Concrete Time Hierarchy Theorem

Exposition by William Gasarch-U of MD

April 19, 2020

Concrete Time Hierarchy Theorem

Definition Let $A \subseteq\{0,1\}^{*} . A \in \operatorname{DTIME}\left(n^{3}\right)$ is there is a Java Program J such that the following hold.

1. If $x \in A$ then $J(x)$ outputs YES.
2. If $x \notin A$ then $J(x)$ outputs NO.
3. The number of steps $J(x)$ takes is $\leq|x|^{3}$.

Concrete Time Hierarchy Theorem

Definition Let $A \subseteq\{0,1\}^{*} . A \in \operatorname{DTIME}\left(n^{3}\right)$ is there is a Java Program J such that the following hold.

1. If $x \in A$ then $J(x)$ outputs YES.
2. If $x \notin A$ then $J(x)$ outputs NO.
3. The number of steps $J(x)$ takes is $\leq|x|^{3}$.

We will prove the following:

Concrete Time Hierarchy Theorem

Definition Let $A \subseteq\{0,1\}^{*} . A \in \operatorname{DTIME}\left(n^{3}\right)$ is there is a Java Program J such that the following hold.

1. If $x \in A$ then $J(x)$ outputs YES.
2. If $x \notin A$ then $J(x)$ outputs NO.
3. The number of steps $J(x)$ takes is $\leq|x|^{3}$.

We will prove the following:
Theorem There exists a set of strings A such that

Concrete Time Hierarchy Theorem

Definition Let $A \subseteq\{0,1\}^{*} . A \in \operatorname{DTIME}\left(n^{3}\right)$ is there is a Java Program J such that the following hold.

1. If $x \in A$ then $J(x)$ outputs YES.
2. If $x \notin A$ then $J(x)$ outputs NO.
3. The number of steps $J(x)$ takes is $\leq|x|^{3}$.

We will prove the following:
Theorem There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES if $x \in A$, and will output NO if $x \notin A$.

Concrete Time Hierarchy Theorem

Definition Let $A \subseteq\{0,1\}^{*} . A \in \operatorname{DTIME}\left(n^{3}\right)$ is there is a Java Program J such that the following hold.

1. If $x \in A$ then $J(x)$ outputs YES.
2. If $x \notin A$ then $J(x)$ outputs NO.
3. The number of steps $J(x)$ takes is $\leq|x|^{3}$.

We will prove the following:
Theorem There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES if $x \in A$, and will output NO if $x \notin A$.
2. $A \notin \operatorname{DTIME}\left(n^{3}\right)$.

