Review For the Final

May 12, 2020

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Turing Machines and DTIME

May 12, 2020

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Turing Machines

- 1. For this review we omit definitionand conventions.
- 2. There is a JAVA program for function *f* iff there is a TM that computes *f*.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

3. Everything computable can be done by a TM.

Def A set A is DECIDABLE if there is a Turing Machine M such that

$$x \in A \rightarrow M(x) = Y$$

$$x \notin A \to M(x) = N$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Def Let T(n) be a computable function (think increasing). A is in DTIME(T(n)) if there is a TM M that decides A and also, for all x, M(x) halts in time $\leq O(T(|x|))$.

Terrible Def since depends to much on machine model.

- Prove theorems about DTIME(T(n)) where the model does not matter. (Time hierarchy theorem)).
- Define time classes that are model-independent (P, NP stuff)

ション ふゆ アメビア メロア しょうくしゃ

Time Hierarchy Thm

Thm (The Time Hierarchy Thm) For all computable increasing T(n) there exists a decidable set A such that $A \notin \text{DTIME}(T(n))$. **Proof** Let M_1, M_2, \ldots , represent all of DTIME(T(n)) (obtain by listing out all Turing Machines and putting a time bound on them). Here is our algorithm for A. It will be a subset of 0^* .

- **1**. Input 0^{*i*}.
- 2. Run $M_i(0^i)$. If the results is 1 then output 0. If the results is 0 then output 1.

For all *i*, M_i and A DIFFER on 0^i . Hence A is not decided by any M_i . So $A \notin \text{DTIME}(\mathcal{T}(n))$. End of Proof

P, NP, Reductions

May 12, 2020

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

P and EXP

Def

- 1. $P = DTIME(n^{O(1)}).$
- 2. EXP = DTIME($2^{n^{O(1)}}$).
- 3. PF is the set of functions that are computable in poly time.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Def A is in NP if there exists a set $B \in P$ and a polynomial p such that

$$A = \{x \mid (\exists y)[|y| = p(|x|) \land (x, y) \in B]\}.$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Def A is in NP if there exists a set $B \in P$ and a polynomial p such that

$$A = \{x \mid (\exists y)[|y| = p(|x|) \land (x, y) \in B]\}.$$

Intuition. Let $A \in NP$.

If x ∈ A then there is a SHORT (poly in |x|) proof of this fact, namely y, such that x can be VERIFIED in poly time. So if I wanted to convince you that x ∈ L, I could give you y. You can verify (x, y) ∈ B easily and be convinced.

ション ふゆ アメビア メロア しょうくしゃ

Def A is in NP if there exists a set $B \in P$ and a polynomial p such that

$$A = \{x \mid (\exists y)[|y| = p(|x|) \land (x, y) \in B]\}.$$

Intuition. Let $A \in NP$.

If x ∈ A then there is a SHORT (poly in |x|) proof of this fact, namely y, such that x can be VERIFIED in poly time. So if I wanted to convince you that x ∈ L, I could give you y. You can verify (x, y) ∈ B easily and be convinced.

▶ If $x \notin A$ then there is NO proof that $x \in A$.

Examples of Sets in NP

$$SAT = \{\phi : (\exists \vec{y}) [\phi(\vec{y}) = T]\}$$

 $3COL = \{G : G \text{ is } 3\text{-colorable }\}$

 $CLIQ = \{(G, k) : G \text{ has a clique of size } k\}$

 $HAM = \{G : G \text{ has a Hamiltonian Cycle}\}$

 $EUL = \{G : G \text{ has an Eulerian Cycle}\}$

Note These all ask if something EXISTS. To FIND the (say) 3-coloring one can make queries to (say) 3COL. **Note** $EUL \in P$. The rest are NPC hence likely NOT in P.

Reductions

Def Let X, Y be languages. A **reduction** from X to Y is a polynomial-time computable function f such that

 $x \in X$ iff $f(x) \in Y$.

We express this by writing $X \leq Y$.

Reductions

Def Let X, Y be languages. A **reduction** from X to Y is a polynomial-time computable function f such that

 $x \in X$ iff $f(x) \in Y$.

ション ふぼう メリン メリン しょうくしゃ

We express this by writing $X \leq Y$.

Reductions are transitive. **Easy Lemma** If $X \leq Y$ and $Y \in P$ then $X \in P$.

Reductions

Def Let X, Y be languages. A **reduction** from X to Y is a polynomial-time computable function f such that

 $x \in X$ iff $f(x) \in Y$.

We express this by writing $X \leq Y$.

Reductions are transitive. **Easy Lemma** If $X \le Y$ and $Y \in P$ then $X \in P$. **Contrapositive** If $X \le Y$ and $X \notin P$ then $Y \notin P$.

Def A language Y is NP-complete

- ▶ $Y \in NP$
- ▶ If $X \in NP$ then $X \leq Y$.

Def A language Y is NP-complete

• If
$$X \in NP$$
 then $X \leq Y$.

