
On the Sizes of DFAs, NDFAs, CFGs, CSLs, and TMs: A Survey

by William Gasarch

1 Introduction

Let Σ be a finite alphabet. All of our languages will be a subset of Σ∗. Recall the following types

of languages.

1. A language L is regular (henceforth REG) if it satisfies any of the following three equivalent

conditions. (1) L can be recognized by a deterministic finite automata (henceforth DFA).

We measure the size of a DFA by the number of states. (2) L can be recognized by a

nondeterministic finite automata (henceforth NDFA). We measure the size of an NDFA by

the number of states. (3) There is a regular expression (henceforth R.E.) that generates L.

We measure the size of a R.E. by its length.

2. A language L is deterministic context free (henceforth DCFL) if it can be recognized by a

deterministic push down automata (henceforth DPDA). We measure the size of a DPDA by

the sum of the number of states and the number of symbols in its stack alphabet.

3. A language L is context free (henceforth CFL) if it satisfies any of the following two equiv-

alent conditions. (1) L can be recognized by a pushdown automata (henceoforth PDA). We

measure the size of a PDA by the sum of the number of states and the number of symbols

in its stack alphabet. (2) There is a context free grammar (henceforth CFG) that generates

L. We will assume that the CFG is in Chomsky Normal Form (all productions of the form

eitherA→ BC orA→ σ whereA,B,C are nonterminals and σ ∈ Σ.) We measure the size

of a CFG by the number of nonterminals in it. This is poly-related to any other reasonable

measure.

4. A language L is context sensitive (henceforth CSL) if it satisfies any of the following two

equivalent conditions. (1) L can be recognized by a nondeterministic Turing machine that

1

uses O(n) space. (2) There is a context sensitive grammar (henceforth CSG) that generates

L. (Rules are of the form α → β such that α has at least one nonterminal, and |α| ≤

|β|. We will assume that the CSG is in Chomsky Normal Form (all productions are of the

form AB → CD, A → BC, A → σ). We measure the size of a CSG by the number of

nonterminals in it. This is poly-related to any other reasonable measure.

5. A language L is Decidable (henceforth DEC) if there is a Turing machine (henceforth TM)

M such that (1) if x ∈ L then M(x) = 1, and (2) if x /∈ L then M(x) = 0. Throughout this

paper we assume we have a standard list of Turing machines M1,M2, We measure the

size of TM Me by e.

It is well known that

REG ⊂ DCFL ⊂ CFL ⊂ CSL ⊂ DEC.

Our concern is with the size of the DFA, DPDA, CFG, CSG, TM. For example, let L be regular.

Is it possible that there is a CFG for L that is much smaller than the minimal DFA for L? For all

adjacent pairs above we will consider these questions.

Recall that DFA’s, NDFA,’s and R.E.’s have the exact same computing power. It is known that

for every NDFA of n states there is an equivalent DFA with at most 2n states. Is this tight? What

about going from DFA’s to R.E.’s? We consider questions of this type.

Recall that REG is closed under many operations (union, intersection, complementation, con-

catenation, Kleene star, reversal). For some of these constructions the DFA increases in size expo-

nentially. Is this necessary? We consider questions of this type.

Def 1.1 LetM andM′ be two classes of devices such that every language inM is also inM′.

(e.g., DFA’s and DPDA’s). A bounding function for (M,M′) is a function f such that for all

L ∈ M, if L is represented by a device of size n inM′ then it is represented by a device of size

2

≤ f(n) inM.

Examples The following bounding functions can be found in all formal language theory textbooks

unless otherwise noted.

1. f(n) = 2n is a bounding function for (DFA,NDFA). This is called the powerset construction.

2. f(n) = O(n4) is a bounding function for (CFG,PDA).

3. f(n) = n+O(1) is a bounding function for (PDA,CFG).

4. f(n) = nn
nn is a bounding function for (REG,DPDA). Stearns [10] proved this. This result

is not in any textbooks that we have looked at.

BILL- INSERT WHAT IS KNOWN ABOUT OTHER CONVERSIONS: CSG AND LBA

Notation 1.2

1. If w is a string and σ ∈ Σ then #σ(w) is the number of σ’s in w

2. If n ∈ N then [n] is the set {1, . . . , n}.

2 Summary

3 Useful Lemmas

Lemma 3.1 Let X, Y, Z be nonterminals. Let Σ be a finite alphabet.

1. For all n ≥ 2 there is a CFG of size O(log n) that generates {Y n}.

2. For all n ≥ 2 there is a CFG of size O(log n) that generates {XY n}.

3. For all n ≥ 2 there is a CFG of size O(log n) that generates {Y nZ}.

4. For all n ≥ 2 there is a CFG of size O(log n) that generates {XY nZ}.

3

5. For all n ≥ 2 there is a CFG of size O(log n) that generates {a, b}n.

6. For all n ≥ 2 there is a CFG of size O(log n) that generates {a, b}≤n.

Proof:

1) We show that there is a CFG of size ≤ 2 lg n that generates {Y n} by induction on n.

If n = 2 then the CFG for {Y Y } is S → Y Y which has 2 = 2 lg 2 nonterminals.

If n = 3 then the CFG for {Y Y Y } is {S → Y1Y, Y1 → Y Y which has 3 ≤ 2 lg 3 nonterminals.

Assume that for all m < n there is a CFG of size ≤ 2 lgm for {Y m}. We prove this for n.

1. n is even. Let G′ be the CFG for {Y n/2} with the start symbol replaced by S ′. The CFG G

for {Y n} is the union of G′ and the one rule S → S ′S ′. This CFG has one more nonterminal

than G′. Hence the number of nonterminals in G is

≤ 2 lg(n/2) + 1 = 2(lg n− 1) + 1 = 2 lg n− 1 ≤ 2 lg n.

2. n is odd. Let G′ be the CFG for {Y (n−1)/2} with the start symbol replaced by S ′. The CFG

G for {Y n} is the union of G′ and the two rules S → Y S ′′ and S ′′ → S ′S ′. This CFG has

two more nonterminal than G′. Hence the number of nonterminals in G is

≤ 2 lg((n− 1)/2) + 2 = 2(lg(n− 1)− 1) + 2 = 2 lg(n− 1)− 2 + 2 = 2 lg(n− 1) ≤ 2 lg n.

2,3,4,5,6) These are easy modifications of the CFG in part 1.

4

4 Languages with Small NDFA that Require a Large DFA (|Σ| ≥ 2)

The following is well known. It is a corollary of the Myhill-Nerode Theorem which is in most

formal language theory textbooks.

Lemma 4.1 Let L be a regular language via DFA M = (Q,Σ, δ, s, F). Assume x, y, z ∈ Σ∗ such

that xz ∈ L but yz /∈ L. Then δ(s, x) 6= δ(s, y).

According to Meyer and Fischer [7] the following example is due to Patterson.

Theorem 4.2 For all n there exists a language Ln such that

1. Any DFA for Ln requires 2n states.

2. There is an NDFA for Ln that has n+ 2 states.

Proof: Let Σ = {a, b}. Let

Ln = {a, b}∗a{a, b}n.