ASCII Table

Hex	Dec	Char		\|Hex	Dec	Char	Hex	Dec	Char	Hex	Dec	Char
0×00	0	NULL	null	0×20	32	Space	0x40	64	e	0x60	96	
0×01	1	SOH	Start of heading	0×21	33	1	0x41	65	A	0x61	97	a
0×02	2	STX	Start of text	0×22	34	"	0x42	66	B	0x62	98	b
0×03	3	ETX	End of text	0×23	35	\#	0×43	67	C	0x63	99	c
0×04	4	EOT	End of transmission	0×24	36	\$	0x44	68	D	0x64	100	d
0×05	5	ENQ	Enquiry	0×25	37	\%	0x45	69	E	0x65	101	e
0×06	6	ACK	Acknowledge	0×26	38	\&	0x46	70	F	0x66	102	f
0×07	7	BELL	Bell	0×27	39	,	0x47	71	G	0x67	103	g
0×08	8	BS	Backspace	0×28	40	(0×48	72	H	0x68	104	h
0×09	9	TAB	Horizontal tab	0x29	41)	0x49	73	I	0x69	105	i
$0 \times 0 \mathrm{~A}$	10	LF	New line	0x2A	42	*	0x4A	74	J	0x6A	106	j
$0 \times 0 \mathrm{~B}$	11	VT	Vertical tab	$0 \times 2 \mathrm{~B}$	43	+	0x4B	75	K	0x6B	107	k
$0 \times 0 \mathrm{C}$	12	FF	Form Feed	0x2C	44	,	0x4C	76	L	0x6C	108	1
$0 \times 0 \mathrm{D}$	13	CR	Carriage return	0x2D	45	-	0x4D	77	M	0x6D	109	m
$0 \times 0 \mathrm{E}$	14	So	Shift out	$0 \times 2 \mathrm{E}$	46	-	0x4E	78	N	0x6E	110	n
$0 \times 0 \mathrm{~F}$	15	SI	Shift in	$0 \times 2 \mathrm{~F}$	47	1	0x4F	79	0	0x6F	111	-
0×10	16	DLE	Data link escape	0×30	48	0	0x50	80	P	0x70	112	P
0×11	17	DC1	Device control 1	0×31	49	1	0x51	81	Q	0x71	113	q
0×12	18	DC2	Device control 2	0×32	50	2	0x52	82	R	0x72	114	r
0×13	19	DC3	Device control 3	0×33	51	3	0x53	83	S	0x73	115	s
0×14	20	DC4	Device control 4	0×34	52	4	0×54	84	T	0x74	116	t
0×15	21	NAK	Negative ack	0×35	53	5	0x55	85	U	0x75	117	u
0×16	22	SYN	Synchronous idle	0×36	54	6	0x56	86	V	0x76	118	v
0×17	23	ETB	End transmission block	0×37	55	7	0x57	87	W	0x77	119	w
0×18	24	CAN	Cancel	0×38	56	8	0x58	88	X	0x78	120	x
0×19	25	EM	End of medium	0×39	57	9	0x59	89	Y	0x79	121	y
0x1A	26	SUB	Substitute	0×3A	58	:	0x5A	90	z	0x7A	122	z
$0 \times 1 \mathrm{~B}$	27	FSC	Escape	0x3B	59	;	0x5B	91	[0x7B	123	$\{$
$0 \times 1 \mathrm{C}$	28	FS	File separator	0x3C	60	$<$	0x5C	92	1	0x7C	124	
$0 \times 1 \mathrm{D}$	29	GS	Group separator	0x3D	61	=	0x5D	93]	0x7D	125	\}
$0 \times 1 \mathrm{E}$	30	RS	Record separator	0×3E	62	>	0x5E	94	^	0x7E	126	-
$0 \times 1 \mathrm{~F}$	31	US	Unit separator	0×3F	63	?	$0 \times 5 \mathrm{~F}$	95	-	0x7F	127	DEL

Coding Symbols Into 7-bit Strings

The ASCII table maps symbols into decimal numbers between 0 and 127 . We include leading 0 's.

Coding Symbols Into 7-bit Strings

The ASCII table maps symbols into decimal numbers between 0 and 127 . We include leading 0 's.

- Space maps to 032.

Coding Symbols Into 7-bit Strings

The ASCII table maps symbols into decimal numbers between 0 and 127 . We include leading 0 's.

- Space maps to 032.
- !, ", \#, \$, \%, \&, ', (,), *, +, ',' -, ., / map to 033,...,047.

Coding Symbols Into 7-bit Strings

The ASCII table maps symbols into decimal numbers between 0 and 127 . We include leading 0 's.

- Space maps to 032.
- !, ", \#, \$, \%, \&, ', (,), *, +, ',' -, ., / map to 033,...,047.
- $0, \ldots, 9$ code to $048, \ldots, 057$.

Coding Symbols Into 7-bit Strings

The ASCII table maps symbols into decimal numbers between 0 and 127 . We include leading 0 's.

- Space maps to 032.
- !, ", \#, \$, \%, \&, ', (,), *, +, ',' -, ., / map to 033,...,047.
- $0, \ldots, 9$ code to $048, \ldots, 057$.
- $:, ;,<,=,>, ?$, code to 058 to 064.

Coding Symbols Into 7-bit Strings

The ASCII table maps symbols into decimal numbers between 0 and 127 . We include leading 0 's.

- Space maps to 032.
- !, ", \#, \$, \%, \&, ', (,), *, +, ',' -, ., / map to 033,...,047.
- $0, \ldots, 9$ code to $048, \ldots, 057$.
- :, ; , <, =, >, ?, code to 058 to 064.
- A,..., Z code to $065, \ldots, 090$.

Coding Symbols Into 7-bit Strings

The ASCII table maps symbols into decimal numbers between 0 and 127 . We include leading 0 's.