Easy Lemma If Y is NP-complete and $Y \in P$ then P = NP.

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

Def A language Y is NP-complete

- ► $Y \in NP$
- If $X \in NP$ then $X \leq Y$.

Easy Lemma If Y is NP-complete and $Y \in P$ then P = NP. **Honesty** When I first saw the definition of NP-completeness I thought (1) there are no NP-complete sets or (2) there are no natural NP-complete sets.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Def A language Y is NP-complete

- ► $Y \in NP$
- If $X \in NP$ then $X \leq Y$.

Easy Lemma If Y is NP-complete and $Y \in P$ then P = NP. **Honesty** When I first saw the definition of NP-completeness I thought (1) there are no NP-complete sets or (2) there are no natural NP-complete sets.

The condition:

for EVERY $X \in NP$, $X \leq Y$? seemed very hard to meet.

In 1971 Stephen Cook and Leonid Levin Independently showed: **CNF-SAT is NP-complete**

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

In 1971 Stephen Cook and Leonid Levin Independently showed: **CNF-SAT is NP-complete**

Thoughts on this:

In 1971 Stephen Cook and Leonid Levin Independently showed: **CNF-SAT is NP-complete**

Thoughts on this:

1. The proof is not hard, but it involves looking at actual TMs. We will prove it next lecture. SAT was the **first** NP-complete problem. You could not use some other problem.

In 1971 Stephen Cook and Leonid Levin Independently showed: **CNF-SAT is NP-complete**

Thoughts on this:

- 1. The proof is not hard, but it involves looking at actual TMs. We will prove it next lecture. SAT was the **first** NP-complete problem. You could not use some other problem.
- 2. Once we have SAT is NP-complete we will NEVER use TMs again. To show Y NP-complete: (1) $Y \in NP$, (2) SAT $\leq Y$.

ション ふぼう メリン メリン しょうくしゃ

In 1971 Stephen Cook and Leonid Levin Independently showed: **CNF-SAT is NP-complete**

Thoughts on this:

- The proof is not hard, but it involves looking at actual TMs. We will prove it next lecture. SAT was the first NP-complete problem. You could not use some other problem.
- 2. Once we have SAT is NP-complete we will NEVER use TMs again. To show Y NP-complete: (1) $Y \in NP$, (2) SAT $\leq Y$.
- 3. Thousands of problems are NP-complete. If any are in P then they are all in P.

ション ふぼう メリン メリン しょうくしゃ

The Cook-Levin Thm

May 12, 2020

Proof involved coding a TM into a Boolean Formula which had parts:

- 1. $z_{i,j,\sigma} = T$ iff the *j*th symbol in the *i*th configuration is σ .
- 2. First config: input x, start state, SOME y of the right length.

- 3. Last config: accepts
- 4. C_{i+1} follows from C_i .

Closure Properties of P and NP

May 12, 2020

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Closure of P

May 12, 2020

・ロト・西ト・ヨト・ヨー うへぐ

Easy Closure Propetries of P

Assume $L_1, L_2 \in P$.

- 1. $L_1 \cup L_2 \in P$. EASY. Uses polys closed under addition.
- 2. $L_1 \cap L_2 \in P$. EASY. Uses polys closed under addition.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- **3**. $\overline{L_1} \in P$. EASY.
- **4**. $L_1L_2 \in P$. EASY. Uses p(n) poly then np(n) poly.

Closure of P Under *

```
Thm If L \in P then L^* \in P.
Proof
```

First lets talk about what you should not do:

The technique of looking at **all** ways to break up x into pieces takes roughly 2^n steps, so we need to do something clever.

Dyn Prog

Dynamic Programming We solve a harder problem but get lots of information in the process.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dyn Prog

Dynamic Programming We solve a harder problem but get lots of information in the process.

Original Problem Given $x = x_1 \cdots x_n$ want to know if $x \in L^*$

Dyn Prog

Dynamic Programming We solve a harder problem but get lots of information in the process.

Original Problem Given $x = x_1 \cdots x_n$ want to know if $x \in L^*$ **New Problem** Given $x = x_1 \cdots x_n$ want to know: $e \in L^*$ $x_1 \in L^*$ $x_1x_2 \in L^*$ \vdots $x_1x_2 \cdots x_n \in L^*$. **Intuition** $x_1 \cdots x_i \in L^*$ IFF it can be broken into TWO pieces, the first one in L^* , and the second in L.

Final Algorithm

A[i] stores if $x_1 \cdots x_i$ is in L^* . *M* is poly-time Alg for *L*, poly *p*.

Final Algorithm

A[i] stores if $x_1 \cdots x_i$ is in L^* . M is poly-time Alg for L, poly p.

