_{2}(x)\right]$.
2. $(\forall x)\left[\phi_{1}(x)\right] \wedge(\forall y)\left[\phi_{2}(y)\right]$ is equiv to $(\forall x)\left[\phi_{1}(x) \wedge \phi_{2}(x)\right]$.
3. $\phi(x)$ is equivalent to $(\forall y)[\phi(x)]$ and $(\exists y)[\phi(x)]$.

KEY DEFINITION

Def: If $\phi\left(x_{1}, \ldots, x_{n}, X_{1}, \ldots, X_{m}\right)$ is a WS1S Formula then $T R U E_{\phi}$ is the set

$$
\left\{\left(x_{1}, \ldots, x_{n}, X_{1}, \ldots, X_{m}\right) \mid \phi\left(x_{1}, \ldots, x_{n}, X_{1}, \ldots, X_{m}\right)=T\right\}
$$

This is the set of $\left(x_{1}, \ldots, x_{n}, X_{1}, \ldots, X_{m}\right)$ that make ϕ TRUE.

REPRESENTATION

We want to say that TRUE is regular. Need to represent $\left(x_{1}, \ldots, x_{n}, X_{1}, \ldots, X_{m}\right)$.
We just look at (x, y, X). Use the alphabet $\{0,1\}^{3}$.
Below Top line and the x, y, X are not there- Visual Aid.
The triple (3, 4, $\{0,1,2,4,7\}$) is represented by

	0	1	2	3	4	5	6	7
x	0	0	0	1	$*$	$*$	$*$	$*$
y	0	0	0	0	1	$*$	$*$	$*$
X	1	1	1	0	1	0	0	1

Note After we see 0001 for x we DO NOT CARE what happens next. The *'s can be filled in with 0's or 1's and the string of symbols from $\{0,1\}^{3}$ above would still represent $(3,4,\{0,1,2,4,7\})$.

KEY THEOREM

Thm For all WS1S formulas ϕ the set $T R U E_{\phi}$ is regular.
We prove this by induction on the formation of a formula. If you prefer- induction on the LENGTH of a formula.

DECIDABILITY OF WS1S

Thm: WS1S is Decidable.

Proof:

1. Given a SENTENCE in WS1S put it into the form

$$
\left(Q_{1} X_{1}\right) \cdots\left(Q_{n} X_{n}\right)\left(Q_{n+1} x_{1}\right) \cdots\left(Q_{n+m} x_{m}\right)\left[\phi\left(x_{1}, \ldots, x_{m}, X_{1}, \ldots, X_{n}\right)\right]
$$

2. Assume $Q_{1}=\exists$. (If not then negate and negate answer.)
3. View as $(\exists X)[\phi(X)]$, a FORMULA with ONE free var.
4. Construct DFA M for $\{X \mid \phi(X)$ is true $\}$.
5. Test if $L(M)=\emptyset$.
6. If $L(M) \neq \emptyset$ then $(\exists X)[\phi(X)]$ is TRUE. If $L(M)=\emptyset$ then $(\exists X)[\phi(X)]$ is FALSE.
