
Turing Machines and DTIME

Exposition by William Gasarch—U of MD

Turing Machines Definition

Definition
A Turing Machine is a tuple (Q,Σ, δ, s, h) where

I Q is a finite set of states. It has the state h.

I Σ is a finite alphabet. It contains the symbol #.

I δ : (Q − {h})× Σ→ Q × Σ ∪ {R, L}
I s ∈ Q is the start state, h is the halt state.

Note There are many variants of Turing Machines- more tapes,
more heads. All equivalent.

Turing Machines Conventions

We use the following convention:

1. On input x ∈ Σ∗, x = x1 · · · xn, the machine starts with tape

#x1x2 · · · xn#### · · ·

that is one way infinite.

2. The head is initially looking at the xn.

3. δ(q, σ) = (p, τ): state changes q → p, σ is replaced with τ .

4. δ(q, σ) = (p, L): state changes q → p, head moves Left.
(δ(q, σ) = (p,R) similar).

5. TM is in state h: DONE. Left most square has a 1 (0) then
M ACCEPTS (REJECTS) x .

Note We can code TMs into numbers. We say Run Mx(y) which
means run the TM coded by x on input y .

How Powerful are Turing Machines?

1. There is a JAVA program for function f iff there is a TM that
computes f .

2. Everything computable can be done by a TM.

Other Models of Computation

There are many different models of Computation.

1. Turing Machines and variants.

2. Lambda-Calculus

3. Generalized Grammars

4. Others

They ended up all being equivalent.

This is what makes computability theory work! We will almost
never look at the details of a Turing Machine. To show a set of
function is TM-computable we just write psuedocode. DO NOT
write a TM.

Other Models of Computation

There are many different models of Computation.

1. Turing Machines and variants.

2. Lambda-Calculus

3. Generalized Grammars

4. Others

They ended up all being equivalent.

This is what makes computability theory work! We will almost
never look at the details of a Turing Machine. To show a set of
function is TM-computable we just write psuedocode. DO NOT
write a TM.

Other Models of Computation

There are many different models of Computation.

1. Turing Machines and variants.

2. Lambda-Calculus

3. Generalized Grammars

4. Others

They ended up all being equivalent.

This is what makes computability theory work! We will almost
never look at the details of a Turing Machine. To show a set of
function is TM-computable we just write psuedocode. DO NOT
write a TM.

Decidable Sets

Definition
A set A is DECIDABLE if there is a Turing Machine M such that

x ∈ A→ M(x) = Y

x /∈ A→ M(x) = N

Time Classes

Definition
Let T (n) be a computable function (think increasing). A is in
DTIME(T (n)) if there is a TM M that decides A and also, for all
x , M(x) halts in time ≤ O(T (|x |)).

What do you think of this definition? Discuss.

Its Terrible!
The definition depends on the details of the type of Turing
Machine. 1-tape? 2-tapes? This should not be what we care
about.

So what to do?

I Prove theorems about DTIME(T (n)) where the model does
not matter. (Time hierarchy theorem)).

I Define time classes that are model-independent (P, NP stuff)

Time Classes

Definition
Let T (n) be a computable function (think increasing). A is in
DTIME(T (n)) if there is a TM M that decides A and also, for all
x , M(x) halts in time ≤ O(T (|x |)).

What do you think of this definition? Discuss.

Its Terrible!
The definition depends on the details of the type of Turing
Machine. 1-tape? 2-tapes? This should not be what we care
about.

So what to do?

I Prove theorems about DTIME(T (n)) where the model does
not matter. (Time hierarchy theorem)).

I Define time classes that are model-independent (P, NP stuff)

Time Classes

Definition
Let T (n) be a computable function (think increasing). A is in
DTIME(T (n)) if there is a TM M that decides A and also, for all
x , M(x) halts in time ≤ O(T (|x |)).

What do you think of this definition? Discuss.

Its Terrible!