Input
$$x = x_1 \cdots x_n$$

 $A[1] = A[2] = \dots = A[n] = \text{FALSE}$
 $A[0] = \text{TRUE}$
for $i = 1$ to n do
for $j = 0$ to $i - 1$ do
if $A[j]$ AND $M(x_{j+1} \cdots x_i) = Y$ then $A[i] = \text{TRUE}$
output $A[n]$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Final Algorithm

A[i] stores if $x_1 \cdots x_i$ is in L^* . *M* is poly-time Alg for *L*, poly *p*.

Input
$$x = x_1 \cdots x_n$$

 $A[1] = A[2] = ... = A[n] = FALSE$
 $A[0] = TRUE$
for $i = 1$ to n do
for $j = 0$ to $i - 1$ do
if $A[j]$ AND $M(x_{j+1} \cdots x_i) = Y$ then $A[i] = TRUE$
output $A[n]$

 $O(n^2)$ calls to M on inputs of length $\leq n$. Runtime $\leq O(n^2 p(n))$.
Final Algorithm

A[i] stores if $x_1 \cdots x_i$ is in L^* . *M* is poly-time Alg for *L*, poly *p*.

Input
$$x = x_1 \cdots x_n$$

 $A[1] = A[2] = \dots = A[n] = FALSE$
 $A[0] = TRUE$
for $i = 1$ to n do
for $j = 0$ to $i - 1$ do
if $A[j]$ AND $M(x_{j+1} \cdots x_i) = Y$ then $A[i] = TRUE$
output $A[n]$

 $O(n^2)$ calls to M on inputs of length $\leq n$. Runtime $\leq O(n^2p(n))$. Note Key is that the set of polynomials is closed under mult by n^2 .

Closure of NP

May 12, 2020

Thm If $L_1 \in NP$ and $L_2 \in NP$ then $L_1 \cup L_2 \in NP$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Thm If
$$L_1 \in NP$$
 and $L_2 \in NP$ then $L_1 \cup L_2 \in NP$.
 $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]$
 $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 - 約९.0

The following defines
$$L_1 \cup L_2 \in \mathbb{NP}$$
 then $L_1 \cup L_2 \in \mathbb{NP}$.
 $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]$
 $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]$
The following defines $L_1 \cup L_2$ in an NP-way.
 $L_1 \cup L_2 = \{x : (\exists y):$

1 . . 1

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

▶ $|y| = p_1(|x|) + p_2(|x|) + 1$. $y = y_1 \$ y_2$ where $|y_1| = p_1(|x|)$ and $|y_2| = p_2(|X|)$.

►
$$(x, y_1) \in B_1 \lor (x, y_2) \in B_2$$
)

I nm If
$$L_1 \in NP$$
 and $L_2 \in NP$ then $L_1 \cup L_2 \in NP$.
 $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]$
 $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]$
The following defines $L_1 \cup L_2$ in an NP-way.
 $L_1 \cup L_2 = \{x : (\exists y):$
▶ $|y| = p_1(|x|) + p_2(|x|) + 1$. $y = y_1 \$ y_2$ where $|y_1| = p_1(|x|)$
and $|y_2| = p_2(|X|)$.
▶ $(x, y_1) \in B_1 \lor (x, y_2) \in B_2$)

 $L \rightarrow L = ND$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Witness: $|y| = p_1(|x|) + p_2(|x|) + 1$ is short.

Inm If
$$L_1 \in NP$$
 and $L_2 \in NP$ then $L_1 \cup L_2 \in NP$.
 $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]$
 $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]$
The following defines $L_1 \cup L_2$ in an NP-way.
 $L_1 \cup L_2 = \{x : (\exists y):$
▶ $|y| = p_1(|x|) + p_2(|x|) + 1$. $y = y_1 \$ y_2$ where $|y_1| = p_1(|x|)$
and $|y_2| = p_2(|X|)$.
▶ $(x, y_1) \in B_1 \lor (x, y_2) \in B_2$)

1 . . .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Witness: $|y| = p_1(|x|) + p_2(|x|) + 1$ is short. Verification: $(x, y_1) \in B_1 \lor (x, y_2) \in B_2$, is quick.

Closure of Concatenation

Thm If $L_1 \in NP$ and $L_2 \in NP$ then $L_1L_2 \in NP$.

Closure of Concatenation

Thm If
$$L_1 \in NP$$
 and $L_2 \in NP$ then $L_1L_2 \in NP$.
 $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]$
 $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Closure of Concatenation

Thm If
$$L_1 \in NP$$
 and $L_2 \in NP$ then $L_1L_2 \in NP$.
 $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]$
 $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]$

The following defines L_1L_2 in an NP-way.

$${x: (\exists x_1, x_2, y_1, y_2)}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$x = x_1 x_2
|y_1| = p_1(|x_1|)
|y_2| = p_2(|x_2|)
(x_1, y_1) \in B_1
(x_2, y_2) \in B_2$$

Is NP closed under Complementation?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Unknown to Science!

But the common opinion is NO.

Is NP closed under Complementation?

Unknown to Science!

But the common opinion is NO. Unlikely that there is a short poly-verifiable witness to G NOT being 3-colorable.

