HW 09 Solutions

Exposition by William Gasarch-U of MD

We do the Problems in a Funny Order

We do Problem 3 then 1 then 2.
This is in order of how interesting they are.

Problem 3a

Bill gives you 100 Turing Machines M_{1}, \ldots, M_{100}. He wants to know if at least 17 of them are in HALTONO.

Problem 3a

Bill gives you 100 Turing Machines M_{1}, \ldots, M_{100}. He wants to know if at least 17 of them are in HALTONO.
Come up with a Turing Machine M (by that I mean just write psuedocode that uses M_{1}, \ldots, M_{100}) so that
$M \in$ HALTON0 iff at least 17 of M_{1}, \ldots, M_{100} are in HALTON0.

Problem 3a

Bill gives you 100 Turing Machines M_{1}, \ldots, M_{100}. He wants to know if at least 17 of them are in HALTONO.
Come up with a Turing Machine M (by that I mean just write psuedocode that uses M_{1}, \ldots, M_{100}) so that
$M \in$ HALTON0 iff at least 17 of M_{1}, \ldots, M_{100} are in HALTON0.
Here is M :

1. Input (x) (this will be ignored).
2. Run $M_{1}(0), \ldots, M_{100}(0)$ at the same time.
3. If you see that 17 of them halted then STOP
$M(0)$ halts IFF 17 of the $M_{1}(0), \ldots, M_{100}(0)$ halt.
Note Can replace 17 with anything and get similar result.

Problem 3b

Bill gives you 100 Turing Machines M_{1}, \ldots, M_{100}. He wants to know HOW MANY halt on 0 .
If you could ASK HALTONO 100 questions then you could do this-just ask $M_{1} \in$ HALTON0?, $M_{2} \in$ HALTON0?,...., $M_{100} \in$ HALTON0? and see see which ones return YES.

Problem 3b

Bill gives you 100 Turing Machines M_{1}, \ldots, M_{100}. He wants to know HOW MANY halt on 0 .
If you could ASK HALTONO 100 questions then you could do this-just ask $M_{1} \in$ HALTON0?, $M_{2} \in$ HALTON0?,...., $M_{100} \in$ HALTON0? and see see which ones return YES.

What if you are allowed to ask HALTONO less than 100 questions? IS there a number $q<100$ such that you can determine WHICH of M_{1}, \ldots, M_{100} are in HALTON0 with q questions to HALTON0? Prove your result.

Problem 3b

Bill gives you 100 Turing Machines M_{1}, \ldots, M_{100}. He wants to know HOW MANY halt on 0 .
If you could ASK HALTONO 100 questions then you could do this-just ask $M_{1} \in$ HALTON0?, $M_{2} \in$ HALTON0?,...., $M_{100} \in$ HALTON0? and see see which ones return YES.

What if you are allowed to ask HALTONO less than 100 questions? IS there a number $q<100$ such that you can determine WHICH of M_{1}, \ldots, M_{100} are in HALTON0 with q questions to HALTON0? Prove your result.

Do binary search: First ask if there exists ≥ 50 of M_{1}, \ldots, M_{100} that halt on 0 . If yes then ask ≥ 75. If No then ask ≥ 25. Etc. This takes $\left\lceil\log _{2}(100)\right\rceil=7$.

Problem 3c

Bill gives you 100 Turing Machines M_{1}, \ldots, M_{100}. He wants to know WHICH ONES halt on 0 .
If you could ASK HALTONO 100 questions then you could do this-just ask $M_{1} \in$ HALTON0?, $M_{2} \in$ HALTON0?,...., $M_{100} \in$ HALTON0? and see see which ones return YES.

Problem 3c

Bill gives you 100 Turing Machines M_{1}, \ldots, M_{100}. He wants to know WHICH ONES halt on 0 .
If you could ASK HALTONO 100 questions then you could do this-just ask $M_{1} \in$ HALTON0?, $M_{2} \in$ HALTON0?,. . ., $M_{100} \in$ HALTON0? and see see which ones return YES.

