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Turing Machines

1. For this review we omit definitionand conventions.

2. There is a JAVA program for function f iff there is a TM that
computes f .

3. Everything computable can be done by a TM.



Decidable Sets

Def A set A is DECIDABLE if there is a Turing Machine M such
that

x ∈ A→ M(x) = Y

x /∈ A→ M(x) = N



Terrible Def of DTIME

Def Let T (n) be a computable function (think increasing). A is in
DTIME(T (n)) if there is a TM M that decides A and also, for all
x , M(x) halts in time ≤ O(T (|x |)).
Terrible Def since depends to much on machine model.

I Prove theorems about DTIME(T (n)) where the model does
not matter. (Time hierarchy theorem)).

I Define time classes that are model-independent (P, NP stuff)



Time Hierarchy Thm

Thm (The Time Hierarchy Thm) For all computable increasing
T (n) there exists a decidable set A such that A /∈ DTIME(T (n)).
Proof Let M1,M2, . . . , represent all of DTIME(T (n)) (obtain by
listing out all Turing Machines and putting a time bound on them).
Here is our algorithm for A. It will be a subset of 0∗.

1. Input 0i .

2. Run Mi (0i ). If the results is 1 then output 0. If the results is
0 then output 1.

For all i , Mi and A DIFFER on 0i . Hence A is not decided by any
Mi . So A /∈ DTIME(T (n)).
End of Proof
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P and EXP

Def

1. P = DTIME(nO(1)).

2. EXP = DTIME(2n
O(1)

).

3. PF is the set of functions that are computable in poly time.



NP

Def A is in NP if there exists a set B ∈ P and a polynomial p such
that

A = {x | (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

I If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.
So if I wanted to convince you that x ∈ L, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

I If x /∈ A then there is NO proof that x ∈ A.
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Examples of Sets in NP

SAT = {φ : (∃~y)[φ(~y) = T ]}

3COL = {G : G is 3-colorable }

CLIQ = {(G , k) : G has a clique of size k}

HAM = {G : G has a Hamiltonian Cycle}

EUL = {G : G has an Eulerian Cycle}

Note These all ask if something EXISTS. To FIND the (say)
3-coloring one can make queries to (say) 3COL.
Note EUL ∈ P. The rest are NPC hence likely NOT in P.



Reductions

Def Let X ,Y be languages. A reduction from X to Y is a
polynomial-time computable function f such that

x ∈ X iff f (x) ∈ Y .

We express this by writing X ≤ Y .

Reductions are transitive.
Easy Lemma If X ≤ Y and Y ∈ P then X ∈ P.

Contrapositive If X ≤ Y and X /∈ P then Y /∈ P.
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Def of NP-Complete

Def A language Y is NP-complete

I Y ∈ NP

I If X ∈ NP then X ≤ Y .

Easy Lemma If Y is NP-complete and Y ∈ P then P = NP.

Honesty When I first saw the definition of NP-completeness I
thought (1) there are no NP-complete sets or (2) there are no
natural NP-complete sets.

The condition:
for EVERY X ∈ NP, X ≤ Y ?

seemed very hard to meet.
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SAT is NP-Complete

In 1971 Stephen Cook and Leonid Levin Independently showed:
CNF-SAT is NP-complete

Thoughts on this:

1. The proof is not hard, but it involves looking at actual TMs.
We will prove it next lecture. SAT was the first NP-complete
problem. You could not use some other problem.

2. Once we have SAT is NP-complete we will NEVER use TMs
again. To show Y NP-complete: (1) Y ∈ NP, (2) SAT ≤ Y .

3. Thousands of problems are NP-complete. If any are in P then
they are all in P.
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What does the Proof Involve

Proof involved coding a TM into a Boolean Formula which had
parts:

1. zi ,j ,σ = T iff the jth symbol in the ith configuration is σ.

2. First config: input x , start state, SOME y of the right length.

3. Last config: accepts

4. Ci+1 follows from Ci .



Closure Properties of P and NP
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Easy Closure Propetries of P

Assume L1, L2 ∈ P.

1. L1 ∪ L2 ∈ P. EASY. Uses polys closed under addition.

2. L1 ∩ L2 ∈ P. EASY. Uses polys closed under addition.

3. L1 ∈ P. EASY.

4. L1L2 ∈ P. EASY. Uses p(n) poly then np(n) poly.



Closure of P Under *

Thm If L ∈ P then L∗ ∈ P.
Proof
First lets talk about what you should not do:
The technique of looking at all ways to break up x into pieces
takes roughly 2n steps, so we need to do something clever.