Does G have a clique of size k?

Does G have a clique of size k? We rephrase that:

Does G have a clique of size k? We rephrase that: Let G = (V, E).

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Does G have a clique of size k?

We rephrase that:

Let G = (V, E).

G has a clique of size *k* is EQUIVALENT TO: There is a 1-1 function $\{1, \ldots, k\} \rightarrow V$ such that for all $1 \leq a, b \leq k$, $(f(a), f(b)) \in E$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$\mathrm{CLIQ} \leq \mathrm{SAT}$

Given G and k We want to know: There is a 1-1 function $\{1, ..., k\} \rightarrow V$ such that for all $1 \le a, b \le k$, $(f(a), f(b)) \in E$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

$\mathrm{CLIQ} \leq \mathrm{SAT}$

Given G and k We want to know: There is a 1-1 function $\{1, ..., k\} \rightarrow V$ such that for all $1 \le a, b \le k$, $(f(a), f(b)) \in E$.

We formulate this as a Boolean Formula:

1. For $1 \le i \le k$, $1 \le j \le n$, have Boolean Vars x_{ij} . Intent:

$$x_{ij} = \begin{cases} T & \text{if vertex } i \text{ maps to vertex } j \\ F & \text{if vertex } i \text{ does not maps to vertex } j \end{cases}$$
(1)

ション ふゆ アメビア メロア しょうくしゃ

- 2. Part of formula says x_{ij} is a bijection.
- 3. Part of formula says that the k points map to a clique.

Decidability and Undecidability

May 12, 2020

*ロト *昼 * * ミ * ミ * ミ * のへぐ

・ロト・御ト・ヨト・ヨト ヨー わへぐ

1. TM's are Java Programs.

- 1. TM's are Java Programs.
- 2. We have a listing of them M_1, M_2, \ldots

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. TM's are Java Programs.
- 2. We have a listing of them M_1, M_2, \ldots

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

3. If you run $M_e(d)$ it might not halt.

- 1. TM's are Java Programs.
- 2. We have a listing of them M_1, M_2, \ldots
- 3. If you run $M_e(d)$ it might not halt.
- 4. Everything computable is computable by some TM.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

- 1. TM's are Java Programs.
- 2. We have a listing of them M_1, M_2, \ldots
- 3. If you run $M_e(d)$ it might not halt.
- 4. Everything computable is computable by some TM.

5. A TM that halts on all inputs is called **total**.

Def A set A is *computable* if there exists a Turing Machine M that behaves as follows:

$$M(x) = \begin{cases} Y & \text{if } x \in A \\ N & \text{if } x \notin A \end{cases}$$
(2)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Def A set A is *computable* if there exists a Turing Machine M that behaves as follows:

$$M(x) = \begin{cases} Y & \text{if } x \in A \\ N & \text{if } x \notin A \end{cases}$$
(2)

Computable sets are also called decidable or solvable. A machine such as M above is said to decide A.

Def A set A is *computable* if there exists a Turing Machine M that behaves as follows:

$$M(x) = \begin{cases} Y & \text{if } x \in A \\ N & \text{if } x \notin A \end{cases}$$
(2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Computable sets are also called decidable or solvable. A machine such as M above is said to decide A.

Notation DEC is the set of Decidable Sets.

<ロト < 個 ト < 目 ト < 目 ト 目 の < @</p>

Notation $M_{e,s}(d)$ is the result of running $M_e(d)$ for s steps.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 - 約९.0

Notation $M_{e,s}(d)$ is the result of running $M_e(d)$ for *s* steps. $M_e(d) \downarrow$ means $M_e(d)$ halts.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Notation $M_{e,s}(d)$ is the result of running $M_e(d)$ for *s* steps. $M_e(d) \downarrow$ means $M_e(d)$ halts. $M_e(d) \uparrow$ means $M_e(d)$ does not halts.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Notation $M_{e,s}(d)$ is the result of running $M_e(d)$ for *s* steps. $M_e(d) \downarrow$ means $M_e(d)$ halts. $M_e(d) \uparrow$ means $M_e(d)$ does not halts. $M_{e,s}(d) \downarrow$ means $M_e(d)$ halts within *s* steps.

Notation $M_{e,s}(d)$ is the result of running $M_e(d)$ for s steps. $M_e(d) \downarrow$ means $M_e(d)$ halts. $M_e(d) \uparrow$ means $M_e(d)$ does not halts. $M_{e,s}(d) \downarrow$ means $M_e(d)$ halts within s steps. $M_{e,s}(d) \downarrow = z$ means $M_e(d)$ halts within s steps and outputs z.

Notation $M_{e,s}(d)$ is the result of running $M_e(d)$ for *s* steps. $M_e(d) \downarrow$ means $M_e(d)$ halts. $M_e(d) \uparrow$ means $M_e(d)$ does not halts. $M_{e,s}(d) \downarrow$ means $M_e(d)$ halts within *s* steps. $M_{e,s}(d) \downarrow = z$ means $M_e(d)$ halts within *s* steps and outputs *z*. $M_{e,s}(d) \uparrow$ means $M_e(d)$ has not halted within *s* steps.