A string w is in Ln iff there is an a in w that is exactly n letters from the end.

1) Let M be a DFA for Ln. We show that M has at least 2n states. Map every string x of length n

to δ(s, x). This map is injective: Let x, y ∈ Σn. Since x 6= y let i be the first place they differ. We

can assume x = uax′ and y = uby′ where |u| = i − 1 and |x′| = |y′| = n − i. Let z = ai. Since

xz ∈ Ln and yz /∈ Ln, by Lemma 4.1 δ(s, x) 6= δ(s, y).

2) We describe an NDFA that accepts Ln: The start state has a self-loop on a or b. Also, on an a

the NDFA goes to a new state. So that state means I just read an a. There are n more states that

indicate I just read i chars after the a. The last one is final. This NDFA has n+ 2 states.

BILL- HAVE KARTHIK ADD A PICTURE OF THE NDFA HERE.

5

Theorem 4.2 gives an NDFA of size n + 2 and a DFA of size 2n. We noted earlier that a

bounding function for (NDFA,DFA) is f(n) = 2n. The question arises: is there a language whose

NDFA is of size n and whose DFA is of size 2n. Yes!

The following theorem is due to Meyer and Fischer [7].

Theorem 4.3 For all n there exists a language Ln such that

1. Any DFA for Ln requires 2n states.

2. There is an NDFA for Ln that has n states.

Proof: Let Σ = {a, b}. We describe an NDFA for Ln: There are n states labeled {0, . . . , n−1}.

If you are in state i and a b comes in then goto state i+ 1 (mod n). If you are in state 1 ≤ i ≤ n−1

and an a comes in then goto both state i and state 0. (If you are in state 0 and an a comes in there

is no instruction.) The start state and the final state are both 0.

BILL AND KARTHIK. DRAW PICTURE AND PROVE THAT IT WORKS. KARTHIK- IF

YOUR EXAMPLE IS EASIER TO WORK WITH THEN WE”LL DO THAT ONE EITHER

INSTEAD OR IN ADDITION TO THIS ONE.

5 Languages with Small NDFA that Require a Large DFA (|Σ| = 1)

Is there a regular language over a unary alphabet whose NDFA is much smaller than its DFA? Yes!

The result in this section was communicated to the author by Richard Beigel. This is likely its first

time in print.

BILL- ASK RICHARD IF THIS IS TRUE.

Theorem 5.1 For all n there exists a unary regular language Ln such that

1. Any DFA for Ln requires e(1+o(1))n logn states.

6

2. There is an NDFA for Ln that has O
(
n2

logn

)
states.

Proof: Let p1, p2, . . . , pL be all of the primes that are ≤ n. Let

Ln = {am : m 6≡ 0 (mod
L∏
i=1

pi)} = {am : (∃i ≤ L)[m 6≡ 0 (mod pi)]}.

1) Let M be a DFA for Ln. Let Z =
∏L

i=1 pi. We map {0, . . . , Z − 1} to states of M . Map ai to

δ(s, ai).

Let 0 ≤ i < j ≤ Z − 1. Since aiaZ−j = aZ+i−j /∈ Ln and ajajaZ−j = aZ ∈ Ln, we know

that, by Lemma 4.1, δ(s, ai) 6= δ(s, aj). Hence the map is injective. Therefore there are at least

Z = e(1+o(1))n logn states.

2) The following NDFA accepts Ln with
∑L

i=1 pi = O
(
n2

logn

)
states.

For 1 ≤ i ≤ L let Di be the DFA that accepts {am : m 6≡ 0 (mod pi)}. Let si be the start state

of Di. Note that this has pi states. Let M be the NDFA that has, from the start state, L different e

transitions, each one to a different si. M clearly accepts Ln.

BILL- TELL KARTHIK WE NEED A PICTURE OF THE NDFA

Open Problem 5.2

1. Does there exist a regular unary language that has a small NDFA, requires a large DFA, but

does not require the prime number theorem to prove these bounds.

2. Does there exist a regular unary language where the gap between the NDFA and DFA is

larger than that in Theorem 5.1?

3. Does there exist a regular unary language where the NDFA is of size n and the DFA requires

size 2n?

7

6 Languages with Small DFAs that Require a Large Reg Expression

The results in this chapter are due to Ehrenfeucht and Zeiger [1].

BILL- READ THIS PAPER AND PUT STUFF HERE

7 Small R.E implies Small NDFA

BILL- PUT THE R.E. TO NDFA CONSTRUCTION HERE

8 Pairs of Languages with Small DFAs such that L1L2 Requires a Large DFA

BILL- THIS DOESN”T QUITE LOOK RIGHT- SEEMS TO VIOLTE THE UPPER BOUND.

I”LL LOOK AT IT LATER. The usual proof that if L1 and L2 are regular than L1L2 is regular can

be demonstrated by this picture

BILL- HAVE KARTHIK PUT A PICTURE HERE.

IF L1’s DFA has n1 states and L2’s DFA has n2 states then we obtain an NDFA for L1L2

with n1 + n2 states. By the powerset construction we then obtain a DFA with at most 2n1+n2

states. However, S. Yu et al. [11] have analyzed this construction more carefully and obtained the

following.

Theorem 8.1 If L1 is regular via a DFA with n1 states and L2 is regular via a DFA with n2 states

then L1L2 is regular via a DFA with n12
n2 − 2n2=1 states.

Proof:

BILL- PUT IN PROOF LATER

We present two lower bounds. The first one is not optimal but is simple and good for teaching.

The second one, due to S. Yu et al. [11], is optimal.

Theorem 8.2 For all n there exists languages Ln,1 and Ln,2 such that

8

1. There is a DFA for Ln,1 with 2 states.

2. There is a DFA for Ln,2 with n states.

3. Any DFA for Ln,1Ln,2 requires 2n states.

BILL- THIS DOESN”T QUITE LOOK RIGHT- SEEMS TO VIOLTE THE UPPER BOUND.

I”LL LOOK AT IT LATER.

Proof: Let

Ln,1 = {a, b}∗. The min DFA for Ln,1 has 2 states. (Ln,1 does not depend on n.)

Ln,2 = a{a, b}n. The min DFA for Ln,2 has n states.

Then

L1,nL2,n = {a, b}∗a{a, b}n.

By the proof of Theorem 4.2 any DFA for Ln,1Ln,2 requires 2n states.

Theorem 8.3 For all n1, n2 there exists languages Ln1 and Ln2 such that

1. There is a DFA for Ln1 with n1 states.

2. There is a DFA for Ln2 with n2 states.

3. Any DFA for Ln1Ln2 requires n12
n2 − 2n2−1 states.

Proof:

BILL- PUT IN THIS PROOF

KARTHIK- THIS NEEDS A PICTURE FROM THE PAPER I REFERENCE ABOVE.

9

9 Languages with Small DFA such that their Kleene Closure Requires a Large DFA

The usual proof that if L are regular than L∗ is regular can be demonstrated by this picture

BILL- HAVE KARTHIK PUT A PICTURE HERE.

