
HW 09 Solutions

Exposition by William Gasarch—U of MD



We do the Problems in a Funny Order

We do Problem 3 then 1 then 2.
This is in order of how interesting they are.



Problem 3a

Bill gives you 100 Turing Machines M1, . . . ,M100. He wants to
know if at least 17 of them are in HALTON0.

Come up with a Turing Machine M (by that I mean just write
psuedocode that uses M1, . . . ,M100) so that

M ∈ HALTON0 iff at least 17 of M1, . . . ,M100 are in HALTON0.

Here is M:

1. Input(x) (this will be ignored).

2. Run M1(0), . . . ,M100(0) at the same time.

3. If you see that 17 of them halted then STOP

M(0) halts IFF 17 of the M1(0), . . . ,M100(0) halt.
Note Can replace 17 with anything and get similar result.
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Problem 3b

Bill gives you 100 Turing Machines M1, . . . ,M100. He wants to
know HOW MANY halt on 0.
If you could ASK HALTON0 100 questions then you could do
this—just ask M1 ∈ HALTON0?, M2 ∈ HALTON0?,. . .,
M100 ∈ HALTON0? and see see which ones return YES.

What if you are allowed to ask HALTON0 less than 100 questions?
IS there a number q < 100 such that you can determine WHICH
of M1, . . . ,M100 are in HALTON0 with q questions to HALTON0?
Prove your result.

Do binary search: First ask if there exists ≥ 50 of M1, . . . ,M100

that halt on 0. If yes then ask ≥ 75. If No then ask ≥ 25. Etc.
This takes dlog2(100)e = 7.
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Problem 3c

Bill gives you 100 Turing Machines M1, . . . ,M100. He wants to
know WHICH ONES halt on 0.
If you could ASK HALTON0 100 questions then you could do
this—just ask M1 ∈ HALTON0?, M2 ∈ HALTON0?,. . .,
M100 ∈ HALTON0? and see see which ones return YES.

What if you are allowed to ask HALTON0 less than 100 questions?
IS there a number q < 100 such that you can determine WHICH
of M1, . . . ,M100 are in HALTON0 with q questions to HALTON0?
Prove your result.

First find HOW MANY halt on 0 by 3b. That is only 8 questions.
You now KNOW x : EXACTLY x of M1, . . . ,M100 halt on 0.
What to do now? Discuss?

RUN M1(0), . . . ,M100(0) simul UNTIL x of them halt.
Those x halt. Great
Key The rest DO NOT HALT on 0 since exactly x halt on 0.
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A Thought Question

Known The problem of, given 100 TM’s, determine WHICH
ONES halt on 0, can be done with 7 queries to HALT0.

Question Can it be done with 6 queries?

No.

There is an entire field called Bounded Queries in Computability
Theory
https://www.amazon.com/

Bounded-Queries-Recursion-Progress-Computer/dp/

1461268486

https://www.amazon.com/Bounded-Queries-Recursion-Progress-Computer/dp/1461268486
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Problem 1: 3COL ≤ CNF-SAT

SOLUTION
We are given a graph G = (V ,E ). We assume V = {1, . . . , n}.
For every vertex i we have 3 Boolean variables. We list them and
what they mean
xiR : T if COL(i) = R.
xiB : T if COL(i) = B.
xiG : T if COL(i) = G .
Formula has two parts



3COL ≤ CNF-SAT, PART ONE

Making sure that a satisfying assignment really is a (not necessarily
proper) coloring
Every vertex has at least one color:

n∧
i=1

(xiR ∨ xiB ∨ xiG )

Every vertex has at most one color:

n∧
i=1

¬(xiR ∧ xiB) ∧ ¬(xiR ∧ xiG ) ∧ ¬(xiB ∧ xiG )



3COL ≤ CNF-SAT, PART TWO

Make sure it’s a proper coloring∧
(i ,j)∈E

¬(xiR ∧ xjR) ∧ ¬(xiB ∧ xjB) ∧ ¬(xiG ∧ xjG )



Prob 2a: Coding TMs into Numbers

All TMs: Σ = {1, 2, 3}, Q is {1, . . . , n}.
Describe a procedure to code Turing Machines into N such that
the following holds:

I Two diff Turing Machines map to diff numbers. (Some
numbers do not get mapped to.)

I The following should be computable:
Input: x , y ∈ N
Output:
If x does not code a TM than output THATSBSMAN.

HINT Do not over think this. Any way you code a TM into
numbers should work.



Prob 2a: Coding TMs into Numbers, SOLUTION

THE CODING: Let M = (Q, {a, b,#}, δ, s, h)
The number will be the product of the following numbers

1. 2|Q|.

2. 3s (Recall that s, the start state, is a number)

3. 5h (Recall that h, the halt state, is a number)

4. For coding the transitions, next slide



Prob 2a: Coding TMs into Numbers, SOLUTION

There will be n = (Q − 1)×Σ rules. Let p1, . . . , pn be the n primes
after 5 (so p1 = 7). (It’s Q − 1 since there are no transitions out
of h.) Order the rules lexicographically by Q × Σ, so
δ(1, 1)
δ(1, 2)
δ(1, 3)
δ(2, 1)
...
δ(|Q| − 1, 3).
For 1 ≤ i ≤ n take rule i and form the following number.

1. δ(p, σ) = (q, σ′) maps to 2p × 3σ × 5q × 7σ
′
. (σ′ ∈ {1, 2, 3}).

2. δ(p, σ) = (q, L) maps to 2p × 3σ × 5q × 74. (4 /∈ {1, 2, 3}).

3. δ(p, σ) = (q,R) maps to 2p × 3σ × 5q × 75. 5 /∈ {1, 2, 3}).



Problem 2c

Let M be the TM: Q = {1, 2, 3}, Σ = {1, 2, 3}, s = 1, h = 3,
δ(1, 1) = (1, L).
δ(1, 2) = (1, 2).
δ(1, 3) = (2,R).
δ(2, 1) = (1, 1).
δ(2, 2) = (3, 3).
δ(2, 3) = (3, L).
Code this TM into a number using your procedure.



Problem 2c Solution

The number will be the product of many numbers:
Q = {1, 2, 3} (so 23),
Σ = {1, 2, 3},
s = 1 (so 31),
h = 3 (so 53).
δ(1, 1) = (1, L). This is coded by 72

1315174

δ(1, 2) = (1, 2). This is coded by 112
1325172

δ(1, 3) = (2,R). This is coded by 132
1335275

δ(2, 1) = (4, 1). This is coded by 172
2315471

δ(2, 2) = (3, 3). This is coded by 232
2325373

δ(2, 3) = (3, L). This is coded by 292
2335374

Take the product of all of the above numbers.


