HW 09 Solutions

Exposition by William Gasarch—U of MD

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

We do the Problems in a Funny Order

We do Problem 3 then 1 then 2. This is in order of how interesting they are.

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Problem 3a

Bill gives you 100 Turing Machines M_1, \ldots, M_{100} . He wants to know if *at least 17 of them are in HALTON0*.

Problem 3a

Bill gives you 100 Turing Machines M_1, \ldots, M_{100} . He wants to know if *at least 17 of them are in HALTON0*.

Come up with a Turing Machine M (by that I mean just write psuedocode that uses M_1, \ldots, M_{100}) so that

 $M \in \text{HALTON0}$ iff at least 17 of M_1, \ldots, M_{100} are in HALTON0.

Problem 3a

Bill gives you 100 Turing Machines M_1, \ldots, M_{100} . He wants to know if at least 17 of them are in HALTONO.

Come up with a Turing Machine M (by that I mean just write psuedocode that uses M_1, \ldots, M_{100}) so that

 $M \in \text{HALTON0}$ iff at least 17 of M_1, \ldots, M_{100} are in HALTON0.

Here is M:

- 1. lnput(x) (this will be ignored).
- 2. Run $M_1(0), \ldots, M_{100}(0)$ at the same time.

3. If you see that 17 of them halted then STOP M(0) halts IFF 17 of the $M_1(0), \ldots, M_{100}(0)$ halt. Note Can replace 17 with anything and get similar result.

Problem 3b

Bill gives you 100 Turing Machines M_1, \ldots, M_{100} . He wants to know HOW MANY halt on 0.

If you could ASK HALTON0 100 questions then you could do this—just ask $M_1 \in \text{HALTON0}$?, $M_2 \in \text{HALTON0}$?,...,

 $M_{100} \in \text{HALTON0}$? and see see which ones return YES.

Problem 3b

Bill gives you 100 Turing Machines M_1, \ldots, M_{100} . He wants to know HOW MANY halt on 0.

If you could ASK HALTON0 100 questions then you could do this—just ask $M_1 \in \text{HALTON0}$?, $M_2 \in \text{HALTON0}$?,...,

 $M_{100} \in \text{HALTON0}$? and see see which ones return YES.

What if you are allowed to ask HALTON0 less than 100 questions? IS there a number q < 100 such that you can determine WHICH of M_1, \ldots, M_{100} are in HALTON0 with q questions to HALTON0? Prove your result.

Problem 3b

Bill gives you 100 Turing Machines M_1, \ldots, M_{100} . He wants to know HOW MANY halt on 0.

If you could ASK HALTON0 100 questions then you could do this—just ask $M_1 \in \text{HALTON0}$?, $M_2 \in \text{HALTON0}$?,...,

 $M_{100} \in \text{HALTON0}$? and see see which ones return YES.

What if you are allowed to ask HALTON0 less than 100 questions? IS there a number q < 100 such that you can determine WHICH of M_1, \ldots, M_{100} are in HALTON0 with q questions to HALTON0? Prove your result.

Do binary search: First ask if there exists ≥ 50 of M_1, \ldots, M_{100} that halt on 0. If yes then ask ≥ 75 . If No then ask ≥ 25 . Etc. This takes $\lceil \log_2(100) \rceil = 7$.

Bill gives you 100 Turing Machines M_1, \ldots, M_{100} . He wants to know WHICH ONES halt on 0.

If you could ASK HALTON0 100 questions then you could do this—just ask $M_1 \in \text{HALTON0}$?, $M_2 \in \text{HALTON0}$?,...,

 $M_{100} \in \text{HALTON0}$? and see see which ones return YES.

Bill gives you 100 Turing Machines M_1, \ldots, M_{100} . He wants to know WHICH ONES halt on 0.

If you could ASK HALTON0 100 questions then you could do this—just ask $M_1 \in \text{HALTON0}$?, $M_2 \in \text{HALTON0}$?,..., $M_{100} \in \text{HALTON0}$? and see see which ones return YES.

What if you are allowed to ask HALTON0 less than 100 questions? IS there a number q < 100 such that you can determine WHICH of M_1, \ldots, M_{100} are in HALTON0 with q questions to HALTON0? Prove your result.

Bill gives you 100 Turing Machines M_1, \ldots, M_{100} . He wants to know WHICH ONES halt on 0.

If you could ASK HALTON0 100 questions then you could do this—just ask $M_1 \in \text{HALTON0}$?, $M_2 \in \text{HALTON0}$?,..., $M_{100} \in \text{HALTON0}$? and see see which ones return YES.

What if you are allowed to ask HALTON0 less than 100 questions? IS there a number q < 100 such that you can determine WHICH of M_1, \ldots, M_{100} are in HALTON0 with q questions to HALTON0? Prove your result.

First find HOW MANY halt on 0 by 3b. That is only 8 questions. You now KNOW x: EXACTLY x of M_1, \ldots, M_{100} halt on 0. What to do now? Discuss?

Bill gives you 100 Turing Machines M_1, \ldots, M_{100} . He wants to know WHICH ONES halt on 0.

If you could ASK HALTON0 100 questions then you could do this—just ask $M_1 \in \text{HALTON0}$?, $M_2 \in \text{HALTON0}$?,..., $M_{100} \in \text{HALTON0}$? and see see which ones return YES.

What if you are allowed to ask HALTON0 less than 100 questions? IS there a number q < 100 such that you can determine WHICH of M_1, \ldots, M_{100} are in HALTON0 with q questions to HALTON0? Prove your result.

First find HOW MANY halt on 0 by 3b. That is only 8 questions. You now KNOW x: EXACTLY x of M_1, \ldots, M_{100} halt on 0. What to do now? Discuss?

