1 The Problem

Given a CFG G we want to know if $\overline{L(G)}$ is also a CFG. We will show this is undecidable. The proof we give was emailed to us by Harry Lewis. It is likely well known.

2 Needed Lemmas

Lemma 2.1 Let G be a CFG over Σ. Let $\$ \in \Sigma$. Let L' be the set of strings w such that

- w does not contain $\$,
- there exists $w' \in L(G)$ such that $w' = w\$\Sigma^*$.

Then L' is a CFL.

Proof:

We show how to transform the CFG G into a CFG for L'.

Replace every rule of the form $X \rightarrow \alpha\$\beta$ where $\alpha \in (\Sigma - \$)^*$ with the rule $X \rightarrow \alpha$.

Def 2.2

1. $D(M_e) = \{x : M_e(x) \downarrow\}$.

2. A *promise problem* is a problem where you are given e and promised something about it. We give the only example of a promise we will use in the next item.

3. PROM is the following promise:

 $D(M_e)$ is either \emptyset OR is NOT a CFL.
Lemma 2.3 The following promise problem, which we denote PROMEMPTY, is undecidable: Given \(e \) which satisfies PROM, determine if \(D(M_e) = \emptyset \).

Proof: Assume, BWOC, that PROMEMPTY decidable. We show HALTONZ is undecidable.

1. Input \(x \) (so we want to know if \(M_x(0) \downarrow \)).

2. CREATE a machine \(M_e \) as follows:

 (a) Input \(y \). If \(y \notin \{a^n b^n c^n : n \in \mathbb{N}\} \) then go into an infinite loop.

 (b) If you got here then there exists \(n \) such that \(y = a^n b^n c^n \). Run \(M_x(0) \) for \(n \) steps. If it halts then HALT otherwise go into an infinite loop.

3. (This is a program comment. Note that
 1) \(M_x(0) \downarrow \) implies there exists \(n_o \) (the number of steps it took to halt) such that

 \[
 \{ y : M_e(y) \downarrow \} = \{ a^n b^n c^n : n \geq n_o \}
 \]

 which is NOT a CFL.

 2) \(M_x(0) \uparrow \) implies that \(D(M_e) = \emptyset \).)

4. Note that either \(D(M_e) = \emptyset \) or \(D(M_e) \) is NOT a CFL. Hence \(e \) satisfies PROM. Since PROMEMPTY is decidable we can determine if \(D(M_e) = \emptyset \). If \(D(M_e) = \emptyset \) then \(e \notin HALTONZ \), so output NO. If \(D(M_e) \neq \emptyset \) then \(e \in HALTONZ \), so output YES.

3 Main Theorem

Def 3.1 The CFG-COMP problem is as follows. Given a CFG \(G \), determine if \(L(G) \) is CFL.

Theorem 3.2 CFG-COMP is undecidable.

Proof: Assume, by way of contradiction, that CFG-COMP is solvable. We use this to show that PROMEMPTY is decidable.
1. Input e

2. Construct a CFG G_1 that generates the COMPLEMENT of strings of the form
 START CONFIG of $M_e (w^R)^* \text{ END CONFIG OF } M_e$.

3. Construct a CFG G_2 that generates the COMPLEMENT of strings of the form

 C_1 C_1^R C_2 C_2^R \cdots C_L C_L^R

 where C_{i+1} is the next config after C_i.

4. Using G_1 and G_2 (easily) construct a CFG G such that

 $L(G) = L(G_1) \cup L(G_2)$

5. (This is a program comment.

Look at

 $L(G) = \overline{L(G_1) \cup L(G_2)} = \overline{L(G_1)} \cap \overline{L(G_2)}$

This is the set of all strings that represent accepting computations of M_e.

We were promised that $D(M_e)$ was either empty or NOT a CFL.

If $D(M_e) = \emptyset$ then $L(G) = \emptyset$ and hence a CFL.

If $D(M_e)$ is NOT a CFL, then, by Lemma 2.1, $L(G)$ is not a CFL.

Since CFG-COMP is decidable we can determine $L(G)$ is a CFL. If the answer is YES
then $D(M_e) = \emptyset$ so we output EMPTY. If the answer is NO then $D(M_e)$ is NOT CFL
so we output NOT CFL.