- Space maps to 032.
- !, ", \#, \$, \%, \&, ', (,), *, +, ',' -, ., / map to 033,...,047.
- $0, \ldots, 9$ code to $048, \ldots, 057$.
- :, ; , <, =, >, ?, code to 058 to 064.
- A,..., Z code to 065,...,090.
- a,..., z code to 097,...,122.

Coding Symbols Into 7-bit Strings

The ASCII table maps symbols into decimal numbers between 0 and 127 . We include leading 0 's.

- Space maps to 032.
- !, ", \#, \$, \%, \&, ', (,), *, +, ',' -, ., / map to 033,...,047.
- $0, \ldots, 9$ code to $048, \ldots, 057$.
- :, ; , <, =, >, ?, code to 058 to 064.
- A,...,Z code to 065,...,090.
- a,..., z code to 097,...,122.
- I won't bother with the rest. See table.

Mapping Java Program to \mathbb{N}

Let J be a Java Program. It is a sequence of symbols.

Mapping Java Program to \mathbb{N}

Let J be a Java Program. It is a sequence of symbols.
Each symbol maps to 3-digits. Concatenate them.

Mapping Java Program to \mathbb{N}

Let J be a Java Program. It is a sequence of symbols.
Each symbol maps to 3-digits. Concatenate them.
$x=x+12$

Mapping Java Program to \mathbb{N}

Let J be a Java Program. It is a sequence of symbols.
Each symbol maps to 3-digits. Concatenate them.
$x=x+12$
x maps to 120 .

Mapping Java Program to \mathbb{N}

Let J be a Java Program. It is a sequence of symbols.
Each symbol maps to 3-digits. Concatenate them.
$x=x+12$
x maps to 120 .
$=$ maps to 061

Mapping Java Program to \mathbb{N}

Let J be a Java Program. It is a sequence of symbols.
Each symbol maps to 3-digits. Concatenate them.
$x=x+12$
x maps to 120 .
$=$ maps to 061

+ maps to 043

Mapping Java Program to \mathbb{N}

Let J be a Java Program. It is a sequence of symbols.
Each symbol maps to 3-digits. Concatenate them.
$x=x+12$
x maps to 120 .
$=$ maps to 061

+ maps to 043
1 maps to 049

Mapping Java Program to \mathbb{N}

Let J be a Java Program. It is a sequence of symbols.
Each symbol maps to 3-digits. Concatenate them.
$x=x+12$
x maps to 120 .
$=$ maps to 061

+ maps to 043
1 maps to 049
2 maps to 050

Mapping Java Program to \mathbb{N}

Let J be a Java Program. It is a sequence of symbols.
Each symbol maps to 3-digits. Concatenate them.
$x=x+12$
x maps to 120 .
$=$ maps to 061

+ maps to 043
1 maps to 049
2 maps to 050
So this piece of code maps to $120,061,120,043,049,050$

Mapping \mathbb{N} to Java Programs

We assume that, given a sequence of symbols, can tell if it's a Java Program.

Mapping \mathbb{N} to Java Programs

We assume that, given a sequence of symbols, can tell if it's a Java Program.
We want to map \mathbb{N} to Java Programs.

Mapping \mathbb{N} to Java Programs

We assume that, given a sequence of symbols, can tell if it's a Java Program.
We want to map \mathbb{N} to Java Programs.
Let \downarrow be the program that, on any input, halts and outputs YES.

Mapping \mathbb{N} to Java Programs

We assume that, given a sequence of symbols, can tell if it's a Java Program.
We want to map \mathbb{N} to Java Programs.
Let \downarrow be the program that, on any input, halts and outputs YES.

1. Input(i).

Mapping \mathbb{N} to Java Programs

We assume that, given a sequence of symbols, can tell if it's a Java Program.
We want to map \mathbb{N} to Java Programs.
Let \downarrow be the program that, on any input, halts and outputs YES.

1. Input (i).
2. If numb of digits $\not \equiv 0(\bmod 3)$, add 0 's to left until is.

Mapping \mathbb{N} to Java Programs

We assume that, given a sequence of symbols, can tell if it's a Java Program.
We want to map \mathbb{N} to Java Programs.
Let \downarrow be the program that, on any input, halts and outputs YES.

