Review For The Midterm

Rules

1. Begin Midterm ON Gradescope: Tuesday April 7, 6:00PM-9:00PM. (DSS students get an extension)

Rules

1. Begin Midterm ON Gradescope: Tuesday April 7, 6:00PM-9:00PM. (DSS students get an extension)
2. Resources Midterm is open-everything. The web, my notes, my HW solutions, all fine to use. Cannot ask someone for help. Honor System.
3. Caveat You must hand in your own work and you must understand what you hand in.
4. Warning Mindlessly copying does not work.

Rules

1. Begin Midterm ON Gradescope: Tuesday April 7, 6:00PM-9:00PM. (DSS students get an extension)
2. Resources Midterm is open-everything. The web, my notes, my HW solutions, all fine to use. Cannot ask someone for help. Honor System.
3. Caveat You must hand in your own work and you must understand what you hand in.
4. Warning Mindlessly copying does not work.
5. Neat LaTex is best. Good handwriting okay. Draw Aut, or use LateX tool posted.

Rules

1. Begin Midterm ON Gradescope: Tuesday April 7, 6:00PM-9:00PM. (DSS students get an extension)
2. Resources Midterm is open-everything. The web, my notes, my HW solutions, all fine to use. Cannot ask someone for help. Honor System.
3. Caveat You must hand in your own work and you must understand what you hand in.
4. Warning Mindlessly copying does not work.
5. Neat LaTex is best. Good handwriting okay. Draw Aut, or use LateX tool posted.
6. Our Intent This is exam I intended to give out originally. The extra time is meant for you to format and put in LaTeX.

Rules

1. Begin Midterm ON Gradescope: Tuesday April 7, 6:00PM-9:00PM. (DSS students get an extension)
2. Resources Midterm is open-everything. The web, my notes, my HW solutions, all fine to use. Cannot ask someone for help. Honor System.
3. Caveat You must hand in your own work and you must understand what you hand in.
4. Warning Mindlessly copying does not work.
5. Neat LaTex is best. Good handwriting okay. Draw Aut, or use LateX tool posted.
6. Our Intent This is exam I intended to give out originally. The extra time is meant for you to format and put in LaTeX.
7. Scope of the Exam

Short Answer HWs and lectures.
Long Answer This Presentation.

What We Have Covered: Regular Languages

1. Examples of Reg Langs

What We Have Covered: Regular Languages

1. Examples of Reg Langs

Numbers that are $\equiv i(\bmod j)$

What We Have Covered: Regular Languages

1. Examples of Reg Langs

Numbers that are $\equiv i(\bmod j)$
$\left\{w: \#_{a}(w) \equiv i_{1}\left(\bmod j_{1}\right) \wedge \#_{b}(w) \equiv i_{2}\left(\bmod j_{2}\right)\right\}$

What We Have Covered: Regular Languages

1. Examples of Reg Langs

Numbers that are $\equiv i(\bmod j)$
$\left\{w: \#_{a}(w) \equiv i_{1}\left(\bmod j_{1}\right) \wedge \#_{b}(w) \equiv i_{2}\left(\bmod j_{2}\right)\right\}$
For a fixed string $w, w\{a, b\}^{*},\{a, b\}^{*} w$

What We Have Covered: Regular Languages

1. Examples of Reg Langs

Numbers that are $\equiv i(\bmod j)$
$\left\{w: \#_{a}(w) \equiv i_{1}\left(\bmod j_{1}\right) \wedge \#_{b}(w) \equiv i_{2}\left(\bmod j_{2}\right)\right\}$
For a fixed string $w, w\{a, b\}^{*},\{a, b\}^{*} w$
$\{a, b\}^{*} a\{a, b\}^{n}\left(\right.$ DFA requires $\sim 2^{n}$, NFA $\sim n$. Cool! $)$

What We Have Covered: Regular Languages

1. Examples of Reg Langs

Numbers that are $\equiv i(\bmod j)$
$\left\{w: \#_{a}(w) \equiv i_{1}\left(\bmod j_{1}\right) \wedge \#_{b}(w) \equiv i_{2}\left(\bmod j_{2}\right)\right\}$
For a fixed string $w, w\{a, b\}^{*},\{a, b\}^{*} w$
$\{a, b\}^{*} a\{a, b\}^{n}$ (DFA requires $\sim 2^{n}$, NFA $\sim n$. Cool!)
$\left\{a^{i}: i \neq n\right\}$ (DFA requires $\sim n$, NFA $\sim 2 \sqrt{n}+$ logstuff Cool!)

