The Cook-Levin Theorem

Exposition by William Gasarch—U of MD

Variants of SAT

Definition

- 1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$.
- 2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \wedge \cdots \wedge C_m$ where each C_i is an \vee of literals.
- 3. k-SAT is the set of all boolean formulas in SAT of the form $C_1 \wedge \cdots \wedge C_m$ where each C_i is an \vee of exactly k literals.
- 4. DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \vee \cdots \vee C_m$ where each C_i is an \wedge of literals.
- 5. k-DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \lor \cdots \lor C_m$ where each C_i is an \land of exactly k literals.

Cook-Levin Theorem

Theorem

CNFSAT is NP-complete.

We need to prove two things:

1. CNFSAT $\in NP$.

$$CNFSAT = \{\phi : (\exists \vec{y})[\phi(\vec{y}) = T]\}$$

Formally

$$B = \{ (\phi, \vec{y}) : \phi(\vec{y}) = T \}$$

The satisfying assignment is the witness.

2. For all $X \in NP$, $X \leq CNFSAT$. This is the bulk of the proof.

$X \in NP$ implies $X \leq CNFSAT$

Let $X \in NP$. We show that $X \leq CNFSAT$. M be a TM and p, q be polynomials such that

$$X = \{x \mid (\exists y)[|y| = p(|x|) \text{ AND } M(x, y) = 1]\}$$

and M(x, y) runs in time q(|x| + |y|).

Let $M = (Q, \Sigma, \delta, q_0, h)$

The machine itself has a tape. Example:

(Everything to the right that is not seen is a #. Our convention is that you CANNOT go off to the left— from the left most symbol you can't go left.)

If the machine is in state q and the head is looking at (say) the @ sign we denote this by:

$$\#abba\#ab(@,q)a$$

We extend the alphabet and allow symbols $\Sigma \times Q$. The symbol