Turing Machines and DTIME

Exposition by William Gasarch—U of MD
Turing Machines Definition

Definition

A Turing Machine is a tuple \((Q, \Sigma, \delta, s, h)\) where

- \(Q\) is a finite set of states. It has the state \(h\).
- \(\Sigma\) is a finite alphabet. It contains the symbol \#.
- \(\delta\) maps \((Q - \{h\}) \times \Sigma\) to \(Q \times \Sigma \cup \{R, L\}\).
- \(s \in Q\) is the start state, \(h\) is the halt state.

Note There are many variants of Turing Machines- more tapes, more heads. All equivalent.
Turing Machines Conventions

We use the following convention:

1. On input $x \in \Sigma^*$, $x = x_1 \cdots x_n$, the machine starts with tape

 $\#x_1x_2\cdots x_n#\#\#\#\cdots$

 that is one way infinite.

2. The head is initially looking at the x_n.

3. $\delta(q, \sigma) = (p, \tau)$: state changes $q \rightarrow p$, σ is replaced with τ.

4. $\delta(q, \sigma) = (p, L)$: state changes $q \rightarrow p$, head moves Left.
 $(\delta(q, \sigma) = (p, R)$ similar).

5. TM is in state h: DONE. Left most square has a 1 (0) then M ACCEPTS (REJECTS) x.

Note We can code TMs into numbers. We say Run $M_x(y)$ which means run the TM coded by x on input y.
How Powerful are Turing Machines?

1. There is a JAVA program for function f iff there is a TM that computes f.
2. Everything computable can be done by a TM.
Other Models of Computation

There are many different models of Computation.

1. Turing Machines and variants.
2. Lambda-Calculus
3. Generalized Grammars
4. Others

They ended up all being equivalent. This is what makes computability theory work! We will almost never look at the details of a Turing Machine. To show a set of function is TM-computable we just write pseudocode. DO NOT write a TM.
Other Models of Computation

There are many different models of Computation.

1. Turing Machines and variants.
2. Lambda-Calculus
3. Generalized Grammars
4. Others

They ended up all being equivalent.
Other Models of Computation

There are many different models of Computation.

1. Turing Machines and variants.
2. Lambda-Calculus
3. Generalized Grammars
4. Others

They ended up all being equivalent.

This is what makes computability theory work! We will almost never look at the details of a Turing Machine. To show a set of function is TM-computable we just write pseudocode. DO NOT write a TM.
Decidable Sets

Definition
A set A is DECIDABLE if there is a Turing Machine M such that

$$x \in A \rightarrow M(x) = Y$$

$$x \notin A \rightarrow M(x) = N$$
Definition
Let $T(n)$ be a computable function (think increasing). A is in $\text{DTIME}(T(n))$ if there is a TM M that decides A and also, for all x, $M(x)$ halts in time $\leq O(T(|x|))$.

What do you think of this definition? Discuss.

Its Terrible!
The definition depends on the details of the type of Turing Machine. 1-tape? 2-tapes? This should not be what we care about.

So what to do?
▶ Prove theorems about $\text{DTIME}(T(n))$ where the model does not matter. (Time hierarchy theorem).
▶ Define time classes that are model-independent (P, NP stuff).
Time Classes

Definition
Let $T(n)$ be a computable function (think increasing). A is in $\text{DTIME}(T(n))$ if there is a TM M that decides A and also, for all x, $M(x)$ halts in time $\leq O(T(|x|))$.

What do you think of this definition? Discuss.
Time Classes

Definition
Let $T(n)$ be a computable function (think increasing). A is in $\text{DTIME}(T(n))$ if there is a TM M that decides A and also, for all x, $M(x)$ halts in time $\leq O(T(|x|))$.

What do you think of this definition? Discuss.

Its Terrible!
Definition
Let $T(n)$ be a computable function (think increasing). A is in $\text{DTIME}(T(n))$ if there is a TM M that decides A and also, for all x, $M(x)$ halts in time $\leq O(T(|x|))$.

What do you think of this definition? Discuss.

Its Terrible!
The definition depends on the details of the type of Turing Machine. 1-tape? 2-tapes? This should not be what we care about.

Prove theorems about $\text{DTIME}(T(n))$ where the model does not matter. (Time hierarchy theorem).

Define time classes that are model-independent (P, NP stuff).
Time Classes

Definition
Let $T(n)$ be a computable function (think increasing). A is in $\text{DTIME}(T(n))$ if there is a TM M that decides A and also, for all x, $M(x)$ halts in time $\leq O(T(|x|))$.

What do you think of this definition? Discuss.

Its Terrible!
The definition depends on the details of the type of Turing Machine. 1-tape? 2-tapes? This should not be what we care about.

So what to do?

- Prove theorems about $\text{DTIME}(T(n))$ where the model does not matter. (Time hierarchy theorem).
- Define time classes that are model-independent (P, NP stuff)
Time Hierarchy Theorem

Theorem (The Time Hierarchy Theorem) For all computable increasing $T(n)$ there exists a decidable set A such that $A \notin \text{DTIME}(T(n))$.

Proof Let M_1, M_2, \ldots, represent all of $\text{DTIME}(T(n))$ (obtain by listing out all Turing Machines and putting a time bound on them). Here is our algorithm for A. It will be a subset of 0^*.

1. Input 0^i.
2. Run $M_i(0^i)$. If the results is 1 then output 0. If the results is 0 then output 1.

For all i, M_i and A DIFFER on 0^i. Hence A is not decided by any M_i. So $A \notin \text{DTIME}(T(n))$.

End of Proof
The Time Hierarchy Theorem is usually stated as follows:

Theorem (The Time Hierarchy Theorem) For all computable increasing $T(n)$ there exists a decidable set A such that $A \in \text{DTIME}(T(n) \log(T(n))) - \notin \text{DTIME}(T(n))$.

I DO NOT CARE!

But good to know so that you know SOME separations: $\mathbb{P} \subset \mathbb{NP}$.

Full Time Hierarchy Theorem (I don’t care!)
The Time Hierarchy Theorem is usually stated as follows:

Theorem (The Time Hierarchy Theorem) For all computable increasing $T(n)$ there exists a decidable set A such that $A \in \text{DTIME}(T(n) \log(T(n)))$ but $A \notin \text{DTIME}(T(n))$.

The proof I did of our Time Hierarchy Theorem can be done more carefully and you will see that $A \in \text{DTIME}(T(n) \log(T(n)))$. But this involves specifying the model more carefully.

I DO NOT CARE!
The Time Hierarchy Theorem is usually stated as follows:

Theorem (The Time Hierarchy Theorem) For all computable increasing $T(n)$ there exists a decidable set A such that $A \in \text{DTIME}(T(n) \log(T(n))) - \notin \text{DTIME}(T(n))$.

The proof I did of our Time Hierarchy Theorem can be done more carefully and you will see that $A \in \text{DTIME}(T(n) \log(T(n)))$. But this involves specifying the model more carefully.

I DO NOT CARE!

But good to know so that you know SOME seperations: $P \subset \text{EXP}$.
P and EXP

Definition

1. \(P = \text{DTIME}(n^{O(1)}) \).
2. \(\text{EXP} = \text{DTIME}(2^{n^{O(1)}}) \).