Dyn Prog

Dynamic Programming We solve a harder problem but get lots
of information in the process.

Original Problem Given x = x1 · · · xn want to know if x ∈ L∗

New Problem Given x = x1 · · · xn want to know:
e ∈ L∗

x1 ∈ L∗

x1x2 ∈ L∗
...
x1x2 · · · xn ∈ L∗.
Intuition x1 · · · xi ∈ L∗ IFF it can be broken into TWO pieces, the
first one in L∗, and the second in L.
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Final Algorithm

A[i ] stores if x1 · · · xi is in L∗. M is poly-time Alg for L, poly p.

Input x = x1 · · · xn
A[1] = A[2] = ... = A[n] = FALSE
A[0] = TRUE
for i = 1 to n do

for j = 0 to i − 1 do
if A[j ] AND M(xj+1 · · · xi ) = Y then A[i ] = TRUE

output A[n]

O(n2) calls to M on inputs of length ≤ n. Runtime ≤ O(n2p(n)).
Note Key is that the set of polynomials is closed under mult by n2.
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Closure of NP under Union

Thm If L1 ∈ NP and L2 ∈ NP then L1 ∪ L2 ∈ NP.

L1 = {x : (∃y1)[|y1| = p1(|x |) ∧ (x , y1) ∈ B1]
L2 = {x : (∃y2)[|y2| = p2(|x |) ∧ (x , y2) ∈ B2]

The following defines L1 ∪ L2 in an NP-way.
L1 ∪ L2 = {x : (∃y):

I |y | = p1(|x |) + p2(|x |) + 1. y = y1$y2 where |y1| = p1(|x |)
and |y2| = p2(|X |).

I (x , y1) ∈ B1 ∨ (x , y2) ∈ B2)

Witness: |y | = p1(|x |) + p2(|x |) + 1 is short.
Verification: (x , y1) ∈ B1 ∨ (x , y2) ∈ B2), is quick.
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Closure of Concatenation

Thm If L1 ∈ NP and L2 ∈ NP then L1L2 ∈ NP.

L1 = {x : (∃y1)[|y1| = p1(|x |) ∧ (x , y1) ∈ B1]
L2 = {x : (∃y2)[|y2| = p2(|x |) ∧ (x , y2) ∈ B2]

The following defines L1L2 in an NP-way.

{x : (∃x1, x2, y1, y2)

I x = x1x2
I |y1| = p1(|x1|)
I |y2| = p2(|x2|)
I (x1, y1) ∈ B1

I (x2, y2) ∈ B2
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Is NP closed under Complementation?

Unknown to Science!
But the common opinion is NO.

Unlikely that there is a short poly-verifiable witness to G NOT
being 3-colorable.
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CLIQ ≤ SAT

Does G have a clique of size k?

We rephrase that:

Let G = (V ,E ).

G has a clique of size k is EQUIVALENT TO:
There is a 1-1 function {1, . . . , k} → V such that for all
1 ≤ a, b ≤ k , (f (a), f (b)) ∈ E .
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CLIQ ≤ SAT

Given G and k We want to know:
There is a 1-1 function {1, . . . , k} → V such that for all
1 ≤ a, b ≤ k , (f (a), f (b)) ∈ E .

We formulate this as a Boolean Formula:

1. For 1 ≤ i ≤ k , 1 ≤ j ≤ n, have Boolean Vars xij . Intent:

xij =

{
T if vertex i maps to vertex j

F if vertex i does not maps to vertex j
(1)

2. Part of formula says xij is a bijection.

3. Part of formula says that the k points map to a clique.
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Recall Turing Machines

1. TM’s are Java Programs.

2. We have a listing of them M1,M2, . . ..

3. If you run Me(d) it might not halt.

4. Everything computable is computable by some TM.

5. A TM that halts on all inputs is called total.



Recall Turing Machines

1. TM’s are Java Programs.

2. We have a listing of them M1,M2, . . ..

3. If you run Me(d) it might not halt.

4. Everything computable is computable by some TM.

5. A TM that halts on all inputs is called total.



Recall Turing Machines

1. TM’s are Java Programs.

2. We have a listing of them M1,M2, . . ..

3. If you run Me(d) it might not halt.

4. Everything computable is computable by some TM.

5. A TM that halts on all inputs is called total.



Recall Turing Machines

1. TM’s are Java Programs.

2. We have a listing of them M1,M2, . . ..

3. If you run Me(d) it might not halt.

4. Everything computable is computable by some TM.

5. A TM that halts on all inputs is called total.



Recall Turing Machines

1. TM’s are Java Programs.

2. We have a listing of them M1,M2, . . ..

3. If you run Me(d) it might not halt.

4. Everything computable is computable by some TM.

5. A TM that halts on all inputs is called total.



Recall Turing Machines

1. TM’s are Java Programs.

2. We have a listing of them M1,M2, . . ..

3. If you run Me(d) it might not halt.

4. Everything computable is computable by some TM.

5. A TM that halts on all inputs is called total.



Computable Sets

Def A set A is computable if there exists a Turing Machine M that
behaves as follows:

M(x) =

{
Y if x ∈ A

N if x /∈ A
(2)

Computable sets are also called decidable or solvable. A machine
such as M above is said to decide A.