1. Input (i).
2. If numb of digits $\not \equiv 0(\bmod 3)$, add 0 's to left until is.
3. i now maps so a sequence of symbols J.

Mapping \mathbb{N} to Java Programs

We assume that, given a sequence of symbols, can tell if it's a Java Program.
We want to map \mathbb{N} to Java Programs.
Let \downarrow be the program that, on any input, halts and outputs YES.

1. Input (i).
2. If numb of digits $\not \equiv 0(\bmod 3)$, add 0 's to left until is.
3. i now maps so a sequence of symbols J.
4. If J IS NOT a valid Java Program then map i to \downarrow.

Mapping \mathbb{N} to Java Programs

We assume that, given a sequence of symbols, can tell if it's a Java Program.
We want to map \mathbb{N} to Java Programs.
Let \downarrow be the program that, on any input, halts and outputs YES.

1. Input (i).
2. If numb of digits $\not \equiv 0(\bmod 3)$, add 0 's to left until is.
3. i now maps so a sequence of symbols J.
4. If J IS NOT a valid Java Program then map i to \downarrow.
5. If J IS a valid Java Program then map i to J.

The Sequences of All Java Programs

Let J_{i} be the Java program that i maps to. So

The Sequences of All Java Programs

Let J_{i} be the Java program that i maps to. So
$J_{1}, J_{2}, \ldots, \ldots$ is the list of all Java Programs.

The Sequences of All n^{3}-time Java Programs

We only want to look at programs that take $\leq n^{3}$ times.

The Sequences of All n^{3}-time Java Programs

We only want to look at programs that take $\leq n^{3}$ times.
Let J_{i}^{\prime} be the program that does the following:

The Sequences of All n^{3}-time Java Programs

We only want to look at programs that take $\leq n^{3}$ times.
Let J_{i}^{\prime} be the program that does the following:

1. $\operatorname{lnput}(x) .|x|=n$.

The Sequences of All n^{3}-time Java Programs

We only want to look at programs that take $\leq n^{3}$ times.
Let J_{i}^{\prime} be the program that does the following:

1. $\operatorname{Input}(x) .|x|=n$.
2. Run $J_{i}(x)$ but keep track of the number of steps.

The Sequences of All n^{3}-time Java Programs

We only want to look at programs that take $\leq n^{3}$ times.
Let J_{i}^{\prime} be the program that does the following:

1. $\operatorname{Input}(x) .|x|=n$.
2. Run $J_{i}(x)$ but keep track of the number of steps.
3. If the program has taken $\geq n^{3}$ steps and has not halted yet then output NO and halt.

The Sequences of All n^{3}-time Java Programs

We only want to look at programs that take $\leq n^{3}$ times.
Let J_{i}^{\prime} be the program that does the following:

1. $\operatorname{Input}(x) .|x|=n$.
2. Run $J_{i}(x)$ but keep track of the number of steps.
3. If the program has taken $\geq n^{3}$ steps and has not halted yet then output NO and halt.
$J_{1}^{\prime}, J_{2}^{\prime}, \ldots, \ldots$ is the list of all n^{3}-time Java Programs .
Upshot If $A \in \operatorname{DTIME}\left(n^{3}\right)$ then there exists i such that J_{i}^{\prime} recognizes A.

The Time Hierarchy Theorem

Theorem There exists a set of strings A such that

The Time Hierarchy Theorem

Theorem There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES if $x \in A$, and will output NO if $x \notin A$.

The Time Hierarchy Theorem

Theorem There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES if $x \in A$, and will output NO if $x \notin A$.
2. $A \notin \operatorname{DTIME}\left(n^{3}\right)$.

The Time Hierarchy Theorem

Theorem There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES if $x \in A$, and will output NO if $x \notin A$.
2. $A \notin \operatorname{DTIME}\left(n^{3}\right)$.

Proof Let A be decided by the following program

1. Input (x). If $x \notin 0^{*}$ output NO and stop. Otherwise $x=0^{n}$.
2. Run $J_{n}^{\prime}\left(0^{n}\right)$.
3. If result is YES then output NO and stop.
4. If result is NO then output YES and stop.

The Time Hierarchy Theorem

Theorem There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES if $x \in A$, and will output NO if $x \notin A$.
2. $A \notin \operatorname{DTIME}\left(n^{3}\right)$.