What if you are allowed to ask HALTONO less than 100 questions? IS there a number $q<100$ such that you can determine WHICH of M_{1}, \ldots, M_{100} are in HALTON0 with q questions to HALTON0? Prove your result.

Problem 3c

Bill gives you 100 Turing Machines M_{1}, \ldots, M_{100}. He wants to know WHICH ONES halt on 0 .
If you could ASK HALTONO 100 questions then you could do this-just ask $M_{1} \in$ HALTON0?, $M_{2} \in$ HALTON0?,...., $M_{100} \in$ HALTON0? and see see which ones return YES.

What if you are allowed to ask HALTONO less than 100 questions? IS there a number $q<100$ such that you can determine WHICH of M_{1}, \ldots, M_{100} are in HALTON0 with q questions to HALTON0? Prove your result.

First find HOW MANY halt on 0 by 3b. That is only 8 questions. You now KNOW x : EXACTLY x of M_{1}, \ldots, M_{100} halt on 0 . What to do now? Discuss?

Problem 3c

Bill gives you 100 Turing Machines M_{1}, \ldots, M_{100}. He wants to know WHICH ONES halt on 0 .
If you could ASK HALTONO 100 questions then you could do this-just ask $M_{1} \in$ HALTON0?, $M_{2} \in$ HALTON0?,...., $M_{100} \in$ HALTON0? and see see which ones return YES.

What if you are allowed to ask HALTONO less than 100 questions? IS there a number $q<100$ such that you can determine WHICH of M_{1}, \ldots, M_{100} are in HALTON0 with q questions to HALTON0? Prove your result.

First find HOW MANY halt on 0 by 3b. That is only 8 questions. You now KNOW x : EXACTLY x of M_{1}, \ldots, M_{100} halt on 0 .
What to do now? Discuss?
RUN $M_{1}(0), \ldots, M_{100}(0)$ simul UNTIL x of them halt.
Those x halt. Great
Key The rest DO NOT HALT on 0 since exactly x halt on 0 .

A Thought Question

Known The problem of, given 100 TM's, determine WHICH ONES halt on 0 , can be done with 7 queries to HALT0.

A Thought Question

Known The problem of, given 100 TM's, determine WHICH ONES halt on 0 , can be done with 7 queries to HALT0.
Question Can it be done with 6 queries?

A Thought Question

Known The problem of, given 100 TM's, determine WHICH ONES halt on 0 , can be done with 7 queries to HALT0.
Question Can it be done with 6 queries?
No.

A Thought Question

Known The problem of, given 100 TM's, determine WHICH ONES halt on 0 , can be done with 7 queries to HALT0.

Question Can it be done with 6 queries?
No.
There is an entire field called Bounded Queries in Computability Theory
https://www.amazon.com/
Bounded-Queries-Recursion-Progress-Computer/dp/ 1461268486

Problem 1: 3COL \leq CNF-SAT

SOLUTION

We are given a graph $G=(V, E)$. We assume $V=\{1, \ldots, n\}$.
For every vertex i we have 3 Boolean variables. We list them and what they mean
$x_{i R}: \mathrm{T}$ if $\operatorname{COL}(i)=R$.
$x_{i B}: T$ if $\operatorname{COL}(i)=B$.
$x_{i G}: \mathrm{T}$ if $\operatorname{COL}(i)=G$.
Formula has two parts

3COL \leq CNF-SAT, PART ONE

Making sure that a satisfying assignment really is a (not necessarily proper) coloring
Every vertex has at least one color:

$$
\bigwedge_{i=1}^{n}\left(x_{i R} \vee x_{i B} \vee x_{i G}\right)
$$

Every vertex has at most one color:

$$
\bigwedge_{i=1}^{n} \neg\left(x_{i R} \wedge x_{i B}\right) \wedge \neg\left(x_{i R} \wedge x_{i G}\right) \wedge \neg\left(x_{i B} \wedge x_{i G}\right)
$$