What We Have Covered: Regular Languages

1. Examples of Reg Langs

Numbers that are $\equiv i(\bmod j)$
$\left\{w: \#_{a}(w) \equiv i_{1}\left(\bmod j_{1}\right) \wedge \#_{b}(w) \equiv i_{2}\left(\bmod j_{2}\right)\right\}$
For a fixed string $w, w\{a, b\}^{*},\{a, b\}^{*} w$
$\{a, b\}^{*} a\{a, b\}^{n}$ (DFA requires $\sim 2^{n}$, NFA $\sim n$. Cool!)
$\left\{a^{i}: i \neq n\right\}$ (DFA requires $\sim n$, NFA $\sim 2 \sqrt{n}+$ logstuff Cool!) Others

What We Have Covered: Regular Languages

1. Examples of Reg Langs

Numbers that are $\equiv i(\bmod j)$
$\left\{w: \#_{a}(w) \equiv i_{1}\left(\bmod j_{1}\right) \wedge \# b(w) \equiv i_{2}\left(\bmod j_{2}\right)\right\}$
For a fixed string $w, w\{a, b\}^{*},\{a, b\}^{*} w$
$\{a, b\}^{*} a\{a, b\}^{n}$ (DFA requires $\sim 2^{n}$, NFA $\sim n$. Cool!)
$\left\{a^{i}: i \neq n\right\}$ (DFA requires $\sim n$, NFA $\sim 2 \sqrt{n}+$ logstuff Cool!)
Others
2. DFA, NFA, REGEX. Equivalence of all of these.
3. Closure Properties.
4. Non-Regular: ZW Pumping Lemma, Closure properties.

What We Have Covered: Context Free Languages

1. Examples of CFL's

What We Have Covered: Context Free Languages

1. Examples of CFL's
$\left\{a^{k_{1} n} b^{k_{2} n}: n \in N\right\}$

What We Have Covered: Context Free Languages

1. Examples of CFL's
$\left\{a^{k_{1} n} b^{k_{2} n}: n \in N\right\}$
$\{w: \# a(w)=\# b(w)\}$

What We Have Covered: Context Free Languages

1. Examples of CFL's
$\left\{a^{k_{1} n} b^{k_{2} n}: n \in N\right\}$
$\left\{w: \# a(w)=\#_{b}(w)\right\}$
$\left\{w: k_{1} \#_{a}(w)=k_{2} \#_{b}(w)\right\}$

What We Have Covered: Context Free Languages

1. Examples of CFL's
$\left\{a^{k_{1} n} b^{k_{2} n}: n \in N\right\}$
$\left\{w: \#_{a}(w)=\#_{b}(w)\right\}$
$\left\{w: k_{1} \#_{a}(w)=k_{2} \#_{b}(w)\right\}$
$\left\{a^{n}\right\}$ (Interesting: Small CFL, Large NFA)

What We Have Covered: Context Free Languages

1. Examples of CFL's
$\left\{a^{k_{1} n} b^{k_{2} n}: n \in N\right\}$
$\left\{w: \#_{a}(w)=\#_{b}(w)\right\}$
$\left\{w: k_{1} \#_{a}(w)=k_{2} \#_{b}(w)\right\}$
$\left\{a^{n}\right\}$ (Interesting: Small CFL, Large NFA)
2. Chomsky Normal Form. Needed to make size comparisons.
3. Closure Properties.
4. Non-CFL's:

If $L \subseteq a^{*}$ and not regular, than not CFL.
If need to keep track of TWO things then NOT CFL.
E.g., $\left\{a^{n} b^{n} c^{n}: n \in \mathrm{~N}\right\}$

