Exposition by William Gasarch—U of MD

April 19, 2020

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Definition Let $A \subseteq \{0, 1\}^*$. $A \in \text{DTIME}(n^3)$ is there is a Java Program J such that the following hold.

ション ふゆ アメリア メリア しょうくしゃ

- 1. If $x \in A$ then J(x) outputs YES.
- 2. If $x \notin A$ then J(x) outputs NO.
- 3. The number of steps J(x) takes is $\leq |x|^3$.

Definition Let $A \subseteq \{0, 1\}^*$. $A \in \text{DTIME}(n^3)$ is there is a Java Program J such that the following hold.

ション ふゆ アメリア メリア しょうくしゃ

- 1. If $x \in A$ then J(x) outputs YES.
- 2. If $x \notin A$ then J(x) outputs NO.
- 3. The number of steps J(x) takes is $\leq |x|^3$.

We will prove the following:

Definition Let $A \subseteq \{0, 1\}^*$. $A \in \text{DTIME}(n^3)$ is there is a Java Program J such that the following hold.

ション ふゆ アメリア メリア しょうくしゃ

- 1. If $x \in A$ then J(x) outputs YES.
- 2. If $x \notin A$ then J(x) outputs NO.
- 3. The number of steps J(x) takes is $\leq |x|^3$.

We will prove the following:

Theorem There exists a set of strings A such that

Definition Let $A \subseteq \{0, 1\}^*$. $A \in \text{DTIME}(n^3)$ is there is a Java Program J such that the following hold.

- 1. If $x \in A$ then J(x) outputs YES.
- 2. If $x \notin A$ then J(x) outputs NO.
- 3. The number of steps J(x) takes is $\leq |x|^3$.

We will prove the following:

Theorem There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES if $x \in A$, and will output NO if $x \notin A$.

ション ふぼう メリン メリン しょうくしゃ

Definition Let $A \subseteq \{0, 1\}^*$. $A \in \text{DTIME}(n^3)$ is there is a Java Program J such that the following hold.

- 1. If $x \in A$ then J(x) outputs YES.
- 2. If $x \notin A$ then J(x) outputs NO.
- 3. The number of steps J(x) takes is $\leq |x|^3$.

We will prove the following:

Theorem There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES if $x \in A$, and will output NO if $x \notin A$.

ション ふぼう メリン メリン しょうくしゃ

2. $A \notin \text{DTIME}(n^3)$.

ASCII Table

CII	I a	DIE										
Hex		Char		Hex	Dec	Char	Hex	Dec	Char	Hex	Dec	Char
0x00	0	NULL	null	0x20	32	Space	0x40	64	6	0x60	96	1
0x01	1	SOH	Start of heading	0x21	33	1	0x41	65	A	0x61	97	a
0x02	2	STX	Start of text	0x22	34		0x42	66	в	0x62	98	b
0x03	3	ETX	End of text	0x23	35	#	0x43	67	С	0x63	99	C
0x04	4	EOT	End of transmission	0x24	36	\$	0x44	68	D	0x64	100	d
0x05	5	ENQ	Enquiry	0x25	37	8	0x45	69	E	0x65	101	e
0x06	6	ACK	Acknowledge	0x26	38	6r	0x46	70	F	0x66	102	f
0x07	7	BELL	Bell	0x27	39	1.1	0x47	71	G	0x67	103	g
0x08	8	BS	Backspace	0x28	40	(0x48	72	H	0x68	104	h
0x09	9	TAB	Horizontal tab	0x29	41)	0x49	73	I	0x69	105	i
0x0A	10	LF	New line	0x2A	42	*	0x4A	74	J	0x6A	106	j
0x0B	11	VT	Vertical tab	0x2B	43	+	0x4B	75	K	0x6B	107	k
0x0C	12	FF	Form Feed	0x2C	44		0x4C	76	L	0x6C	108	1
0x0D	13	CR	Carriage return	0x2D	45	-	0x4D	77	м	0x6D	109	m
0x0E	14	SO	Shift out	0x2E	46		0x4E	78	N	0x6E	110	n
0x0F	15	SI	Shift in	0x2F	47	1	0x4F	79	0	0x6F	111	0
0x10	16	DLE	Data link escape	0x30	48	0	0x50	80	P	0x70	112	P
0x11	17	DC1	Device control 1	0x31	49	1	0x51	81	Q	0x71	113	q
0x12	18	DC2	Device control 2	0x32	50	2	0x52	82	R	0x72	114	r
0x13	19	DC3	Device control 3	0x33	51	3	0x53	83	S	0x73	115	s
0x14	20	DC4	Device control 4	0x34	52	4	0x54	84	т	0x74	116	t
0x15	21	NAK	Negative ack	0x35	53	5	0x55	85	U	0x75	117	u
0x16	22	SYN	Synchronous idle	0x36	54	6	0x56	86	v	0x76	118	v
0x17	23	ETB	End transmission block	0x37	55	7	0x57	87	W	0x77	119	w
0x18	24	CAN	Cancel	0x38	56	8	0x58	88	х	0x78	120	x
0x19	25	EM	End of medium	0x39	57	9	0x59	89	Y	0x79	121	У
0x1A	26	SUB	Substitute	0x3A	58		0x5A	90	Z	0x7A	122	z
0x1B	27	FSC	Escape	0x3B	59		0x5B	91	1	0x7B	123	{
0x1C	28	FS	File separator	0x3C	60	<	0x5C	92	× 1	0x7C	124	1
0x1D	29	GS	Group separator	0x3D	61	-	0x5D	93	1	0x7D	125	}
0x1E	30	RS	Record separator	0x3E	62	>	0x5E	94	^	0x7E	126	-
0x1F	31	US	Unit separator	0x3F	63	?	0x5F	95	_	0x7F	127	DEL