IF L’s DFA has n states then we obtain an NDFA for L∗ with n + 1 states. By the powerset

construction we then obtain a DFA with at most 2n+1 states. However, S. Yu et al. [11] have

analyzed this construction more carefully and obtained the following.

Theorem 9.1 Let L be a regular language via a DFA with n states and k final states that are not

start states. Then L∗ has a DFA with ≤ 2n−1 + 2n−k−1 states.

Proof:

Let L be a regular language recognized by DFA M = (Q,Σ, δ, s, F). Assume |Q| = n. We

will assume that s /∈ F . The reader can work out the case where s ∈ F .

The NDFA (pictured above) for L∗ is M ′ = (Q ∪ {s′},Σ,∆, s′, F ∪ {s′}) where ∆ is defined

as follows

∆(s′, e) = s

∆(f, e) = s for all f ∈ F .

∆(q, σ) = δ(q, σ) for all q ∈ Q, σ ∈ Σ.

Let N be the NDFA obtained by the powerset construction. We show that after getting rid of

unreachable states, the number of states in N is ≤ 2n−1 + 2n−k−1.

Recall that the states of N are powersets of Q ∪ {s′}. Let P ⊆ Q ∪ {s′}. We are wondering

which P will be reachable in N . Note the following.

• If (∃f ∈ F ∩ P) then s ∈ P because ∆(f, e) = s.

• The empty set is not reachable. Formally you can prove this by induction on the formation

of reachable states.

10

• If P is reachable and |P | ≥ 2 then s′ /∈ P . Formally you can prove this by induction on the

formation of reachable states.

Using these facts the only states P that are potentially reachable are as follows.

1. {s′}. There is 1 of these.

2. Non empty subsets of Q that do not contain s or any element of F . There are 2n−k−1 − 1 of

these.

3. Non empty subsets of Q that contain s but no element of F . There are 2n−k−1 of these.

4. Non empty subsets of Q that contain at least one element of F (and hence contain s). There

are (2k − 1)2n−k−1 = 2n−1 − 2n−k−1 of these.

The total number of states that are reachable is bounded by

1 + 2n−k−1 − 1 + 2n−k−1 + 2n−1 − 2n−k−1 = 2n−1 + 2n−k−1.

S. Yu et al. [11] showed that this is optimal in the k = 1 case.

Theorem 9.2 For all n there exists language Ln such that

1. There is a DFA for Ln with n states, one of which is final. The final state is not the start state.

2. Any DFA for L∗n requires 2n−1 + 2n−2 states.

Proof:

BILL- ASK KARTHIK TO DRAW THIS DFA.

BILL-IS THERE AN EASIER EXAMPLE.

BILL- SUPPLY PROOF HERE

11

10 Languages with Small DFAs such that their Reversal Requires a Large DFA

Def 10.1 If w is a string then wR is that string written backwards (e.g., (aaab)R = baaa). If L is a

language then

LR = {w : wR ∈ L}.

The following theorem is well known.

Theorem 10.2 If L is regular via a DFA with n states then LR is regular via a DFA with 2n states.

Proof: L is regular via M = (Q,Σ, δ, s, F). We construct an NDFA for LR.

Reverse all of the δ’s in M . Formally

MR = (Q ∪ {s′},Σ,∆, s′, s) where

∆(q, σ) = {p : δ(p, σ) = q}.

∆(s′, e) = F.

This yields an NDFA on n states. By the powerset construction there is a DFA with≤ 2n states.

We show that this blowup is close to optimal.

BILL- CAN WE GET A BETTER EXAMPLE WHERE IS REALLY 2n?

Theorem 10.3 For all n there exists language Ln such that

1. There is a DFA for L with n+ 1 states.

2. Any DFA for LR requires 2n states.

12

Proof: Let

Ln = {a, b}na{a, b}∗.

LRn = {a, b}∗a{a, b}n.

It is easy to see that Ln has a DFA on n + 1 states. By the proof of Theorem 4.2 any DFA for

LRn has size at least 2n.

BILL AND KARTHIK- CAN WE GE THIS TO BE OPTIMAL? WOULD NEED A DIFF Ln.

11 Languages with Small NDFAs such that their Compliment Requires a Large DFA (|Σ| ≥

2)

BILL AND KARTHIK- CAN WE GET A BIGGER SEP THEN IF HAVE |Σ| ≥ 2.

12 Languages with Small NDFAs such that their Compliment Requires a Large DFA (|Σ| ≥

1)

Theorem 12.1 For all n there exists a regular language Ln such that

1. Any NDFA for Ln requires e(1+o(1))n logn states.

2. There is an NDFA for Ln that has O(n2

logn
) states.

Proof: Let p1, p2, . . . , pL be all of the primes that are ≤ n. Let P =
∏L

i=1 pi. By the prime

number theorem P ∼ e(1+o(1))n logn.

Ln = {am : m ≡ 0 (mod P)} = {am : (∀i ≤ L)[m ≡ 0 (mod pi)}.

1) Let M be an NDFA for Ln. Let 0 ≤ m ≤ P . Map am to the least state q ∈ ∆(s, am1) such that

F ∩ δ(q, aP−m) 6= ∅. (So there is a path from q to a final state.)

13

We show that if 0 ≤ m1 < m2 ≤ P then am1 and am2 map to different states. Assume,

by way of contradiction, that am1 and am2 both map to q. Then we have q ∈ δ(s, am1) and

F ∩ δ(q, aP−m2) 6= ∅. Hence δ(s, aP+m1−m2) ∩ F 6= ∅. Therefore aP+m1−m2 ∈ Ln which is a

contradiction.

Since the mapping is 1-1 there must be at least P states.

2)

Ln = {am : m 6≡ 0 (mod P)} = {am : ∃i ≤ L)[m 6≡ 0 (mod pi)}.

We proved in Theorem 5.1 that this has an NDFA of size
∑L

i=1 pi = O(n2

logn
)

Open Problem 12.2

1. Does there exist a regular unary language that has a small NDFA whose compliment requires

a large NDFA, but does not require the prime number theorem to prove these bounds.

2. Does there exist a regular unary language where the gap between the NDFA for it and for its

compliment is larger than that in Theorem 5.1?

3. Does there exist a regular unary language where the NDFA is of size n and the NDFA for its

compliment requires size 2n?

13 Languages that have a Small DPDA and require a Large NDFA

Stearns [10] showed that if L is a regular language which has a DPDA of n states and s stack

alphabet then L has a DFA of size at most snn
n

states. He proved a bit more than that. We state his

entire theorem for future use.

Theorem 13.1 There is an algorithm that will do the following. Given a DPDA P with n states

and s stack alphabet:

14

1. Determine if L(P) is regular.

2. If L(P) is regular then output a DFA for L(P) of size ≤ sn
nn

Corollary 13.2 (We separate out the parts of the size of a DPDA: n for the number of states and s

for the stack alphabet size.) The function f(s, n) = sn
nn

is a bounding function for (DFA,DPDA).

Theorem 13.3 For all n, there exists a unary language Ln such that

1. Any NDFA for Ln requires 2n states.

2. There is a DPDA for Ln with n states.

Proof: Let Ln be the singleton set

Ln = {a2n}.