Equivalence of DFA, NFA, REGEX

Equivalence of DFA, NFA, REGEX

1. L DFA $\rightarrow L$ REGEX:

Equivalence of DFA, NFA, REGEX

1. L DFA \rightarrow R REGEX: $R(i, j, k)$ Dynamic Programming. $|\alpha|$ is exp in number of states.

Equivalence of DFA, NFA, REGEX

1. L DFA \rightarrow R REGEX: $R(i, j, k)$ Dynamic Programming. $|\alpha|$ is exp in number of states.
2. L REGEX $\rightarrow L$ NFA:

Equivalence of DFA, NFA, REGEX

1. L DFA \rightarrow L REGEX: $R(i, j, k)$ Dynamic Programming. $|\alpha|$ is exp in number of states.
2. L REGEX $\rightarrow L$ NFA: induction on formation of a REGEX.

Equivalence of DFA, NFA, REGEX

1. L DFA \rightarrow L REGEX: $R(i, j, k)$ Dynamic Programming. $|\alpha|$ is exp in number of states.
2. L REGEX $\rightarrow L$ NFA: induction on formation of a REGEX.
3. L NFA $\rightarrow L$ DFA:

Equivalence of DFA, NFA, REGEX

1. L DFA \rightarrow R REGEX: $R(i, j, k)$ Dynamic Programming. $|\alpha|$ is exp in number of states.
2. L REGEX $\rightarrow L$ NFA: induction on formation of a REGEX.
3. L NFA $\rightarrow L$ DFA: powerset construction. States blowup exponentially.

Closure Properties

1. Union What to use?

Closure Properties

1. Union What to use?

DFA: Cross Product Construction, or REGEX: by definition, or NFA: e-transitions.
2. Intersection What to use?

Closure Properties

1. Union What to use?

DFA: Cross Product Construction, or REGEX: by definition, or NFA: e-transitions.
2. Intersection What to use?

DFA: Cross Product Construction.
NFA: Cross Product Construction.
3. Complimentation What to use?

Closure Properties

1. Union What to use?

DFA: Cross Product Construction, or REGEX: by definition, or NFA: e-transitions.
2. Intersection What to use?

DFA: Cross Product Construction.
NFA: Cross Product Construction.
3. Complimentation What to use?

DFA: Swap final and non-final states.
4. Concatenation What to use?

Closure Properties

1. Union What to use?

DFA: Cross Product Construction, or
REGEX: by definition, or
NFA: e-transitions.
2. Intersection What to use?

DFA: Cross Product Construction.
NFA: Cross Product Construction.
3. Complimentation What to use?

DFA: Swap final and non-final states.
4. Concatenation What to use?

NFA: e-transition from one machine to the other.
REGEX: By Definition.
5. Star What to use?

Closure Properties

1. Union What to use?

DFA: Cross Product Construction, or
REGEX: by definition, or
NFA: e-transitions.
2. Intersection What to use?

DFA: Cross Product Construction.
NFA: Cross Product Construction.
3. Complimentation What to use?

DFA: Swap final and non-final states.
4. Concatenation What to use?

NFA: e-transition from one machine to the other.
REGEX: By Definition.
5. Star What to use?

DFA: On Midterm.
REGEX: By Definition.

SUBSEQ Problems

Definition If $w=\sigma_{1} \cdots \sigma_{n}$ is a string then any string of the form

$$
\sigma_{i_{1}} \cdots \sigma_{i_{k}}
$$

where $i_{1}<\cdots<i_{k}$ is a subsequence of w.
$\operatorname{SUBSEQ}(w)$ is the set of all subsequences of the string w.
Examples If $w=a a b a$ then the subsequences are $\operatorname{SUBSEQ}(a a b a)=\{e, a, b, a a, a b, b a, a a a, a a b, a b a, a a b a\}$.
Definition If $L \subseteq\{a, b\}^{*}$ then

$$
\operatorname{SUBSEQ}(L)=\bigcup_{w \in L} \operatorname{SUBSEQ}(w)
$$

SUBSEQ Problems

Definition If $w=\sigma_{1} \cdots \sigma_{n}$ is a string then any string of the form

$$
\sigma_{i_{1}} \cdots \sigma_{i_{k}}
$$

where $i_{1}<\cdots<i_{k}$ is a subsequence of w.
$\operatorname{SUBSEQ}(w)$ is the set of all subsequences of the string w.
Examples If $w=$ aaba then the subsequences are $\operatorname{SUBSEQ}(a a b a)=\{e, a, b, a a, a b, b a, a a a, a a b, a b a, a a b a\}$.
Definition If $L \subseteq\{a, b\}^{*}$ then

$$
\operatorname{SUBSEQ}(L)=\bigcup_{w \in L} \operatorname{SUBSEQ}(w)
$$

T or F and prove:

1. If L is regular than $\operatorname{SUBSEQ}(L)$ is regular.
2. If L is context free than $\operatorname{SUBSEQ}(L)$ is context free.

Answer to SUBSEQ Problem: Regular

If L is regular than $\operatorname{SUBSEQ}(L)$ is regular.

Answer to SUBSEQ Problem: Regular

If L is regular than $\operatorname{SUBSEQ}(L)$ is regular. YES.

Answer to SUBSEQ Problem: Regular

If L is regular than $\operatorname{SUBSEQ}(L)$ is regular. YES.
Let M be a DFA for L.
We form an NFA for $\operatorname{SUBSEQ}(L)$.
For every $\delta(p, \sigma)=q$ in M we add $\delta(p, e)=q$.

Answer to SUBSEQ Problem: CFL

If L is $C F L$ than $\operatorname{SUBSEQ}(L)$ is $C F L$.

Answer to SUBSEQ Problem: CFL

If L is CFL than $\operatorname{SUBSEQ}(L)$ is CFL. YES.

Answer to SUBSEQ Problem: CFL

If L is CFL than $\operatorname{SUBSEQ}(L)$ is CFL. YES.
Let M be a CFL for L in Chomsky Normal Form.
We form a CFL SUBSEQ(L).
For every rule $A \rightarrow \sigma$ we add $A \rightarrow \epsilon$.

Context Free Languages

Definition
A Context Free Grammar (CFL) is (V, Σ, P, S)

- V is set of nonterminals
- Σ is the alphabet, also called terminals
- $P \subseteq V \times(V \cup \Sigma)^{*}$ are the productions or rules
- $S \in V$ is the start symbol.

Context Free Languages

Definition

A Context Free Grammar (CFL) is (V, Σ, P, S)

- V is set of nonterminals
- Σ is the alphabet, also called terminals
- $P \subseteq V \times(V \cup \Sigma)^{*}$ are the productions or rules
- $S \in V$ is the start symbol.
$L(G)$ is the set of strings generated by CFL G.
A Context Free Lang (CFL) is a lang that is $L(G)$ for some CFL G.

Context Free Languages

Definition

A Context Free Grammar (CFL) is (V, Σ, P, S)

- V is set of nonterminals
- Σ is the alphabet, also called terminals
- $P \subseteq V \times(V \cup \Sigma)^{*}$ are the productions or rules
- $S \in V$ is the start symbol.
$L(G)$ is the set of strings generated by CFL G.
A Context Free Lang (CFL) is a lang that is $L(G)$ for some CFL G.
A CFL is in Chomsky Normal Form CNF) if all of he productions are either of the form
$A \rightarrow B C$
$A \rightarrow \sigma$ where $\sigma \in \Sigma$
$A \rightarrow e$ (I didn't include it in class, but I am now.)
Note: If G is a CFL hen there exists a CNF CFL that generates it.

Examples of CFL's that are NOT Regular

$$
\begin{aligned}
& \left\{a^{n} b^{n}: n \in \mathrm{~N}\right\} \\
& S \rightarrow a S b \mid e
\end{aligned}
$$

Examples of CFL's that are NOT Regular

$$
\begin{aligned}
& \left\{a^{n} b^{n}: n \in N\right\} \\
& S \rightarrow a S b \mid e \\
& \{w: \# a(w)=\# b(w)\} \\
& S \rightarrow a S b S \\
& S \rightarrow b S a S \\
& S \rightarrow S S \\
& S \rightarrow e
\end{aligned}
$$

To prove it works requires a proof by induction

Examples of CFL's that are NOT Regular

$$
\begin{aligned}
& \left\{a^{n} b^{n}: n \in N\right\} \\
& S \rightarrow a S b \mid e \\
& \left\{w: \#_{a}(w)=\#_{b}(w)\right\} \\
& S \rightarrow a S b S \\
& S \rightarrow b S a S \\
& S \rightarrow S S \\
& S \rightarrow e
\end{aligned}
$$

To prove it works requires a proof by induction
Not to worry, I will ASSUME you could do such a proof and hence WILL NOT make you.