Notation $M_{e,s}(d)$ is the result of running $M_e(d)$ for *s* steps. $M_e(d) \downarrow$ means $M_e(d)$ halts. $M_e(d) \uparrow$ means $M_e(d)$ does not halts. $M_{e,s}(d) \downarrow$ means $M_e(d)$ halts within *s* steps. $M_{e,s}(d) \downarrow = z$ means $M_e(d)$ halts within *s* steps and outputs *z*. $M_{e,s}(d) \uparrow$ means $M_e(d)$ has not halted within *s* steps.
Noncomputable Sets

Are there any noncomputable sets?

- 1. Yes—ALL SETS: uncountable. DEC Sets: countable, hence there exists an uncountable number of noncomputable sets.
- 2. YES—HALT is undecidabe, and once you have that you have many other sets undec.
- YES—the problem of telling if a p ∈ Z[x₁,...,x_n] has an int solution is undecidable.

ション ふぼう メリン メリン しょうくしゃ

The HALTING Problem

Def The HALTING set is the set

$$HALT = \{(e, d) \mid M_e(d) \text{ halts }\}.$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

HALT is Undecidable

Thm HALT is not computable. **Proof** Assume HALT computable via TM *M*.

$$M(e,d) = \begin{cases} Y & \text{if } M_e(d) \downarrow \\ N & \text{if } M_e(d) \uparrow \end{cases}$$
(3)

ション ふぼう メリン メリン しょうくしゃ

We use M to create the following machine which is M_e .

- 1. Input d
- 2. Run M(d, d)
- 3. If M(d, d) = Y then RUN FOREVER.
- 4. If M(d, d) = N then HALT.

 $\begin{array}{l} M_e(e)\downarrow \Longrightarrow & M(e,e)=Y\implies M_e(e)\uparrow \ M_e(e)\uparrow \Longrightarrow & M(e,e)=N\implies M_e(e)\downarrow \ \end{array}$ We now have that $M_e(e)$ cannot \downarrow and cannot \uparrow . Contradiction.

Using that HALT is undecidable we can prove the following undecidable:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Using that HALT is undecidable we can prove the following undecidable:

 $\{e: M_e \text{ halts on at least } 12 \text{ numbers } \}$ (at most, exactly)

Using that HALT is undecidable we can prove the following undecidable:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- $\{e: M_e \text{ halts on at least 12 numbers } \{at most, exactly\}$
- $\{e: M_e \text{ halts on an infinite number of numbers}\}$

Using that HALT is undecidable we can prove the following undecidable:

- $\{e: M_e \text{ halts on at least 12 numbers } \}$ (at most, exactly)
- $\{e: M_e \text{ halts on an infinite number of numbers}\}$
- $\{e: M_e \text{ halts on a finite number of numbers}\}$

Using that HALT is undecidable we can prove the following undecidable:

- $\{e: M_e \text{ halts on at least 12 numbers } \}$ (at most, exactly)
- $\{e: M_e \text{ halts on an infinite number of numbers}\}$
- $\{e: M_e \text{ halts on a finite number of numbers}\}$
- $\{e: M_e \text{ does the Hokey Pokey and turns itself around }\}$

Using that HALT is undecidable we can prove the following undecidable:

- $\{e: M_e \text{ halts on at least 12 numbers }\}$ (at most, exactly)
- $\{e: M_e \text{ halts on an infinite number of numbers}\}$
- $\{e: M_e \text{ halts on a finite number of numbers}\}$
- $\{e: M_e \text{ does the Hokey Pokey and turns itself around }\}$

 $TOT = \{e : M_e \text{ halts on all inputs}\}$

Using that HALT is undecidable we can prove the following undecidable:

- $\{e: M_e \text{ halts on at least 12 numbers } \}$ (at most, exactly)
- $\{e: M_e \text{ halts on an infinite number of numbers}\}$
- $\{e: M_e \text{ halts on a finite number of numbers}\}$
- $\{e: M_e \text{ does the Hokey Pokey and turns itself around }\}$
- $TOT = \{e : M_e \text{ halts on all inputs}\}$
- Proofs by reductions. Similar to NPC. We will not do that.

$\Sigma_1 \,\, \text{Sets}$

HALT is undecidable.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

$\Sigma_1 \,\, \text{Sets}$

HALT is undecidable. How undecidable?