1) The proof that any NDFA for Ln is of size ≥ 2n is similar to the proof in Theorem 12.1 that the

language in that theorem required P states.

2) We give a DPDA for Ln. The stack alphabet is A1, . . . , An. There is only one state, hence we

do not mention it.

On any input do the following

1. Put A1, A2, . . . , An on the stack while reading no input.

2. If there is an An on the top of the stack and the next input is a then read the input and pop

the An.

3. If there is an Ai on top of the stack, 1 ≤ i ≤ n− 1, then replace it with Ai+1Ai+1.

Over time there will be exactly 2n An’s in the stack. The only way to accept is if there are

exactly 2n a’s in the input.

15

14 Languages that have a Small DPDA and Require a Very Large DFA

BILL- PUT IN FILE dpda.tex HERE

15 Languages that have a Small NDFA and Require a Large DPDA. Really!

DPDA’s are more powerful than NDFA’s since they have a stack. But NDFA’s have nondetermin-

ism. This can be used to obtain a case where the NDFA is small and the DPDA is provably large.

Really! We will need to use a theorem from later in the paper.

We need a lemma. The proof is not in that many textbooks; however, it is in the text of Lewis

and Papadimitriou [8].

Lemma 15.1 If L is recognized by a DPDA of size s then L is recognized by a DPDA of size s+1.

Theorem 15.2 For all n there exists a language Ln such that

1. Any DPDA for Ln requires Ω
(
1.17n

n3/8

)
.

2. There is an NDFA that recognizes Ln of size O(n).

Proof: Let [n] = {1, . . . , n}. Let PERM(n) be the set of all permutations of [n]. We view this

as a language over the alphabet [n]. Note that it has n! elements.

Let Ln = PERM(n)

1) LetD be a DPDA for Ln of size s. Then, by Lemma 15.1 there is a DPDA for Ln = PERM(n)

of size s + 1. By the bounding functions given in the introduction there is a CFG for PERM(n)

of size (s+ 1)4 = O(s4). By Theorem 20.7 any CFG for Ln has size Ω
(
1.89n

n3/2

)
. Hence

s ≥ Ω

((
1.89n

n3/2

)1/4)
= Ω

(
1.17n

n3/8

)

16

2) Let Ai = ([n] − {i})∗ and Bi = [n]∗i[n]∗i[n]∗. Ai has an NDFA of size 1 (just one state with

self loops for all alphabet symbols except i). Bi has an NDFA of size 3 (exercise). The NDFA that

has an e-transition to all of the Ai and Bi has size O(n). This NDFA recognizes Ln.

BILL- IF TIGHEN UP CFG TO PDA CAN IMPROVE

16 Languages that have a Small CFG and Require a Large DPDA

We show an exponential size difference between CFG’s and DPDA’s. We will use a theorem proven

later in this paper.

Theorem 16.1 For all n there exists a language Ln such that

1. Any DPDA for Ln requires Ω
(
1.17n

n3/8

)
.

2. There is a CFG that recognizes Ln of size O(n).

Proof:

1) In Theorem 15.2 we showed that any DPDA for PERM([n]) requires size Ω
(
1.17n

n3/8

)
. Let Ln =

PERM([n]). By Lemma 15.1 Ln also requires size Ω
(
1.17n

n3/8

)
.

2) We could invoke a theorem about how a small NDFA leads to a small CFG. We choose instead

to write down the CFG directly.

Let Ai = ([n]− {i})∗ and Bi = [n]∗i[n]∗i[n]∗.

Ai has a CFG of size O(n)

S =⇒ [j]S for all j 6= i

[j] =⇒ j for all j 6= i

Bi has a CFG of size O(1)

17

S =⇒ T [i]T [i]T

T =⇒ j for all j ∈ [n]

17 Languages that have a Small CFG and Require a Very Large DPDA

We show a double-exponential size difference between CFG’s and DPDA’s. We will use a theorem

from later in this paper.

Theorem 17.1 For all n there exists a language Ln such that

1. Any DPDA for Ln requires Ω
(
1.09n

n1/4

)
.

2. There is a CFG that recognizes Ln of size O(log n).

Proof: Let Wn = {ww : |w| = n}. Let Ln = Wn

1) Let D be a DPDA for Ln of size s. Then, by Lemma 15.1 there is a DPDA for Ln = Wn of

size s + 1. By the bounding functions given in the introduction there is a CFG for Wn of size

(s+ 1)4 = O(s4) By Theorem 20.11 any CFG for Wn has size Ω
(
2n/2

n

)
.

Hence

s ≥ Ω

((2n/2

n

)1/4)
= Ω

(
2n/8

n1/4

)
= Ω

(
1.09051n

n1/4

)
= Ω

(
1.09n

n1/4

)

2) We present a CFG for Ln. Note that if x ∈ Ln then either |x| ≤ 2n− 1 or there are two letters

in x that are different and are exactly n− 1 apart.

The CFG is the union of two CFG’s. The first one generates all strings of length ≤ 2n− 1. By

Lemma 3.1 there is such a CFG of size O(log n).

The second one generates all strings of length≥ 2nwhere there are two letters that are different

and exactly n− 1 apart.

18

By Lemma 3.1 there is a CFG G′ of size O(log n) generates all strings of length n− 1. Let S ′

be its start symbol. G′ will be part of our CFG G, though S ′ will not be the start symbol.

S → UaS ′bU

S → UbS ′aU

U → aU

U → bU

U → e

Add all of the rules in G′.

This CFG clearly generates what we want and is of size O(log n).

Corollary 17.2 There exists a constant α > 1 such that the following holds. For all n there exists

a language Ln such that

1. Any DPDA for Ln requires 22Ω(
√
n)

.

2. There is a CFG that recognizes Ln of size O(n).

18 Languages that have a Small CFG and Require a Ginormous DPDA

In Corollary 17.2 we obtained a language with CFG of size O(n) but any DPDA requires size

22Ω(
√
n) . Can this gap be widened? Is there a language L with a CFG of size O(n) but whose

smallest DPDA has size Ω(222n

)? We show yes (sort of). And, in fact, you can replace 222n by any

computable function (sort of). Actually you can replace the phrase any computable function with

an even large class of functions; however, we will get to that later. Unfortunately (1) we will prove

that for an infinite number of n (as opposed to for all n) there are languages Ln with small CFG’s

and ginormous DPDA’s, (2) the languages Ln will not be explicit.

We will need Turing Machines. We do not define them formally here (the definition is any

standard textbook) but we do mention several conventions we will be using.

19

Def 18.1 LetM be a Turing Machine. A configuration (config) ofM is a string of the form α1
q
σα2

where α1, α2 ∈ Σ∗, σ ∈ Σ, and q ∈ Q. We interpret this as saying that the machine is in state q

and the head is looking at the square where we put the q
a. Note that our configuration represents

what is happening, though in reality the state is NOT on the tape. Intuitively, a config is a picture

of all you need to know about the Turing machine to proceed.

Notation 18.2 If M(y) halts we write M(y) ↓. If M(y) does not halt then we write M(y) ↑.

