Turing Machines and DTIME

Exposition by William Gasarch—U of MD

・ロト・日本・ヨト・ヨト・日・ つへぐ

Turing Machines Definition

Definition

A Turing Machine is a tuple $(Q, \Sigma, \delta, s, h)$ where

- Q is a finite set of states. It has the state h.
- \triangleright Σ is a finite alphabet. It contains the symbol #.

$$\blacktriangleright \ \delta: (Q - \{h\}) \times \Sigma \to Q \times \Sigma \cup \{R, L\}$$

• $s \in Q$ is the start state, h is the halt state.

Note There are many variants of Turing Machines- more tapes, more heads. All equivalent.

Turing Machines Conventions

We use the following convention:

1. On input $x \in \Sigma^*$, $x = x_1 \cdots x_n$, the machine starts with tape

$$\#x_1x_2\cdots x_n\#\#\#\#\cdots$$

that is one way infinite.

- 2. The head is initially looking at the x_n .
- 3. $\delta(q,\sigma) = (p,\tau)$: state changes $q \to p$, σ is replaced with τ .
- 4. $\delta(q, \sigma) = (p, L)$: state changes $q \to p$, head moves Left. $(\delta(q, \sigma) = (p, R)$ similar).
- TM is in state h: DONE. Left most square has a 1 (0) then M ACCEPTS (REJECTS) x.

Note We can code TMs into numbers. We say Run $M_x(y)$ which means run the TM coded by x on input y.

How Powerful are Turing Machines?

1. There is a JAVA program for function f iff there is a TM that computes f.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

2. Everything computable can be done by a TM.

Other Models of Computation

There are many different models of Computation.

- 1. Turing Machines and variants.
- 2. Lambda-Calculus
- 3. Generalized Grammars
- 4. Others

Other Models of Computation

There are many different models of Computation.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

- 1. Turing Machines and variants.
- 2. Lambda-Calculus
- 3. Generalized Grammars
- 4. Others

They ended up all being equivalent.

Other Models of Computation

There are many different models of Computation.

- 1. Turing Machines and variants.
- 2. Lambda-Calculus
- 3. Generalized Grammars
- 4. Others

They ended up all being equivalent.

This is what makes computability theory work! We will almost never look at the details of a Turing Machine. To show a set of function is TM-computable we just write psuedocode. DO NOT write a TM.

Decidable Sets

Definition

A set A is DECIDABLE if there is a Turing Machine M such that

$$x \in A \rightarrow M(x) = Y$$

$$x \notin A \to M(x) = N$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Definition

Let T(n) be a computable function (think increasing). A is in DTIME(T(n)) if there is a TM M that decides A and also, for all x, M(x) halts in time $\leq O(T(|x|))$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Definition

Let T(n) be a computable function (think increasing). A is in DTIME(T(n)) if there is a TM M that decides A and also, for all x, M(x) halts in time $\leq O(T(|x|))$.

What do you think of this definition? Discuss.

Definition

Let T(n) be a computable function (think increasing). A is in DTIME(T(n)) if there is a TM M that decides A and also, for all x, M(x) halts in time $\leq O(T(|x|))$.

What do you think of this definition? Discuss.

Its Terrible!

Definition

Let T(n) be a computable function (think increasing). A is in DTIME(T(n)) if there is a TM M that decides A and also, for all x, M(x) halts in time $\leq O(T(|x|))$.

What do you think of this definition? Discuss.

Its Terrible!

The definition depends on the details of the type of Turing Machine. 1-tape? 2-tapes? This should not be what we care about.

Definition

Let T(n) be a computable function (think increasing). A is in DTIME(T(n)) if there is a TM M that decides A and also, for all x, M(x) halts in time $\leq O(T(|x|))$.

What do you think of this definition? Discuss.

Its Terrible!

The definition depends on the details of the type of Turing Machine. 1-tape? 2-tapes? This should not be what we care about.

So what to do?

- Prove theorems about DTIME(T(n)) where the model does not matter. (Time hierarchy theorem)).
- Define time classes that are model-independent (P, NP stuff)

Time Hierarchy Theorem

Theorem (The Time Hierarchy Theorem) For all computable increasing T(n) there exists a decidable set A such that $A \notin \text{DTIME}(T(n))$.

Proof Let M_1, M_2, \ldots , represent all of DTIME(T(n)) (obtain by listing out all Turing Machines and putting a time bound on them). Here is our algorithm for A. It will be a subset of 0^* .

- 1. Input 0^i .
- 2. Run $M_i(0^i)$. If the results is 1 then output 0. If the results is 0 then output 1.

For all *i*, M_i and A DIFFER on 0^i . Hence A is not decided by any M_i . So $A \notin \text{DTIME}(T(n))$. End of Proof

Full Time Hierarchy Theorem (I don't care!)

The Time Hierarchy Theorem is usually stated as follows: **Theorem** (The Time Hierarchy Theorem) For all computable increasing T(n) there exists a decidable set A such that $A \in \text{DTIME}(T(n)\log(T(n)) - \notin \text{DTIME}(T(n)).$

Full Time Hierarchy Theorem (I don't care!)

The Time Hierarchy Theorem is usually stated as follows: **Theorem** (The Time Hierarchy Theorem) For all computable increasing T(n) there exists a decidable set A such that $A \in \text{DTIME}(T(n)\log(T(n)) - \notin \text{DTIME}(T(n))$. The proof I did of our Time Hierarchy Theorem can be done more carefully and you will see that $A \in \text{DTIME}(T(n)\log(T(n))$. But this involves specifying the model more carefully. I DO NOT CARE!

Full Time Hierarchy Theorem (I don't care!)

The Time Hierarchy Theorem is usually stated as follows: **Theorem** (The Time Hierarchy Theorem) For all computable increasing T(n) there exists a decidable set A such that $A \in \text{DTIME}(T(n)\log(T(n)) - \notin \text{DTIME}(T(n))$. The proof I did of our Time Hierarchy Theorem can be done more carefully and you will see that $A \in \text{DTIME}(T(n)\log(T(n)))$. But this involves specifying the model more carefully. I DO NOT CARE!

But good to know so that you know SOME seperations: $P \subset EXP$.

P and EXP

Definition

1. $P = DTIME(n^{O(1)}).$ 2. $EXP = DTIME(2^{n^{O(1)}}).$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