SQC.

The ASCII table maps symbols into decimal numbers between 0 and 127. We include leading 0's.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The ASCII table maps symbols into decimal numbers between 0 and 127. We include leading 0's.

Space maps to 032.

The ASCII table maps symbols into decimal numbers between 0 and 127. We include leading 0's.

- Space maps to 032.
- ▶ !, ", #, \$, %, &, ', (,), *, +, ',' -, ., / map to 033,...,047.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

The ASCII table maps symbols into decimal numbers between 0 and 127. We include leading 0's.

Space maps to 032.

!, ", #, \$, %, &, ', (,), *, +, ',' -, ., / map to 033,...,047.

0,...,9 code to 048,..., 057.

The ASCII table maps symbols into decimal numbers between 0 and 127. We include leading 0's.

Space maps to 032.

▶ !, ", #, \$, %, &, ', (,), *, +, ',' -, ., / map to 033,...,047.

▶ 0,...,9 code to 048,..., 057.

:, ;, <, =, >, ?, code to 058 to 064.

The ASCII table maps symbols into decimal numbers between 0 and 127. We include leading 0's.

Space maps to 032.

▶ !, ", #, \$, %, &, ', (,), *, +, ',' -, ., / map to 033,...,047.

0,...,9 code to 048,..., 057.

- :, ;, <, =, >, ?, code to 058 to 064.
- ► A,...,Z code to 065,...,090.

The ASCII table maps symbols into decimal numbers between 0 and 127. We include leading 0's.

Space maps to 032.

▶ !, ", #, \$, %, &, ', (,), *, +, ',' -, ., / map to 033,...,047.

0,...,9 code to 048,..., 057.

:, ;, <, =, >, ?, code to 058 to 064.

▶ a,...,z code to 097,...,122.

The ASCII table maps symbols into decimal numbers between 0 and 127. We include leading 0's.

Space maps to 032.

▶ !, ", #, \$, %, &, ', (,), *, +, ',' -, ., / map to 033,...,047.

0,...,9 code to 048,..., 057.

:, ;, <, =, >, ?, code to 058 to 064.

- ▶ a,...,z code to 097,...,122.
- I won't bother with the rest. See table.

Let J be a Java Program. It is a sequence of symbols.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Let J be a Java Program. It is a sequence of symbols. Each symbol maps to 3-digits. Concatenate them.

Let J be a Java Program. It is a sequence of symbols. Each symbol maps to 3-digits. Concatenate them. x = x + 12

Let J be a Java Program. It is a sequence of symbols. Each symbol maps to 3-digits. Concatenate them. x = x + 12x maps to 120.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Let J be a Java Program. It is a sequence of symbols. Each symbol maps to 3-digits. Concatenate them. x = x + 12