Convention 18.3 Let M be a Turing Machine and x be an input. If M(x) ↓ then we represent the

computation by a sequence of config’s. The first config will be how the machine starts with x on

the input. The last config will be in an ACCEPT state. Each config follows from the last one via

the TM’s instructions. Our convention is that all of the config’s are the same size. We can assume

this since, if M(x) ↓ then there is a finite number L such that the computation M(x) used ≤ L

tape squares.

We note two sets that will be useful to us.

• HALT = {(x, e) : Me(x) ↓ }.

• INF = {e : there are an infinite number of x such that Me(x) ↓ }.

Def 18.4 A set is computably enumerable1 (henceforth c.e.) if there is a Turing machine M such

that x ∈ A iff M(x) ↓.

We will need the following well known facts.

Lemma 18.5
1This concept used to be called recursively enumerable ; however, the logic community has switched to computably

enumerable. See Soare’s article [9] for a historical and philosophical discussion of the change.

20

1. INF is not c.e.

2. If B is a decidable set then any question of the form (∃x)[B(x) = 1] can be phrased as a

query to HALT .

3. If B is a decidable set then any question of the form (∃x)(∀y)[B(x, y) = 1] can be phrased

as a query to INF .

18.1 An Interesting CFG

Def 18.6 Let M1,M2, . . . , be a standard list of Turing machines over the alphabet Σ. Let $ be a

symbol that is not in Σ. We assume that any halting computation takes an even number of steps.

For e ∈ N let ACCe be the set of all sequences of config’s represented by

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

L $

such that

• |C1| = |C2| = · · · = |CL|.

• The sequence C1, C2, . . . , CL represents an accepting computation of Me on some input.

As usual ACCe is the compliment of ACCe.

Lemma 18.7 For all e, ACCe is a CFL.

Proof: We give two proofs. The second one requires knowing that CFG’s are equivalent to

PDA’s.

1) Assume that the machine has start state s and halt states haccept and hreject. Any element of

ACCM must have one s and one haccept and no hreject. Recall that $ /∈ Σ∗.

When is a string SEQ NOT in ACCM? We give a partial list.

21

1. SEQ begins y where y is not in the right format to be a starting config.

2. SEQ ends y where y is not in the right format to be an accepting config.

3. SEQ has either 0 or at least 2 symbols in Σ× {s}.

4. SEQ has either 0 or at least 2 symbols in Σ× {haccept}.

5. SEQ has either at least 1 symbols in Σ× {hreject}.

6. SEQ has as a subword an element of {yz$: y, z ∈ Σ∗, |y| 6= |z|}.

All of the above are CFL’s.

If SEQ is not in any of the above sets then it must be of the form

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

L $

where

• C1 represents a starting configuration with an input x.

• Each Ci is of the same length.

• CL is an accepting configuration.

We now need to write a CFG that says that there is some i such that Ci+1 does not follow

from Ci. There are two ways this can happen: the wrong move is made or the contents of the tape

change when the move of the Turing machine shouldn’t change it (e.g., a tape square that is not

that close to the head gets changed.) We do an example.

Lets say that one of the instructions is δ(q, a) = (p, L) (if the machine is in state q and the head

is looking at an a then the state changes to p and the head moves left). So we want to make sure

that if Ci has bqa then Ci+1 won’t have p
σ, b in the right place. Let X be all ordered pairs that are not

p
σ, b.

22

S → TUT

T → Tσ for all σ

T → e

U → σUσ for all σ

U → V

V → pqaWτ1τ2 for all τ1τ2 ∈ X

V → σV σ for all σ

V → e

If S → α and α is not already one of the strings generated by one of the above cases then S is

a sequence of the right form, but there is a Ci and a Ci+1 such that Ci+1 does not follow from Ci

because the instruction was not carried out properly. What we just did for the one instruction we

do for all of the instructions.

We also need to generate the sequences where the instructions are carried out at the head but

someplace else changes when it shouldn’t. We leave this to the reader.

In the end we have a finite number of CFG’s. We take their union to get the CFG we need.

2) We describe a PDA for ACCe. The set of inputs that are not of the form

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

L $

is clearly PDA-recognizable. We need only describe a PDA for strings of this form which don’t

represent an accepting computation. When a Ci comes in put it on the stack. When you read Ci+1

(backwards) pop off the stack seeing that they match until you get to the place where they should

differ. If you ever see a place where they differ in a way that is not how the Turing machine says

they should, then accept.

23

Lemma 18.8 Let e ∈ N.

1. If e ∈ INF then ACCe is not a DCFL.

2. If e /∈ INF then ACCe is regular, and hence is a DCFL.

Proof:

If e ∈ INF then ACCe has an infinite number of strings of the form

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

L $

where |C1| = |C2| = · · · = |CL|. By an easy application of the pumping lemma for CFL’s, ACCe

is not a CFL. Since DCFG’s are closed under complementation, ACCe is not a DCFG.

If e /∈ INF then ACCe is finite, hence regular. Since regular languages are closed under

complementation, ACCe is regular.

18.2 Small CFG, Ginormous DPDA

The following theorem is due to Hartmanis [4].

Theorem 18.9 Let f be any computable function.

1. f is not a bounding function for (DPDA,PDA).

2. For an infinite number of n there is a language Ln such that

(a) Any DPDA for Ln has size ≥ f(n).

(b) There is a CFG for Ln of size ≤ n.

(Part 2 follows from part 1 so we will not prove it.)

24

Proof:

Assume, by way of contradiction, that there is a computable bounding function for (DPDA,PDA).

We use this to show that INF is c.e., contrary to Lemma 18.5.1.

We present an algorithm that halts on e iff e ∈ INF .

ALGORITHM A

1. Input(e)

2. Construct the PDA P for ACCe.

3. Compute N = f(|P |). Let D1, . . . , Ds be all of the DPDA’s of size ≤ N .

4. Search for (x1, . . . , xs) such that (∀i)[P (i) 6= Di(xi)]. If ever such is found then stop.

END OF ALGORITHM

e ∈ INF =⇒ ACCe is not DCFL =⇒ (∀i ≤ s)(∃xi)[P (xi) 6= Di(xi)] =⇒ A(x) ↓

e /∈ INF =⇒ ACCe is DCFL =⇒ (∃i ≤ s)(∀x)[P (x) = Di(x)] =⇒ A(x) ↑

Open Problem 18.10 Let f be a computable function. Does there exists, for all n, a language

Ln such that

1. Any DPDA for Ln has size ≥ f(n).

2. There is a CFG for Ln of size ≤ n.

By Corollary 17.2 we have this for f(n) = 22Ω((
√
n) . Can we obtain it for faster growing f? Can

we obtain a proof where the languages are more concrete then the ones in Theorem 18.9.

There is no computable bounding function for (DPDA,PDA). Can we say more about this? We

can but we need some more concepts.

25

Def 18.11

1. An oracle Turing Machine, denoted M (), is a Turing machine that has the ability to make

queries to an oracle. The oracle is a set and the queries are Boolean. The statement MA(x)

means that you run oracle Turing machine M with oracle A, on input x. A formal definition

would involve being able to write the query on a separate oracle tape and (magically!) get

the answer. We leave the details to the reader.