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

$\Sigma_1 \,\, \text{Sets}$

HALT is undecidable. How undecidable? Measure with quants:

・ロト・日本・ヨト・ヨト・日・ つへぐ

$\Sigma_1 \; \textbf{Sets}$

HALT is undecidable. How undecidable? Measure with quants:

$$HALT = \{(e, d) : (\exists s)[M_{e,s}(d) \downarrow]\}$$

・ロト・日本・ヨト・ヨト・日・ つへぐ

$\Sigma_1 \; \textbf{Sets}$

HALT is undecidable. How undecidable? Measure with quants:

$$HALT = \{(e, d) : (\exists s)[M_{e,s}(d) \downarrow]\}$$

Let

$$B = \{(e, d, s) : M_{e,s}(d) \downarrow\}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Σ_1 Sets

HALT is undecidable. How undecidable? Measure with quants:

$$HALT = \{(e, d) : (\exists s)[M_{e,s}(d) \downarrow]\}$$

Let

$$B = \{(e, d, s) : M_{e,s}(d) \downarrow\}$$

B is decidable and

$$HALT = \{(e, d) : (\exists s)[(e, d, s) \in B]\}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Σ_1 Sets

HALT is undecidable. How undecidable? Measure with quants:

$$HALT = \{(e, d) : (\exists s)[M_{e,s}(d) \downarrow]\}$$

Let

$$B = \{(e, d, s) : M_{e,s}(d) \downarrow\}$$

B is decidable and

$$HALT = \{(e, d) : (\exists s)[(e, d, s) \in B]\}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

B is decidable. This inspires the following definition.

Σ_1 Sets

HALT is undecidable. How undecidable? Measure with quants:

$$HALT = \{(e, d) : (\exists s)[M_{e,s}(d) \downarrow]\}$$

Let

$$B = \{(e, d, s) : M_{e,s}(d) \downarrow\}$$

B is decidable and

$$HALT = \{(e, d) : (\exists s)[(e, d, s) \in B]\}$$

B is decidable. This inspires the following definition. Def $A \in \Sigma_1$ if there exists decidable *B* such that

$$A = \{x : (\exists y) [(x, y) \in B]\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

$\Sigma_1 \text{ Sets}$

HALT is undecidable. How undecidable? Measure with quants:

$$HALT = \{(e, d) : (\exists s)[M_{e,s}(d) \downarrow]\}$$

Let

$$B = \{(e, d, s) : M_{e,s}(d) \downarrow\}$$

B is decidable and

$$HALT = \{(e, d) : (\exists s)[(e, d, s) \in B]\}$$

B is decidable. This inspires the following definition. Def $A \in \Sigma_1$ if there exists decidable *B* such that

$$A = \{x : (\exists y) [(x, y) \in B] \}$$

ション ふぼう メリン メリン しょうくしゃ

Does this definition remind you of something?

$\Sigma_1 \text{ Sets}$

HALT is undecidable. How undecidable? Measure with quants:

$$HALT = \{(e, d) : (\exists s)[M_{e,s}(d) \downarrow]\}$$

Let

$$B = \{(e, d, s) : M_{e,s}(d) \downarrow\}$$

B is decidable and

$$HALT = \{(e, d) : (\exists s)[(e, d, s) \in B]\}$$

B is decidable. This inspires the following definition. Def $A \in \Sigma_1$ if there exists decidable *B* such that

$$A = \{x : (\exists y) [(x, y) \in B] \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Does this definition remind you of something? YES- NP.

$A \in \operatorname{NP}$ if there exists $B \in \operatorname{P}$ and poly p such that

$$A = \{x : (\exists y, |y| \le p(|x|)) [(x, y) \in B]\}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

 $A \in NP$ if there exists $B \in P$ and poly p such that

$$A = \{x : (\exists y, |y| \le p(|x|)) [(x, y) \in B]\}$$

 $A \in \Sigma_1$ if there exists $B \in \mathrm{DEC}$ such that

$$A = \{x : (\exists y) [(x, y) \in B] \}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Compare NP to $\boldsymbol{\Sigma}_1$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

1. Both use a quantifier and then something easy. So the sets are difficult because of the quantifier.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. Both use a quantifier and then something easy. So the sets are difficult because of the quantifier.
- 2. 2.1 For NP easy means P and the quantifier is over an exp size set.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. Both use a quantifier and then something easy. So the sets are difficult because of the quantifier.
- 2. 2.1 For NP easy means P and the quantifier is over an exp size set. 2.2 For Σ_1 easy means DEC and the quantifier is over \mathbb{N} .

- 1. Both use a quantifier and then something easy. So the sets are difficult because of the quantifier.
- 2. 2.1 For NP easy means P and the quantifier is over an exp size set. 2.2 For Σ_1 easy means DEC and the quantifier is over \mathbb{N} .
- 3. Σ_1 came first by several decades. Complexity theory borrowed ideas from Computability theory for the basic definitions.

- 1. Both use a quantifier and then something easy. So the sets are difficult because of the quantifier.
- 2. 2.1 For NP easy means P and the quantifier is over an exp size set. 2.2 For Σ_1 easy means DEC and the quantifier is over \mathbb{N} .
- 3. Σ_1 came first by several decades. Complexity theory borrowed ideas from Computability theory for the basic definitions.