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

- x maps to 120.
- = maps to 061

Let J be a Java Program. It is a sequence of symbols. Each symbol maps to 3-digits. Concatenate them.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

x = x + 12x maps to 120. = maps to 061 + maps to 043

Let J be a Java Program. It is a sequence of symbols. Each symbol maps to 3-digits. Concatenate them.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

x = x + 12x maps to 120. = maps to 061 + maps to 043 1 maps to 049

Let J be a Java Program. It is a sequence of symbols. Each symbol maps to 3-digits. Concatenate them.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

x = x + 12x maps to 120. = maps to 061 + maps to 043 1 maps to 049 2 maps to 050

Mapping Java Program to \mathbb{N}

Let J be a Java Program. It is a sequence of symbols. Each symbol maps to 3-digits. Concatenate them.

x = x + 12x maps to 120. = maps to 061 + maps to 043 1 maps to 049 2 maps to 050

So this piece of code maps to 120,061,120,043,049,050

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

We assume that, given a sequence of symbols, can tell if it's a Java Program.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We assume that, given a sequence of symbols, can tell if it's a Java Program.

We want to map \mathbb{N} to Java Programs.

We assume that, given a sequence of symbols, can tell if it's a Java Program.

We want to map \mathbb{N} to Java Programs.

Let \downarrow be the program that, on any input, halts and outputs YES.

We assume that, given a sequence of symbols, can tell if it's a Java Program.

We want to map $\ensuremath{\mathbb{N}}$ to Java Programs.

Let \downarrow be the program that, on any input, halts and outputs YES.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

1. lnput(i).

We assume that, given a sequence of symbols, can tell if it's a Java Program.

We want to map $\ensuremath{\mathbb{N}}$ to Java Programs.

Let \downarrow be the program that, on any input, halts and outputs YES.

- 1. lnput(i).
- 2. If numb of digits $\not\equiv 0 \pmod{3}$, add 0's to left until is.

We assume that, given a sequence of symbols, can tell if it's a Java Program.

We want to map $\mathbb N$ to Java Programs.

Let \downarrow be the program that, on any input, halts and outputs YES.

- 1. lnput(i).
- 2. If numb of digits $\not\equiv$ 0 (mod 3), add 0's to left until is.
- 3. i now maps so a sequence of symbols J.

We assume that, given a sequence of symbols, can tell if it's a Java Program.

We want to map $\mathbb N$ to Java Programs.

Let \downarrow be the program that, on any input, halts and outputs YES.

- 1. lnput(i).
- 2. If numb of digits $\not\equiv$ 0 (mod 3), add 0's to left until is.
- 3. i now maps so a sequence of symbols J.
- 4. If J IS NOT a valid Java Program then map i to \downarrow .

We assume that, given a sequence of symbols, can tell if it's a Java Program.

We want to map $\mathbb N$ to Java Programs.

Let \downarrow be the program that, on any input, halts and outputs YES.

- 1. lnput(i).
- 2. If numb of digits $\not\equiv 0 \pmod{3}$, add 0's to left until is.
- 3. i now maps so a sequence of symbols J.
- **4**. If *J* IS NOT a valid Java Program then map *i* to \downarrow .
- 5. If J IS a valid Java Program then map i to J.

The Sequences of All Java Programs

Let J_i be the Java program that i maps to. So

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The Sequences of All Java Programs

Let J_i be the Java program that i maps to. So

 J_1, J_2, \ldots, \ldots is the list of all Java Programs.

*ロト *昼 * * ミ * ミ * ミ * のへぐ

The Sequences of All *n*³-time Java Programs

We only want to look at programs that take $\leq n^3$ times.

The Sequences of All *n*³-time Java Programs

We only want to look at programs that take $\leq n^3$ times. Let J'_i be the program that does the following:

We only want to look at programs that take $\leq n^3$ times. Let J'_i be the program that does the following:

1. Input(x). |x| = n.

We only want to look at programs that take $\leq n^3$ times. Let J'_i be the program that does the following:

1. Input(x).
$$|x| = n$$
.

2. Run $J_i(x)$ but keep track of the number of steps.

We only want to look at programs that take $\leq n^3$ times. Let J'_i be the program that does the following:

- 1. Input(x). |x| = n.
- 2. Run $J_i(x)$ but keep track of the number of steps.
- 3. If the program has taken $\ge n^3$ steps and has not halted yet then output NO and halt.

We only want to look at programs that take $\leq n^3$ times. Let J'_i be the program that does the following:

- 1. Input(x). |x| = n.
- 2. Run $J_i(x)$ but keep track of the number of steps.
- 3. If the program has taken $\ge n^3$ steps and has not halted yet then output NO and halt.