2. A ≤T B if there exists an oracle Turing machine M () such that A is decided by MB. We

also say that A is computable-in-B.

Def 18.12 A set is computably enumerable inB (henceforth c.e.-in-B) if there is an oracle Turing

machine M () such that x ∈ A iff MB(x) ↓.

We will need the following well known fact.

Lemma 18.13 INF is not c.e. in HALT .

The following theorem is due to Hay [5]. Given what we’ve done so far we have the following

porism2 of Theorem 18.9 given Lemma 18.13.

Porism 18.14 Let f be any computable-in-HALT function. Then f is not a bounding function

for (DPDA,PDA).

Can we characterize how fast f can grow to be a bounding function for (DPDA,PDA)? We can.

We show that if (1) if f is a bounding function for (DPDA,PDA) then INF ≤T f , and (2) there is

a bounding function f for (DPDA,PDA) such that f ≤T INF . The first result appears to be new.

The second one was proven by Hay [5].

We need a weaker theorem first.
2A porism to a Theorem T is a statement whose proof can be obtained by obvious changes to the proof of Theorem

T .

26

Theorem 18.15 If f is a bounding function for (DPDA,PDA) then HALT ≤T f .

Proof:

Let ACCe,x be the set of sequences of accepting configurations that represent the computation

Me(x) ↓. Note that

• If Me(x) ↓ then ACCe,x has one string, which is the accepting computation of Me(x).

• If Me(x) ↑ then ACCe,x = ∅.

• For all e, x the language ACCe,x is regular.

• Given e, x one can construct a PDA for ACCe,x by Lemma 18.7.

ALGORITHM FOR HALT THAT USES f

1. Input(e, x)

2. Construct the PDA P for ACCe,x.

3. ComputeN = f(|P |). LetD1, . . . , Ds be all of the DPDA’s of size≤ N . Create the DPDA’s

for their complements, which we denote E1, . . . , Es.

4. Apply the algorithm from Theorem 13.1 to each element of E1, . . . , Es. This will produce a

set of t ≤ s DFA’s, F1, . . . , Ft such that all of the languages in {L(E1), . . . , L(Es)} that are

regular are represented by some element of {F1, . . . , Ft}.

5. For each 1 ≤ i ≤ t determine if Fi determine recognizes exactly one element. If it does then

determine if that element is an accepting computation of Me(x). If there is such an i then

output YES. If not then output NO.

27

END OF ALGORITHM

Assume (e, x) ∈ HALT . Then ACCe,x has one element and that element is an accepting

computation ofMe(x). By the definition of f (∃i ≤ s)[L(Di) = ACCe,x], hence (∃i ≤ t)[L(Ei) =

ACCe,x]. Since ACCe,x is finite (it has either 0 or 1 strings) it is regular. Hence (∃i ≤ t)[L(Fi) =

ACCe,x]. The algorithm will find this Fi and output YES.

Assume the algorithm outputs YES. Then an accepting computation forMe(x) has been found.

Therefore (e, x) ∈ HALT .

Theorem 18.16

1. If f is a bounding function for (DPDA,PDA) then INF ≤T f .

2. Let f be such that INF 6≤T f . For an infinite number of n there is a language Ln such that

(a) Any DPDA for Ln has size ≥ f(n).

(b) There is a CFG for Ln of size ≤ n.

(Part 2 follows from part 1 so we will not prove it.)

Proof:

We freely use Lemma 18.5.2 to phrase ∃-questions as queries to HALT , and Theorem 18.15

to phrase questions to HALT as calls to f .

ALGORITHM FOR INF THAT USES f

1. Input(e)

2. Construct the PDA P for ACCe.

3. Compute N = f(|P |). Let D1, . . . , Ds be all of the DPDA’s of size ≤ N .

28

4. Ask

(∃x1, . . . , xs)(∀i ≤ s)[P (i) 6= Di(xi)].

If YES then output YES. If NO then output NO.

END OF ALGORITHM

e ∈ INF =⇒ ACCe is not DCFL =⇒ (∃x1, . . . , xs)(∀i ≤ s)[P (xi) 6= Di(xi)] =⇒ A(x) =

Y ES.

e /∈ INF =⇒ ACCe is DCFL =⇒ (∃i ≤ s)(∀x)[P (x) = Di(x)] =⇒ A(x) = NO

Now that we have a lower bound on the complexity of f we turn to upper bounds.

Theorem 18.17 There exists a bounding function f for (DPDA,PDA) such that f is computable in

INF .

Proof:

In the algorithm below we freely use Lemma 18.5.4 to phrase (∃)(∀)-questions as queries to

INF .

Algorithm for f

1. Input(n)

2. MAX=0.

3. For every PDA P of size ≤ n do the following

(a) Ask (∃DPDA D)(∀x)[P (x) = D(x)]?

(b) If YES then for i = 1, 2, 3, . . . ask (∃DPDA D, |D| = i)(∀x)[P (x) = D(x)]?

until the answer is YES.

(c) Let i be the value of i when the last step stopped. Note that (∃D, |D| = i)(∀x)[P (x) =

D(x)]. If i > MAX then MAX = i.

29

4. Output MAX.

To summarize:

• If f is a bounding function for (DPDA,PDA) then INF ≤T f .

• There exists a bounding function for (DPDA,PDA) such that f ≤T INF .

Another way of saying this is that the Turing degree of the bounding function is at the second

level of the arithmetic hierarchy. This is both an upper and lower bound, and they match.

19 Small CSG for L, Large CFG for L

It is known that CFL’s are not closed under complementation. Is there a language L such that L

and L are both CFL’s but (1) there is a small CFG for L, and (2) any CFG for L is large. Yes.

Theorem 19.1 For all n there exists Ln such that

1. Any CFG for Ln is of size Ω
(
2n/2

n

)
.

2. There is a CSG for Ln of size O(log n).

Proof:

Let Ln = {ww : |w| = n}.

By Theorem 20.11 any CFG for Ln is of size Ω(2
n/2

n
). By the proof of Theorem 17.1 there is a

CFG for Ln of size O(log n).

Corollary 19.2 For all n there exists Ln such that

1. Any CFG for Ln has size 22Ω(
√
n)

.

2. There is a CFG for Ln of size O(n).

30

In Theorem 19.1 we obtained a double exponential gap between the CFG for a language and

the CFG for its complement. Can this gap be widened? Is there a language L with a CFG of size

O(n) such that the smallest CFG for L has Ω(222n

)? We show yes (sort of). Actually the gap is far

worse than that. Unfortunately the proof we give will only show that such languages exist. We do

not quite have one explicitly. And we don’t get this for all n, just for an infinite number of n.

The proof below is essentially the same as the proof of Theorem 18.9.