Notation DEC is the set of Decidable Sets.
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Notation

Notation Me,s(d) is the result of running Me(d) for s steps.
Me(d) ↓ means Me(d) halts.
Me(d) ↑ means Me(d) does not halts.
Me,s(d) ↓ means Me(d) halts within s steps.
Me,s(d) ↓= z means Me(d) halts within s steps and outputs z .
Me,s(d) ↑ means Me(d) has not halted within s steps.
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Noncomputable Sets

Are there any noncomputable sets?

1. Yes—ALL SETS: uncountable. DEC Sets: countable, hence
there exists an uncountable number of noncomputable sets.

2. YES—HALT is undecidabe, and once you have that you have
many other sets undec.

3. YES—the problem of telling if a p ∈ Z[x1, . . . , xn] has an int
solution is undecidable.



The HALTING Problem

Def The HALTING set is the set

HALT = {(e, d) | Me(d) halts }.



HALT is Undecidable

Thm HALT is not computable.
Proof Assume HALT computable via TM M.

M(e, d) =

{
Y if Me(d) ↓
N if Me(d) ↑

(3)

We use M to create the following machine which is Me .

1. Input d

2. Run M(d , d)

3. If M(d , d) = Y then RUN FOREVER.

4. If M(d , d) = N then HALT.

Me(e) ↓ =⇒ M(e, e) = Y =⇒ Me(e) ↑
Me(e) ↑ =⇒ M(e, e) = N =⇒ Me(e) ↓
We now have that Me(e) cannot ↓ and cannot ↑. Contradiction.



Other Undecidable Problems

Using that HALT is undecidable we can prove the following
undecidable:

{e : Me halts on at least 12 numbers } (at most,exactly)

{e : Me halts on an infinite number of numbers}
{e : Me halts on a finite number of numbers}
{e : Me does the Hokey Pokey and turns itself around }
TOT = {e : Me halts on all inputs}
Proofs by reductions. Similar to NPC. We will not do that.
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Σ1 Sets

HALT is undecidable.

How undecidable? Measure with quants:

HALT = {(e, d) : (∃s)[Me,s(d) ↓]}

Let

B = {(e, d , s) : Me,s(d) ↓}

B is decidable and

HALT = {(e, d) : (∃s)[(e, d , s) ∈ B]}

B is decidable. This inspires the following definition.

Def A ∈ Σ1 if there exists decidable B such that

A = {x : (∃y)[(x , y) ∈ B]}

Does this definition remind you of something? YES- NP.
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Compare NP to Σ1

A ∈ NP if there exists B ∈ P and poly p such that

A = {x : (∃y , |y | ≤ p(|x |))[(x , y) ∈ B]}

A ∈ Σ1 if there exists B ∈ DEC such that

A = {x : (∃y)[(x , y) ∈ B]}
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Compare NP to Σ1

1. Both use a quantifier and then something easy. So the sets
are difficult because of the quantifier.

2. 2.1 For NP easy means P and the quantifier is over an exp size set.
2.2 For Σ1 easy means DEC and the quantifier is over N.

3. Σ1 came first by several decades. Complexity theory borrowed
ideas from Computability theory for the basic definitions.

4. Are ideas from Computability theory useful in complexity
theory? Yes, to a limited extent. My thesis was on showing
some of those limits.
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Beyond Σ1

Def B is always a decidable set.

A ∈ Π1 if A = {x : (∀y)[(x , y) ∈ B]}.
A ∈ Σ2 if A = {x : (∃y1)(∀y2)[(x , y1, y2) ∈ B]}.
A ∈ Π2 if A = {x : (∀y1)(∃y2)[(x , y1, y2) ∈ B]}.
...

TOT = {x : (∀y)(∃s)[Mx ,s(y) ↓]} ∈ Π2.

Known: TOT /∈ Σ1 ∪ Π1.