 $J'_1, J'_2, \ldots, \ldots$ is the list of all n^3 -time Java Programs.

Upshot If $A \in \text{DTIME}(n^3)$ then there exists *i* such that J'_i recognizes *A*.

Theorem There exists a set of strings A such that

Theorem There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES if $x \in A$, and will output NO if $x \notin A$.

Theorem There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES if $x \in A$, and will output NO if $x \notin A$.

2. $A \notin \text{DTIME}(n^3)$.

Theorem There exists a set of strings A such that

- 1. There is a Java Program J that, on input x, will output YES if $x \in A$, and will output NO if $x \notin A$.
- 2. $A \notin \text{DTIME}(n^3)$.

Proof Let A be decided by the following program

1. Input(x). If $x \notin 0^*$ output NO and stop. Otherwise $x = 0^n$.

- 2. Run $J'_n(0^n)$.
- 3. If result is YES then output NO and stop.
- 4. If result is NO then output YES and stop.

Theorem There exists a set of strings A such that

- 1. There is a Java Program J that, on input x, will output YES if $x \in A$, and will output NO if $x \notin A$.
- 2. $A \notin \text{DTIME}(n^3)$.

Proof Let A be decided by the following program

1. Input(x). If $x \notin 0^*$ output NO and stop. Otherwise $x = 0^n$.

- 2. Run $J'_n(0^n)$.
- 3. If result is YES then output NO and stop.
- 4. If result is NO then output YES and stop.
- 1) This is clearly a program that recognizes A.

Theorem There exists a set of strings A such that

- 1. There is a Java Program J that, on input x, will output YES if $x \in A$, and will output NO if $x \notin A$.
- 2. $A \notin \text{DTIME}(n^3)$.

Proof Let A be decided by the following program

1. Input(x). If $x \notin 0^*$ output NO and stop. Otherwise $x = 0^n$.

- 2. Run $J'_n(0^n)$.
- 3. If result is YES then output NO and stop.
- 4. If result is NO then output YES and stop.
- 1) This is clearly a program that recognizes A.
- 2) Proof that $A \notin \text{DTIME}(n^3)$ on next slide.

1. Input(x). If $x \notin 0^*$ output NO and stop. Otherwise $x = 0^n$.

ション ふゆ アメリア メリア しょうくしゃ

- 2. Run $J'_n(0^n)$.
- 3. If result is YES then output NO and stop.
- 4. If result is NO then output YES and stop.

Let $A(0^n)$ be YES if $0^n \in A$ and NO if $0^n \notin A$.

1. Input(x). If $x \notin 0^*$ output NO and stop. Otherwise $x = 0^n$.

- 2. Run $J'_n(0^n)$.
- 3. If result is YES then output NO and stop.
- 4. If result is NO then output YES and stop.
- Let $A(0^n)$ be YES if $0^n \in A$ and NO if $0^n \notin A$.
- J'_1 cannot recognize A: $J'_1(0^1)$ and $A(0^1)$ DIFFER.

1. Input(x). If $x \notin 0^*$ output NO and stop. Otherwise $x = 0^n$.

ション ふぼう メリン メリン しょうくしゃ

- 2. Run $J'_n(0^n)$.
- 3. If result is YES then output NO and stop.
- 4. If result is NO then output YES and stop.

Let $A(0^n)$ be YES if $0^n \in A$ and NO if $0^n \notin A$.

 J'_1 cannot recognize A: $J'_1(0^1)$ and $A(0^1)$ DIFFER.

 J'_2 cannot recognize A: $J'_2(0^2)$ and $A(0^2)$ DIFFER.

 J'_n cannot recognize A: $J'_n(0^n)$ and $A(0^n)$ DIFFER.

1. Input(x). If $x \notin 0^*$ output NO and stop. Otherwise $x = 0^n$.

- 2. Run $J'_n(0^n)$.
- 3. If result is YES then output NO and stop.
- 4. If result is NO then output YES and stop.

Let $A(0^n)$ be YES if $0^n \in A$ and NO if $0^n \notin A$.

 J'_1 cannot recognize A: $J'_1(0^1)$ and $A(0^1)$ DIFFER.

 J'_2 cannot recognize A: $J'_2(0^2)$ and $A(0^2)$ DIFFER.

 J'_n cannot recognize A: $J'_n(0^n)$ and $A(0^n)$ DIFFER. So NO J'_n recognizes A. Hence $A \notin \text{DTIME}(n^3)$.