The definition depends on the details of the type of Turing
Machine. 1-tape? 2-tapes? This should not be what we care
about.

So what to do?

I Prove theorems about DTIME(T (n)) where the model does
not matter. (Time hierarchy theorem)).

I Define time classes that are model-independent (P, NP stuff)

Time Classes

Definition
Let T (n) be a computable function (think increasing). A is in
DTIME(T (n)) if there is a TM M that decides A and also, for all
x , M(x) halts in time ≤ O(T (|x |)).

What do you think of this definition? Discuss.

Its Terrible!
The definition depends on the details of the type of Turing
Machine. 1-tape? 2-tapes? This should not be what we care
about.

So what to do?

I Prove theorems about DTIME(T (n)) where the model does
not matter. (Time hierarchy theorem)).

I Define time classes that are model-independent (P, NP stuff)

Time Classes

Definition
Let T (n) be a computable function (think increasing). A is in
DTIME(T (n)) if there is a TM M that decides A and also, for all
x , M(x) halts in time ≤ O(T (|x |)).

What do you think of this definition? Discuss.

Its Terrible!
The definition depends on the details of the type of Turing
Machine. 1-tape? 2-tapes? This should not be what we care
about.

So what to do?

I Prove theorems about DTIME(T (n)) where the model does
not matter. (Time hierarchy theorem)).

I Define time classes that are model-independent (P, NP stuff)

Time Hierarchy Theorem

Theorem (The Time Hierarchy Theorem) For all computable
increasing T (n) there exists a decidable set A such that
A /∈ DTIME(T (n)).
Proof Let M1,M2, . . . , represent all of DTIME(T (n)) (obtain by
listing out all Turing Machines and putting a time bound on them).
Here is our algorithm for A. It will be a subset of 0∗.

1. Input 0i .

2. Run Mi (0i). If the results is 1 then output 0. If the results is
0 then output 1.

For all i , Mi and A DIFFER on 0i . Hence A is not decided by any
Mi . So A /∈ DTIME(T (n)).
End of Proof

Full Time Hierarchy Theorem (I don’t care!)

The Time Hierarchy Theorem is usually stated as follows:
Theorem (The Time Hierarchy Theorem) For all computable
increasing T (n) there exists a decidable set A such that
A ∈ DTIME(T (n) log(T (n))− /∈ DTIME(T (n)).

The proof I did of our Time Hierarchy Theorem can be done more
carefully and you will see that A ∈ DTIME(T (n) log(T (n)). But
this involves specifying the model more carefully.
I DO NOT CARE!
But good to know so that you know SOME seperations: P ⊂ EXP.

Full Time Hierarchy Theorem (I don’t care!)

The Time Hierarchy Theorem is usually stated as follows:
Theorem (The Time Hierarchy Theorem) For all computable
increasing T (n) there exists a decidable set A such that
A ∈ DTIME(T (n) log(T (n))− /∈ DTIME(T (n)).
The proof I did of our Time Hierarchy Theorem can be done more
carefully and you will see that A ∈ DTIME(T (n) log(T (n)). But
this involves specifying the model more carefully.
I DO NOT CARE!

But good to know so that you know SOME seperations: P ⊂ EXP.

Full Time Hierarchy Theorem (I don’t care!)

The Time Hierarchy Theorem is usually stated as follows:
Theorem (The Time Hierarchy Theorem) For all computable
increasing T (n) there exists a decidable set A such that
A ∈ DTIME(T (n) log(T (n))− /∈ DTIME(T (n)).
The proof I did of our Time Hierarchy Theorem can be done more
carefully and you will see that A ∈ DTIME(T (n) log(T (n)). But
this involves specifying the model more carefully.
I DO NOT CARE!
But good to know so that you know SOME seperations: P ⊂ EXP.

P and EXP

Definition

1. P = DTIME(nO(1)).

2. EXP = DTIME(2n
O(1)

).

