
Review For The Midterm



Rules

1. Begin Midterm ON Gradescope: Tuesday April 7,
6:00PM-9:00PM. (DSS students get an extension)

2. Resources Midterm is open-everything. The web, my notes,
my HW solutions, all fine to use. Cannot ask someone for
help. Honor System.

3. Caveat You must hand in your own work and you must
understand what you hand in.

4. Warning Mindlessly copying does not work.

5. Neat LaTex is best. Good handwriting okay. Draw Aut, or
use LateX tool posted.

6. Our Intent This is exam I intended to give out originally. The
extra time is meant for you to format and put in LaTeX.

7. Scope of the Exam
Short Answer HWs and lectures.

Long Answer This Presentation.
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What We Have Covered: Regular Languages

1. Examples of Reg Langs

Numbers that are ≡ i (mod j)

{w : #a(w) ≡ i1 (mod j1) ∧#b(w) ≡ i2 (mod j2)}
For a fixed string w , w{a, b}∗, {a, b}∗w
{a, b}∗a{a, b}n (DFA requires ∼ 2n, NFA ∼ n. Cool!)

{ai : i 6= n} (DFA requires ∼ n, NFA ∼ 2
√
n + logstuff Cool!)

Others

2. DFA, NFA, REGEX. Equivalence of all of these.

3. Closure Properties.

4. Non-Regular: ZW Pumping Lemma, Closure properties.
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What We Have Covered: Context Free Languages

1. Examples of CFL’s

{ak1nbk2n : n ∈ N}
{w : #a(w) = #b(w)}
{w : k1#a(w) = k2#b(w)}
{an} (Interesting: Small CFL, Large NFA)

2. Chomsky Normal Form. Needed to make size comparisons.

3. Closure Properties.

4. Non-CFL’s:
If L ⊆ a∗ and not regular, than not CFL.
If need to keep track of TWO things then NOT CFL.
E.g., {anbncn : n ∈ N}
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Equivalence of DFA, NFA, REGEX

1. L DFA → L REGEX: R(i , j , k) Dynamic Programming. |α| is
exp in number of states.

2. L REGEX → L NFA: induction on formation of a REGEX.

3. L NFA → L DFA: powerset construction. States blowup
exponentially.
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Closure Properties

1. Union What to use?

DFA: Cross Product Construction, or
REGEX: by definition, or
NFA: e-transitions.

2. Intersection What to use?
DFA: Cross Product Construction.
NFA: Cross Product Construction.

3. Complimentation What to use?
DFA: Swap final and non-final states.

4. Concatenation What to use?
NFA: e-transition from one machine to the other.
REGEX: By Definition.

5. Star What to use?
DFA: On Midterm.
REGEX: By Definition.
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SUBSEQ Problems

Definition If w = σ1 · · ·σn is a string then any string of the form

σi1 · · ·σik
where i1 < · · · < ik is a subsequence of w .
SUBSEQ(w) is the set of all subsequences of the string w .
Examples If w = aaba then the subsequences are
SUBSEQ(aaba) = {e, a, b, aa, ab, ba, aaa, aab, aba, aaba}.
Definition If L ⊆ {a, b}∗ then

SUBSEQ(L) =
⋃
w∈L

SUBSEQ(w).

T or F and prove:

1. If L is regular than SUBSEQ(L) is regular.

2. If L is context free than SUBSEQ(L) is context free.
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Answer to SUBSEQ Problem: Regular

If L is regular than SUBSEQ(L) is regular.

YES.
Let M be a DFA for L.

We form an NFA for SUBSEQ(L).

For every δ(p, σ) = q in M we add δ(p, e) = q.
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Context Free Languages

Definition
A Context Free Grammar (CFL) is (V ,Σ,P, S)

I V is set of nonterminals

I Σ is the alphabet, also called terminals

I P ⊆ V × (V ∪ Σ)∗ are the productions or rules

I S ∈ V is the start symbol.

L(G ) is the set of strings generated by CFL G .
A Context Free Lang (CFL) is a lang that is L(G ) for some CFL G .

A CFL is in Chomsky Normal Form CNF) if all of he productions
are either of the form
A→ BC
A→ σ where σ ∈ Σ
A→ e (I didn’t include it in class, but I am now.)
Note: If G is a CFL hen there exists a CNF CFL that generates it.
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Examples of CFL’s that are NOT Regular

{anbn : n ∈ N}
S → aSb|e

{w : #a(w) = #b(w)}
S → aSbS
S → bSaS
S → SS
S → e
To prove it works requires a proof by induction
Not to worry, I will ASSUME you could do such a proof and hence
WILL NOT make you.
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Examples of Langs with Small CFL’s, Large NFA’s

L = {an}
I NFA requires ≥ n − 2 states. Lets prove it

If M is an NFA with ≤ n − 2 states then find a path from the
start state to the final state. Let am be the shortest string
that take you from the start state to the final state. Since the
number of states is ≤ n − 2, m ≤ n − 2. So we have am

accepted when it should not be. Contradiction.

I There is a CNF CFL with ≤ 2 log2 n rules.
For n = 2n VERY EASY. If not then have to write n as a sum
of powers of 2. Example on next slide.
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CNF CFG for {a10}

10 = 23 + 21

S → XY We make X ⇒ a8 and Y ⇒ a2.
X → X1X1

X1 → X2X2

X2 → X3X3

X3 → a
Y → Y1Y1

Y1 → a
Can shorten a bit: We need Y ⇒ aa, so can just use X2.
S → XX2

X → X1X1

X1 → X2X2

X2 → X3X3

X3 → a
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