Known:
Σ1 ⊂ Σ2 ⊂ Σ3 · · ·
Π1 ⊂ Π2 ⊂ Π3 · · ·
TOT is harder than HALT.
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WS1S Formulas and Sentences

1. Variables x , y , z range over N, X ,Y ,Z range over finite
subsets of N.

2. Symbols: <, ∈ (usual meaning), S (meaning S(x) = x + 1).

3. A Formula allows variables to not be quantified over. A
Formula is neither true or false. Example: (∃x)[x + y = 7].

4. A Sentence has all variables quantified over. Example:
(∀y)(∃x)[x + y = 7]. So a Sentence is either true or false IF
domain is

WS1S: Weak Second order Theory of One Successor. Weak
Second order means quantify over finite sets.



Atomic Formulas

An Atomic Formula is:

1. For any c ∈ N, x = y + c is an Atomic Formula.

2. For any c ∈ N, x < y + c is an Atomic Formula.

3. For any c, d ∈ N, x ≡ y + c (mod d) is an Atomic Formula.

4. For any c ∈ N, x + c ∈ X is an Atomic Formula.

5. For any c ∈ N, X = Y + c is an Atomic Formula.



WS1S Formulas

A WS1S Formula is:

1. Any Atomic Formula is a WS1S Formula.

2. If φ1, φ2 are WS1S Formulas then so are

2.1 φ1 ∧ φ2,
2.2 φ1 ∨ φ2
2.3 ¬φ1

3. If φ(x1, . . . , xn,X1, . . . ,Xm) is a WS1S Formula then so are

3.1 (∃xi )[φ(x1, . . . , xn,X1, . . . ,Xm)]
3.2 (∃Xi )[φ(x1, . . . , xn,X1, . . . ,Xm)]



PRENEX NORMAL FORM

A formulas is in Prenex Normal Form if it is of the form

(Q1v1)(Q2v2) · · · (Qnvm)[φ(v1, . . . , vn)]

where the vi ’s are either number of finite-set variables, and φ has
no quantifiers. (There are m quantifiers and n ≥ m variables since
this is a formula- there could be variables that are not quantified
over.)
Every formula can be put into this form using the following rules

1. (∃x)[φ1(x)] ∨ (∃y)[φ2(y)] is equiv to (∃x)[φ1(x) ∨ φ2(x)].

2. (∀x)[φ1(x)] ∧ (∀y)[φ2(y)] is equiv to (∀x)[φ1(x) ∧ φ2(x)].

3. φ(x) is equivalent to (∀y)[φ(x)] and (∃y)[φ(x)].



KEY DEFINITION

Def: If φ(x1, . . . , xn,X1, . . . ,Xm) is a WS1S Formula then TRUEφ
is the set

{(x1, . . . , xn,X1, . . . ,Xm) | φ(x1, . . . , xn,X1, . . . ,Xm) = T}

This is the set of (x1, . . . , xn,X1, . . . ,Xm) that make φ TRUE.



REPRESENTATION

We want to say that TRUE is regular. Need to represent
(x1, . . . , xn,X1, . . . ,Xm).
We just look at (x , y ,X ). Use the alphabet {0, 1}3.
Below Top line and the x , y ,X are not there- Visual Aid.
The triple (3, 4, {0, 1, 2, 4, 7}) is represented by

0 1 2 3 4 5 6 7

x 0 0 0 1 ∗ ∗ ∗ ∗
y 0 0 0 0 1 ∗ ∗ ∗
X 1 1 1 0 1 0 0 1

Note After we see 0001 for x we DO NOT CARE what happens
next. The *’s can be filled in with 0’s or 1’s and the string of
symbols from {0, 1}3 above would still represent
(3, 4, {0, 1, 2, 4, 7}).



KEY THEOREM

Thm For all WS1S formulas φ the set TRUEφ is regular.

We prove this by induction on the formation of a formula. If you
prefer- induction on the LENGTH of a formula.



DECIDABILITY OF WS1S

Thm: WS1S is Decidable.
Proof:

1. Given a SENTENCE in WS1S put it into the form

(Q1X1) · · · (QnXn)(Qn+1x1) · · · (Qn+mxm)[φ(x1, . . . , xm,X1, . . . ,Xn)]

2. Assume Q1 = ∃. (If not then negate and negate answer.)

3. View as (∃X )[φ(X )], a FORMULA with ONE free var.

4. Construct DFA M for {X | φ(X ) is true}.
5. Test if L(M) = ∅.
6. If L(M) 6= ∅ then (∃X )[φ(X )] is TRUE.

If L(M) = ∅ then (∃X )[φ(X )] is FALSE.