4. Are ideas from Computability theory useful in complexity theory?

- 1. Both use a quantifier and then something easy. So the sets are difficult because of the quantifier.
- 2. 2.1 For NP easy means P and the quantifier is over an exp size set. 2.2 For Σ_1 easy means DEC and the quantifier is over \mathbb{N} .
- 3. Σ_1 came first by several decades. Complexity theory borrowed ideas from Computability theory for the basic definitions.

4. Are ideas from Computability theory useful in complexity theory? Yes, to a limited extent.

- 1. Both use a quantifier and then something easy. So the sets are difficult because of the quantifier.
- 2. 2.1 For NP easy means P and the quantifier is over an exp size set. 2.2 For Σ_1 easy means DEC and the quantifier is over \mathbb{N} .
- 3. Σ_1 came first by several decades. Complexity theory borrowed ideas from Computability theory for the basic definitions.
- 4. Are ideas from Computability theory useful in complexity theory? Yes, to a limited extent. My thesis was on showing some of those limits.

Def *B* is always a decidable set.

Def *B* is always a decidable set. $A \in \Pi_1$ if $A = \{x : (\forall y) [(x, y) \in B]\}.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Def B is always a decidable set. $A \in \Pi_1$ if $A = \{x : (\forall y)[(x, y) \in B]\}$. $A \in \Sigma_2$ if $A = \{x : (\exists y_1)(\forall y_2)[(x, y_1, y_2) \in B]\}$.

Def *B* is always a decidable set. $A \in \Pi_1$ if $A = \{x : (\forall y)[(x, y) \in B]\}$. $A \in \Sigma_2$ if $A = \{x : (\exists y_1)(\forall y_2)[(x, y_1, y_2) \in B]\}$. $A \in \Pi_2$ if $A = \{x : (\forall y_1)(\exists y_2)[(x, y_1, y_2) \in B]\}$. :

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Def *B* is always a decidable set. $A \in \Pi_1$ if $A = \{x : (\forall y)[(x, y) \in B]\}$. $A \in \Sigma_2$ if $A = \{x : (\exists y_1)(\forall y_2)[(x, y_1, y_2) \in B]\}$. $A \in \Pi_2$ if $A = \{x : (\forall y_1)(\exists y_2)[(x, y_1, y_2) \in B]\}$. : $TOT = \{x : (\forall y)(\exists s)[M_{x,s}(y) \downarrow]\} \in \Pi_2$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Def *B* is always a decidable set. $A \in \Pi_1$ if $A = \{x : (\forall y)[(x, y) \in B]\}$. $A \in \Sigma_2$ if $A = \{x : (\exists y_1)(\forall y_2)[(x, y_1, y_2) \in B]\}$. $A \in \Pi_2$ if $A = \{x : (\forall y_1)(\exists y_2)[(x, y_1, y_2) \in B]\}$. : $TOT = \{x : (\forall y)(\exists s)[M_{x,s}(y) \downarrow]\} \in \Pi_2$. Known: $TOT \notin \Sigma_1 \cup \Pi_1$.
Beyond Σ_1

Def B is always a decidable set. $A \in \Pi_1$ if $A = \{x : (\forall y) | (x, y) \in B\}$. $A \in \Sigma_2$ if $A = \{x : (\exists y_1)(\forall y_2) | (x, y_1, y_2) \in B]\}.$ $A \in \Pi_2$ if $A = \{x : (\forall y_1)(\exists y_2) | (x, y_1, y_2) \in B]\}.$: $TOT = \{x : (\forall y)(\exists s)[M_{x,s}(y) \downarrow]\} \in \Pi_2.$ Known: $TOT \notin \Sigma_1 \cup \Pi_1$. Known: $\Sigma_1 \subset \Sigma_2 \subset \Sigma_3 \cdots$ $\Pi_1 \subset \Pi_2 \subset \Pi_3 \cdots$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Beyond Σ_1

Def B is always a decidable set. $A \in \Pi_1$ if $A = \{x : (\forall y) | (x, y) \in B\}$. $A \in \Sigma_2$ if $A = \{x : (\exists y_1)(\forall y_2) | (x, y_1, y_2) \in B]\}.$ $A \in \Pi_2$ if $A = \{x : (\forall y_1)(\exists y_2) | (x, y_1, y_2) \in B]\}.$: $TOT = \{x : (\forall y)(\exists s)[M_{x,s}(y) \downarrow]\} \in \Pi_2.$ Known: $TOT \notin \Sigma_1 \cup \Pi_1$. Known: $\Sigma_1 \subset \Sigma_2 \subset \Sigma_3 \cdots$ $\Pi_1 \subset \Pi_2 \subset \Pi_3 \cdots$ TOT is harder than HALT.