3COL \leq CNF-SAT, PART TWO

Make sure it's a proper coloring

$$
\bigwedge_{(i, j) \in E} \neg\left(x_{i R} \wedge x_{j R}\right) \wedge \neg\left(x_{i B} \wedge x_{j B}\right) \wedge \neg\left(x_{i G} \wedge x_{j G}\right)
$$

Prob 2a: Coding TMs into Numbers

All TMs: $\Sigma=\{1,2,3\}, Q$ is $\{1, \ldots, n\}$.
Describe a procedure to code Turing Machines into \mathbb{N} such that the following holds:

- Two diff Turing Machines map to diff numbers. (Some numbers do not get mapped to.)
- The following should be computable:

Input: $x, y \in \mathbb{N}$
Output:
If x does not code a TM than output THATSBSMAN.
HINT Do not over think this. Any way you code a TM into numbers should work.

Prob 2a: Coding TMs into Numbers, SOLUTION

THE CODING: Let $M=(Q,\{a, b, \#\}, \delta, s, h)$
The number will be the product of the following numbers

1. $2^{|Q|}$.
2. 3^{s} (Recall that s, the start state, is a number)
3. 5^{h} (Recall that h, the halt state, is a number)
4. For coding the transitions, next slide

Prob 2a: Coding TMs into Numbers, SOLUTION

There will be $n=(Q-1) \times \Sigma$ rules. Let p_{1}, \ldots, p_{n} be the n primes after 5 (so $p_{1}=7$). (It's $Q-1$ since there are no transitions out of h.) Order the rules lexicographically by $Q \times \Sigma$, so $\delta(1,1)$
$\delta(1,2)$
$\delta(1,3)$
$\delta(2,1)$

$$
\delta(|Q|-1,3) .
$$

For $1 \leq i \leq n$ take rule i and form the following number.

1. $\delta(p, \sigma)=\left(q, \sigma^{\prime}\right)$ maps to $2^{p} \times 3^{\sigma} \times 5^{q} \times 7^{\sigma^{\prime}}$. $\left(\sigma^{\prime} \in\{1,2,3\}\right)$.
2. $\delta(p, \sigma)=(q, L)$ maps to $2^{p} \times 3^{\sigma} \times 5^{q} \times 7^{4}$. $(4 \notin\{1,2,3\})$.
3. $\delta(p, \sigma)=(q, R)$ maps to $2^{p} \times 3^{\sigma} \times 5^{q} \times 7^{5}$. $\left.5 \notin\{1,2,3\}\right)$.

Problem 2c

Let M be the TM: $Q=\{1,2,3\}, \Sigma=\{1,2,3\}, s=1, h=3$, $\delta(1,1)=(1, L)$.
$\delta(1,2)=(1,2)$.
$\delta(1,3)=(2, R)$.
$\delta(2,1)=(1,1)$.
$\delta(2,2)=(3,3)$.
$\delta(2,3)=(3, L)$.
Code this TM into a number using your procedure.

Problem 2c Solution

The number will be the product of many numbers:
$Q=\{1,2,3\}\left(\right.$ so $\left.^{3}\right)$,
$\Sigma=\{1,2,3\}$,
$s=1\left(\right.$ so $\left.3^{1}\right)$,
$h=3\left(\right.$ so $\left.5^{3}\right)$.
$\delta(1,1)=(1, L)$. This is coded by $7^{2^{1} 3^{1} 5^{1} 7^{4}}$
$\delta(1,2)=(1,2)$. This is coded by $11^{2^{1} 3^{2} 5^{1} 7^{2}}$
$\delta(1,3)=(2, R)$. This is coded by $13^{2^{1} 3^{3} 5^{2} 7^{5}}$
$\delta(2,1)=(4,1)$. This is coded by $17^{2^{2} 3^{1} 5^{4} 7^{1}}$
$\delta(2,2)=(3,3)$. This is coded by $23^{2^{2} 3^{2} 5^{3} 7^{3}}$
$\delta(2,3)=(3, L)$. This is coded by $22^{2^{2} 3^{3} 5^{3} 7^{4}}$
Take the product of all of the above numbers.