Proof Let A be decided by the following program

1. Input (x). If $x \notin 0^{*}$ output NO and stop. Otherwise $x=0^{n}$.
2. Run $J_{n}^{\prime}\left(0^{n}\right)$.
3. If result is YES then output NO and stop.
4. If result is NO then output YES and stop.
1) This is clearly a program that recognizes A.

The Time Hierarchy Theorem

Theorem There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES if $x \in A$, and will output NO if $x \notin A$.
2. $A \notin \operatorname{DTIME}\left(n^{3}\right)$.

Proof Let A be decided by the following program

1. Input (x). If $x \notin 0^{*}$ output NO and stop. Otherwise $x=0^{n}$.
2. Run $J_{n}^{\prime}\left(0^{n}\right)$.
3. If result is YES then output NO and stop.
4. If result is NO then output YES and stop.
1) This is clearly a program that recognizes A.
2) Proof that $A \notin \operatorname{DTIME}\left(n^{3}\right)$ on next slide.

$A \notin \operatorname{DTIME}\left(n^{3}\right)$

1. Input (x). If $x \notin 0^{*}$ output NO and stop. Otherwise $x=0^{n}$.
2. Run $J_{n}^{\prime}\left(0^{n}\right)$.
3. If result is YES then output NO and stop.
4. If result is NO then output YES and stop.

Let $A\left(0^{n}\right)$ be YES if $0^{n} \in A$ and NO if $0^{n} \notin A$.

$A \notin \operatorname{DTIME}\left(n^{3}\right)$

1. Input (x). If $x \notin 0^{*}$ output NO and stop. Otherwise $x=0^{n}$.
2. Run $J_{n}^{\prime}\left(0^{n}\right)$.
3. If result is YES then output NO and stop.
4. If result is NO then output YES and stop.

Let $A\left(0^{n}\right)$ be YES if $0^{n} \in A$ and NO if $0^{n} \notin A$.
J_{1}^{\prime} cannot recognize $A: J_{1}^{\prime}\left(0^{1}\right)$ and $A\left(0^{1}\right)$ DIFFER.

$A \notin \operatorname{DTIME}\left(n^{3}\right)$

1. Input (x). If $x \notin 0^{*}$ output NO and stop. Otherwise $x=0^{n}$.
2. Run $J_{n}^{\prime}\left(0^{n}\right)$.
3. If result is YES then output NO and stop.
4. If result is NO then output YES and stop.

Let $A\left(0^{n}\right)$ be YES if $0^{n} \in A$ and NO if $0^{n} \notin A$.
J_{1}^{\prime} cannot recognize $A: J_{1}^{\prime}\left(0^{1}\right)$ and $A\left(0^{1}\right)$ DIFFER.
J_{2}^{\prime} cannot recognize $A: J_{2}^{\prime}\left(0^{2}\right)$ and $A\left(0^{2}\right)$ DIFFER.
J_{n}^{\prime} cannot recognize $A: J_{n}^{\prime}\left(0^{n}\right)$ and $A\left(0^{n}\right)$ DIFFER.

$A \notin \operatorname{DTIME}\left(n^{3}\right)$

1. Input (x). If $x \notin 0^{*}$ output NO and stop. Otherwise $x=0^{n}$.
2. Run $J_{n}^{\prime}\left(0^{n}\right)$.
3. If result is YES then output NO and stop.
4. If result is NO then output YES and stop.

Let $A\left(0^{n}\right)$ be YES if $0^{n} \in A$ and NO if $0^{n} \notin A$.
J_{1}^{\prime} cannot recognize A : $J_{1}^{\prime}\left(0^{1}\right)$ and $A\left(0^{1}\right)$ DIFFER.
J_{2}^{\prime} cannot recognize $A: J_{2}^{\prime}\left(0^{2}\right)$ and $A\left(0^{2}\right)$ DIFFER.
J_{n}^{\prime} cannot recognize $A: J_{n}^{\prime}\left(0^{n}\right)$ and $A\left(0^{n}\right)$ DIFFER.
So NO J_{n}^{\prime} recognizes A. Hence $A \notin \operatorname{DTIME}\left(n^{3}\right)$.