WS1S Formulas and Sentences

- Variables x, y, z range over N, X, Y, Z range over finite subsets of N.
- 2. Symbols: $\langle , \in (usual meaning), S (meaning S(x) = x + 1).$
- 3. A *Formula* allows variables to not be quantified over. A Formula is neither true or false. Example: $(\exists x)[x + y = 7]$.
- A Sentence has all variables quantified over. Example: (∀y)(∃x)[x + y = 7]. So a Sentence is either true or false IF domain is

WS1S: Weak Second order Theory of One Successor. Weak Second order means quantify over finite sets.

Atomic Formulas

An Atomic Formula is:

- 1. For any $c \in \mathbb{N}$, x = y + c is an Atomic Formula.
- 2. For any $c \in \mathbb{N}$, x < y + c is an Atomic Formula.
- 3. For any $c, d \in \mathbb{N}$, $x \equiv y + c \pmod{d}$ is an Atomic Formula.

ション ふゆ アメビア メロア しょうくしゃ

- 4. For any $c \in \mathbb{N}$, $x + c \in X$ is an Atomic Formula.
- 5. For any $c \in \mathbb{N}$, X = Y + c is an Atomic Formula.

WS1S Formulas

A WS1S Formula is:

- 1. Any Atomic Formula is a WS1S Formula.
- 2. If ϕ_1 , ϕ_2 are WS1S Formulas then so are
 - 2.1 $\phi_1 \land \phi_2$, 2.2 $\phi_1 \lor \phi_2$ 2.3 $\neg \phi_1$
- If φ(x₁,...,x_n,X₁,...,X_m) is a WS1S Formula then so are
 3.1 (∃x_i)[φ(x₁,...,x_n,X₁,...,X_m)]
 3.2 (∃X_i)[φ(x₁,...,x_n,X₁,...,X_m)]

PRENEX NORMAL FORM

A formulas is in **Prenex Normal Form** if it is of the form

$$(Q_1v_1)(Q_2v_2)\cdots(Q_nv_m)[\phi(v_1,\ldots,v_n)]$$

where the v_i 's are either number of finite-set variables, and ϕ has no quantifiers. (There are *m* quantifiers and $n \ge m$ variables since this is a formula- there could be variables that are not quantified over.)

Every formula can be put into this form using the following rules

- 1. $(\exists x)[\phi_1(x)] \lor (\exists y)[\phi_2(y)]$ is equiv to $(\exists x)[\phi_1(x) \lor \phi_2(x)]$.
- 2. $(\forall x)[\phi_1(x)] \land (\forall y)[\phi_2(y)]$ is equiv to $(\forall x)[\phi_1(x) \land \phi_2(x)]$.
- 3. $\phi(x)$ is equivalent to $(\forall y)[\phi(x)]$ and $(\exists y)[\phi(x)]$.

Def: If $\phi(x_1, \ldots, x_n, X_1, \ldots, X_m)$ is a WS1S Formula then $TRUE_{\phi}$ is the set

 $\{(x_1, \dots, x_n, X_1, \dots, X_m) \mid \phi(x_1, \dots, x_n, X_1, \dots, X_m) = T\}$ This is the set of $(x_1, \dots, x_n, X_1, \dots, X_m)$ that make ϕ TRUE.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

REPRESENTATION

We want to say that *TRUE* is regular. Need to represent $(x_1, \ldots, x_n, X_1, \ldots, X_m)$. We just look at (x, y, X). Use the alphabet $\{0, 1\}^3$. Below Top line and the x, y, X are not there- Visual Aid. The triple $(3, 4, \{0, 1, 2, 4, 7\})$ is represented by

	0	1	2	3	4	5	6	7
X	0	0	0	1	*	*	*	*
y	0	0	0	0	1	*	*	*
Χ	1	1	1	0	1	0	0	1

Note After we see 0001 for x we DO NOT CARE what happens next. The *'s can be filled in with 0's or 1's and the string of symbols from $\{0,1\}^3$ above would still represent $(3,4,\{0,1,2,4,7\})$.

Thm For all WS1S formulas ϕ the set $TRUE_{\phi}$ is regular.

We prove this by induction on the formation of a formula. If you prefer- induction on the LENGTH of a formula.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

DECIDABILITY OF WS1S

Thm: WS1S is Decidable. **Proof:**

1. Given a SENTENCE in WS1S put it into the form

 $(Q_1X_1)\cdots(Q_nX_n)(Q_{n+1}x_1)\cdots(Q_{n+m}x_m)[\phi(x_1,\ldots,x_m,X_1,\ldots,X_n)]$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 2. Assume $Q_1 = \exists$. (If not then negate and negate answer.)
- 3. View as $(\exists X)[\phi(X)]$, a FORMULA with ONE free var.
- **4**. Construct DFA *M* for $\{X \mid \phi(X) \text{ is true}\}$.
- 5. Test if $L(M) = \emptyset$.
- 6. If $L(M) \neq \emptyset$ then $(\exists X)[\phi(X)]$ is TRUE. If $L(M) = \emptyset$ then $(\exists X)[\phi(X)]$ is FALSE.