Theorem 19.3 Let f be any computable-in-HALT function. Then there exists infinitely many n

such that there exists Ln such that

1. Any CFG for L has size f(n).

2. There is a CFG for L of size n.

20 Small CSG, Large CFG

In this section we give three examples, of a CFL Ln whose CFG has to be large, but whose CSG

is small. The first one is due to Ellul et al [2]. The other two are from Filmus [3], though he

proves a very general theorem from which the results fall out, whereas we just prove them from

first principles, albeit using essentially a de-generalization of his proof.

Def 20.1 Let G be a CFG and A be a nonterminal of G

1. GEN(A) = {w : A⇒ w}.

2. Let w ∈ Ln and let T be a the parse tree for w ∈ L(G) that contains A. Then LE(A) is the

set of leaves that are in the tree below A.

Lemma 20.2 Let G be a CFG and w ∈ L(G) ∩ Σn. Let 0 < δ ≤ 1/2. There exists (A, u, v, x) ∈

N × Σ∗ × Σ∗ × Σ∗ such that w = uvx, v ∈ GEN(A), and δn ≤ |v| ≤ 2δn.

31

Proof: Look at the parse tree for w. Since G is in Chomsky Normal Form the parse tree is

binary. Start at the root. At every decision point goto the side that has the most leaves. Let B

be the label on the first node such that the LE(B) ≤ δn. Let A be the parent of B. A has two

children B and C. Note that LE(A) has more than δn nodes below it since B is the first node

that has LE(B) ≤ δn nodes below it. Also note that since LE(B) ≤ δn and LE(C) ≤ LE(B),

LE(C) ≤ δn. Hence LE(A) = LE(B) + LE(C) ≤ 2δn. Hence δn ≤ LE(A) ≤ 2δn. Let v be

the word generated by A in this parse. Clearly δn ≤ |v| ≤ 2δn.

Convention 20.3 If G is a CFG and A is a nonterminal then we assume that A is used in some

derivation of an element of L(G).

20.1 Small CSG, Large CFG for PERM(n)

Def 20.4

1. If F is a finite set then PERM(F) is the set of all permutations of elements of F . Note that

PERM(F) has |F |! elements.

2. For this section Ln = PERM([n]).

Lemma 20.5 Let 0 < β < 1. Then n!
(βn)!((1−β)n)! = Θ

(
1√
n

(
1

(1−β)1−βββ
)n)

Proof:

By Stirling’s Formula n! ∼
√

2πn(n
e
)n. We use this in the form n! = Θ(

√
n(n

e
)n). We omit

the symbol Θ in our calculations.

(βn)!(((1− β)n))! ∼
√
βn
(βn
e

)βn√
((1− β)n)

((1− βn)

e

)(1−β)n
=

32

(
√
β(1− β))n

en
(βn)βn((1− β)n)(1−β)n =

(
√
β(1− β))n

en
((1− β)n)n

(β

1− β
)βn

Inverting this and multiplying by
√
n(n

e
)n yields

√
n

(
n

e

)n
en√

β(1− β)n

1

((1− β)n)n

(
1− β
β

)βn
=

1√
n

1

(1− β)n

(
1− β
β

)βn
=

1√
n

(
(1− β)β−1

ββ

)n
=

1√
n

(
1

(1− β)1−βββ

)n

Def 20.6 If n ∈ N then [n] = {1, . . . , n}

Theorem 20.7 For all n:

1. Any Chomsky Normal Form CFG for Ln requires Ω
(
1.89n

n3/2

)
nonterminals.

2. There is a CSG for Ln that has O(n2) nonterminals.

Proof:

1) Let G = (N,Σ, S, P) be a Chomsky Normal Form Grammar for Ln. We show that |N | =

Ω
(
1.89n

n3/2

)
.

Claim 1: For all nonterminalsA there exists a setF (A) ⊆ [n] such thatGEN(A) ⊆ PERM(F (A)).

(We will use the notation F (A) later in this proof.)

Proof of Claim 1:

Let v, v′ ∈ GEN(A). Then there exists u, x, u′, x′ such that

• S ⇒ uAx⇒ uvx ∈ PERM([n])

33

• S ⇒ u′Ax′ ⇒ u′v′x′ ∈ PERM([n]).

Clearly we have

S ⇒ u′vx′ ∈ PERM([n]).

Since uvx, uv′x ∈ PERM([n]), v and v′ must contain exactly the same letters (though

they may be in a different order). Let F (A) be the set of letters in v. Clearly GEN(A) ⊆

PERM(F (A)).

End of Proof of Claim 1

We map Ln to N × [n]. Given w ∈ Ln find (A, u, v, x) as in Lemma 20.2 (with δ = 1/3). Let

i = |u|+ 1, so i is where the v-part starts. Map w to (A, i).

We upper bound the size of the inverse image of any (A, i) ∈ N× [n] and then use that to lower

bound |N |.

Let (A, i) ∈ N × [n]. How many w can map to it? Let w = uvx where v begins at the ith spot

and n
3
≤ |v| ≤ 2n

3
. Note that all of the w’s that map to (A, i) have the same |v|, namely |F (A)|.

We denote this by r and note that n
3
≤ r ≤ 2n

3
.

v ∈ PERM(F (A)). There are at most r! such v. ux ∈ PERM(Σ − F (A)). There are at

most (n− r)! such ux. Hence there are at most r!(n− r)! elements of Ln that map to (A, i). This

is maximized when r = n/3 (or r = 2n/3). So each element of N × [n] has at most (n/3)!(2n/3)!

elements in the inverse image. Hence we get

n! ≤
∑

(A,i)∈N×[n]

(n/3)!(2n/3)! ≤ |N |n(n/3)!(2n/3)!

Therefore, using Lemma 20.5

|N | ≥ 1

n

n!

(n/3)!(2n/3)!
≥ Ω

(
1

n

1√
n

1

(1/3)1/3(2/3)2/3

)
≥ Θ

(
1.89n

n3/2

)
.

34

2) We give a CSG for Ln that has O(n2) nonterminals.

S → A1A2 · · ·An

AiAj → AjAi for all 1 ≤ i < j ≤ n

A1 → 1

A2 → 2

...

An → n

This CSG is of size Θ(n2) but is not in Chomsky Normal Form; however, it is easy to convert

it to Chomsky Normal Form while keeping the size at Θ(n2).

20.2 Small CSG, Large CFG for {w : #1(w) = · · · = #n(w) = k}

Def 20.8 Let n, k ∈ N such that n ≡ 0 (mod k). Let Σ = [n]. Let

Lk,n = {w : #1(w) = · · ·#n(w) = k}

Note that every string in Lk,n is of length kn.

Theorem 20.9 For all n:

1. Any Chomsky Normal Form CFG for Lk,n requires Ω
(
BILL−FILLIN

LATER

)
nonterminals.

2. There is a CSG for Lk,n that has O(kn+ n2) nonterminals.

Proof:

1) Let G = (N,Σ, S, P) be a Chomsky Normal Form Grammar for Lk,n. We show that |N | =

Ω
(
BILL−FILLIN

LATER

)
.

35

Claim 1: For all nonterminals A there exists j1, . . . , jn ∈ {0, . . . , n} such that

GEN(A) = {w : (∀i)[#i(w) = ji]}.