Examples of Langs with Small CFL's, Large NFA's

$$
L=\left\{a^{n}\right\}
$$

- NFA requires $\geq n-2$ states. Lets prove it

Examples of Langs with Small CFL's, Large NFA's

$L=\left\{a^{n}\right\}$

- NFA requires $\geq n-2$ states. Lets prove it If M is an NFA with $\leq n-2$ states then find a path from the start state to the final state. Let a^{m} be the shortest string that take you from the start state to the final state. Since the number of states is $\leq n-2, m \leq n-2$. So we have a^{m} accepted when it should not be. Contradiction.
- There is a CNF CFL with $\leq 2 \log _{2} n$ rules. For $n=2^{n}$ VERY EASY. If not then have to write n as a sum of powers of 2. Example on next slide.

CNF CFG for $\left\{a^{10}\right\}$

$$
10=2^{3}+2^{1}
$$

CNF CFG for $\left\{a^{10}\right\}$

$$
\begin{aligned}
& 10=2^{3}+2^{1} \\
& S \rightarrow X Y
\end{aligned}
$$

CNF CFG for $\left\{a^{10}\right\}$

$$
\begin{aligned}
& 10=2^{3}+2^{1} \\
& S \rightarrow X Y \text { We make } X \Rightarrow a^{8} \text { and } Y \Rightarrow a^{2}
\end{aligned}
$$

CNF CFG for $\left\{a^{10}\right\}$

$$
\begin{aligned}
& 10=2^{3}+2^{1} \\
& S \rightarrow X Y \text { We make } X \Rightarrow a^{8} \text { and } Y \Rightarrow a^{2} . \\
& X \rightarrow X_{1} X_{1} \\
& X_{1} \rightarrow X_{2} X_{2} \\
& X_{2} \rightarrow X_{3} X_{3} \\
& X_{3} \rightarrow a \\
& Y \rightarrow Y_{1} Y_{1} \\
& Y_{1} \rightarrow a
\end{aligned}
$$

CNF CFG for $\left\{a^{10}\right\}$

$$
\begin{aligned}
& 10=2^{3}+2^{1} \\
& S \rightarrow X Y \text { We make } X \Rightarrow a^{8} \text { and } Y \Rightarrow a^{2} . \\
& X \rightarrow X_{1} X_{1} \\
& X_{1} \rightarrow X_{2} X_{2} \\
& X_{2} \rightarrow X_{3} X_{3} \\
& X_{3} \rightarrow a \\
& Y \rightarrow Y_{1} Y_{1} \\
& Y_{1} \rightarrow a
\end{aligned}
$$

Can shorten a bit: We need $Y \Rightarrow a a$, so can just use X_{2}.

CNF CFG for $\left\{a^{10}\right\}$

$$
\begin{aligned}
& 10=2^{3}+2^{1} \\
& S \rightarrow X Y \text { We make } X \Rightarrow a^{8} \text { and } Y \Rightarrow a^{2} . \\
& X \rightarrow X_{1} X_{1} \\
& X_{1} \rightarrow X_{2} X_{2} \\
& X_{2} \rightarrow X_{3} X_{3} \\
& X_{3} \rightarrow a \\
& Y \rightarrow Y_{1} Y_{1} \\
& Y_{1} \rightarrow a
\end{aligned}
$$

Can shorten a bit: We need $Y \Rightarrow a a$, so can just use X_{2}.
$S \rightarrow X X_{2}$
$X \rightarrow X_{1} X_{1}$
$X_{1} \rightarrow X_{2} X_{2}$
$X_{2} \rightarrow X_{3} X_{3}$
$X_{3} \rightarrow a$