RUN $M_1(0), \ldots, M_{100}(0)$ simul UNTIL x of them halt. Those x halt. Great Key The rest DO NOT HALT on 0 since exactly x halt on 0.

Known The problem of, given 100 TM's, determine WHICH ONES halt on 0, can be done with 7 queries to HALT0.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Known The problem of, given 100 TM's, determine WHICH ONES halt on 0, can be done with 7 queries to HALT0.

Question Can it be done with 6 queries?

Known The problem of, given 100 TM's, determine WHICH ONES halt on 0, can be done with 7 queries to HALT0.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Question Can it be done with 6 queries?

No.

Known The problem of, given 100 TM's, determine WHICH ONES halt on 0, can be done with 7 queries to HALT0.

Question Can it be done with 6 queries?

No.

There is an entire field called Bounded Queries in Computability Theory https://www.amazon.com/ Bounded-Queries-Recursion-Progress-Computer/dp/ 1461268486

Problem 1: 3COL \leq CNF-SAT

SOLUTION

We are given a graph G = (V, E). We assume $V = \{1, ..., n\}$. For every vertex *i* we have 3 Boolean variables. We list them and what they mean

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 x_{iR} : T if COL(i) = R. x_{iB} : T if COL(i) = B. x_{iG} : T if COL(i) = G. Formula has two parts

$3COL \leq CNF-SAT$, PART ONE

Making sure that a satisfying assignment really is a (not necessarily proper) coloring

Every vertex has at least one color:

$$\bigwedge_{i=1}^n (x_{iR} \lor x_{iB} \lor x_{iG})$$

Every vertex has at most one color:

$$\bigwedge_{i=1}^n \neg(x_{iR} \wedge x_{iB}) \wedge \neg(x_{iR} \wedge x_{iG}) \wedge \neg(x_{iB} \wedge x_{iG})$$

$3COL \leq CNF-SAT$, PART TWO

Make sure it's a proper coloring

$$\bigwedge_{(i,j)\in E} \neg(x_{iR} \land x_{jR}) \land \neg(x_{iB} \land x_{jB}) \land \neg(x_{iG} \land x_{jG})$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Prob 2a: Coding TMs into Numbers

All TMs: $\Sigma = \{1, 2, 3\}$, Q is $\{1, \dots, n\}$.

Describe a procedure to code Turing Machines into $\ensuremath{\mathbb{N}}$ such that the following holds:

- Two diff Turing Machines map to diff numbers. (Some numbers do not get mapped to.)
- ► The following should be computable: Input: x, y ∈ N Output:

If x does not code a TM than output THATSBSMAN.

HINT Do not over think this. Any way you code a TM into numbers should work.

THE CODING: Let $M = (Q, \{a, b, \#\}, \delta, s, h)$

The number will be the product of the following numbers

- 1. $2^{|Q|}$.
- 2. 3^{s} (Recall that s, the start state, is a number)
- 3. 5^h (Recall that h, the halt state, is a number)
- 4. For coding the transitions, next slide

Prob 2a: Coding TMs into Numbers, SOLUTION

There will be $n = (Q-1) \times \Sigma$ rules. Let p_1, \ldots, p_n be the *n* primes after 5 (so $p_1 = 7$). (It's Q - 1 since there are no transitions out of h.) Order the rules lexicographically by $Q \times \Sigma$, so $\delta(1,1)$ $\delta(1,2)$ $\delta(1,3)$ $\delta(2,1)$ $\delta(|Q|-1,3).$ For $1 \le i \le n$ take rule *i* and form the following number. 1. $\delta(p,\sigma) = (q,\sigma')$ maps to $2^p \times 3^\sigma \times 5^q \times 7^{\sigma'}$. $(\sigma' \in \{1,2,3\})$. 2. $\delta(p,\sigma) = (q,L)$ maps to $2^p \times 3^\sigma \times 5^q \times 7^4$. $(4 \notin \{1,2,3\})$. 3. $\delta(p,\sigma) = (q,R)$ maps to $2^p \times 3^\sigma \times 5^q \times 7^5$. $5 \notin \{1,2,3\}$).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Problem 2c

Let *M* be the TM: $Q = \{1, 2, 3\}$, $\Sigma = \{1, 2, 3\}$, s = 1, h = 3, $\delta(1, 1) = (1, L)$. $\delta(1, 2) = (1, 2)$. $\delta(1, 3) = (2, R)$. $\delta(2, 1) = (1, 1)$. $\delta(2, 2) = (3, 3)$. $\delta(2, 3) = (3, L)$. Code this TM into a number using your procedure.

Problem 2c Solution

The number will be the product of many numbers: $Q = \{1, 2, 3\}$ (so 2^3), $\Sigma = \{1, 2, 3\}.$ s = 1 (so 3^1). h = 3 (so 5^3). $\delta(1,1) = (1,L)$. This is coded by $7^{2^13^15^17^4}$ $\delta(1,2) = (1,2).$ This is coded by $11^{2^{1}3^{2}5^{1}7^{2}}$ $\delta(1,3) = (2,R).$ This is coded by $13^{2^{1}3^{3}5^{2}7^{5}}$ $\delta(2,1)=(4,1).$ This is coded by $17^{2^23^15^47^1}$ $\delta(2,2) = (3,3).$ This is coded by $23^{2^2 3^2 5^3 7^3}$ $\delta(2,3) = (3,L)$. This is coded by $29^{2^2 3^3 5^3 7^4}$ Take the product of all of the above numbers.

ション ふゆ アメリア メリア しょうくしゃ