Proof of Claim 1:

Let v, v′ ∈ GEN(A). Then there exists u, x, u′, x′ such that

• S ⇒ uAx⇒ uvx ∈ Lk,n

• S ⇒ u′Ax′ ⇒ u′v′x′ ∈ Lk,n

Clearly we also have

S ⇒ u′vx′ ∈ Lk,n.

Hence we must have (∀i)[#i(v) = #i(v
′)]. Clearly the claim holds.

End of Proof of Claim 1

Def 20.10 If A is a nonterminal then let F (A) be the (j1, . . . , jn) proven to exist in the above

claim.

Let N be the set of nonterminals of G. We map Lk,n to N × [n]. Given w ∈ Lk,n find

(A, u, v, x) as in Lemma 20.2 (with δ = 1/3). Let i = |u|+ 1, so i is where the v-part starts. Note

that kn
3
≤ |v| ≤ 2kn

3
. Map w to (A, i).

We upper bound the size of the inverse image of any (A, i) ∈ N× [n] and then use that to lower

bound |N |. We need a definition: if v ∈ Σ∗ (likely not an element of Lk,n) then the signature of v

is the tuple (#1(v), . . . ,#n(v)).

Let (A, i) ∈ N × [n]. How many w can map to it? Let w = uvx where v begins at the ith

spot and kn
3
≤ |v| ≤ 2kn

3
. Note that all of the w’s that map to (A, i) have the same signature

(j1, . . . , , jn). Note kn
3
≤
∑n

i=1 ji ≤
2kn
3

.

36

Let
∑n

i=1 ji = j. How many strings are there of the form uvx are there such that (1) uvw ∈

Lk,n, (2) v is of length j, (3) v has signature (j1, . . . , jn). There are j!∏n
i=1 ji!

ways to pick v. Then

there are (kn−j)!∏n
i=1(k−ji)!

ways to pick ux. Hence the number of such uvx is

j!∏n
i=1 ji!

(kn− j)!
(k − ji)!

≤

This is maximized when j = kn
3

and ji = j
n

= k
n

. (We assume 3 divides k.) Hence the

maximum number of w that map to (A, i) is

kn
3

!

(k
n
)n

2kn
3

!
2k
3

!

The number of elements in Lk,n is (kn)!
(k!)n

. Hence we have

(kn)!

(k!)n
≤ N ×

kn
3

!

(k
n
)n

2kn
3

!
2k
3

!

Hence

N ≥ (kn)!
kn
3

!2kn
3

!

(k
n
)n 2k

3
!

(k!)n

BILL- NEED TO FINISH LATER- MIGHT GIVE UP ENTIRELY.

2) We give a CSG for Lk,n that has O(kn+ n2) nonterminals.

S → Ak1A
k
2 · · ·Akn

AiAj → AjAi for all 1 ≤ i, j ≤ n

Ai → i for all 1 ≤ i ≤ n

This CSG is not in Chomsky Normal Form; however, it is easy to convert it to such without

changing the number of nonterminals by too much. We leave it as an exercise that there will be

37

O(kn+ n2) nonterminals.

20.3 Small CSG, Very Large CFG for {ww : |w| = n}

For this section Σ has t letters in it.

Ln = {ww : |w| = n}.

Theorem 20.11 For all n:

1. Any CFG for Ln has size Ω(t
n/2

n
).

2. There is a CSG for Ln of size O(t log n).

Proof:

1) LetG = (N,Σ, S, P) be a Chomsky Normal Form Grammar forLn. We show that |N | = Ω(2n).

Claim 1:

i) For all nonterminals A there exists m such that GEN(A) ⊆ Σm.

ii) If m ≤ n then |GEN(A)| = 1

Proof of Claim 1:

i) Let v, v′ ∈ GEN(A). Then there exists u, x, u′, x′ such that

• S ⇒ uAx⇒ uvx ∈ Ln

• S ⇒ u′Ax′ ⇒ u′v′x′ ∈ Ln

Clearly we also have

S ⇒ uv′x ∈ Ln

Since all elements of Ln are of length 2n we have the following:

38

• |uvx| = 2n, so |v| = 2n− |ux|.

• |uv′x| = 2n, so |v′| = 2n− |ux|.

• Let i1 = |v| = |v′|. Let i2 = |u|.

ii) We show that if i1 ≤ n then v = v′. Since uvx ∈ Ln and uv′x ∈ L, there exists w,w′ such that

uvx = ww and uv′x = w′w′.

Let w = σ1σ2 · · ·σn and w′ = σ′1σ
′
2 · · ·σ′n

Case 1: v = σi · · ·σj and is contained in the first w. Hence x = σj+1 · · · σnσ1 · · ·σn. Since

w′w′ = uv′x and ww = uvx, we have w = w′ so v = v′.

Case 2: v = σi · · ·σj and is contained in the second w. This is similar to Case 1.

Case 3: v = σi · · ·σnσ1 · · ·σj and i ≤ j. This cannot occur since then |v| ≥ n+ 1.

Case 4: v = σi · · ·σnσ1 · · ·σj and i > j.

Hence (1) u = σ1 · · ·σi and (2) v = σj+1 · · ·σn. Therefore (1) σ′1 = σ1, . . ., σ′i = σi and (2)

σ′j+1 = σj+1, . . ., σ′n = σn. Since i > j we have σ′1 = σ1, . . ., σ′n = σn. Hence w = w′ and v = v′.

End of Proof of Claim 1

Claim 2: Let |v| ≤ n and let i ∈ [n]. The number of strings of the form uvx ∈ Ln where |u| = i

is ≤ tn−|v|.

Proof of Claim 2:

Let uxv = σ1 · · ·σnσ1 · · ·σn. Since |v| ≤ n and i is determined v determines exactly |v| of the

σ’s. Hence there are just t|v|−n σ’s to determine.

End or Proof of Claim 2

Def 20.12 If A is a nonterminal let F (A) be the value of m that exists by Claim 1.1

39

LetN be the set of nonterminals ofG. We map Ln toN× [n]. Given ww ∈ Ln find (A, u, v, x)

as in Lemma 20.2 with δ = 1/2. Map ww to (A, |u|). Note that n
2
≤ |v| ≤ n and that the v part of

ww starts at position |u|+ 1.

We upper bound the size of the inverse image of any (A, i) and then use that to lower bound

|N |. Note that since v ∈ GEN(A) has length ≤ n, GEN(A) = {v}. Then any element of Ln that

maps to (A, i) is of the form u′vw′ where |u′| = i. By Claim 2 there are at most tn−|v| ≤ tn/2 such

strings. Hence the inverse image of (A, i) has at most tn/2 elements. Therefore tn ≤ N × i× tn/2,

so N ≥ tn/2

n
.

2) We give a CSG (not in Chomsky Normal Form) for Ln in the t = 2 case that has O(log n)

nonterminals and then show how to convert it to one in Chomsky Normal Form of size O(log n).

We leave it to the reader to extend this to the general t case.

We first construct a CSG G for Ln of size O(n) that is not in Chomsky Normal Form. We will

then show how to find a CSG G′ such that L(G′) = L(G) and G′ is in Chomsky Normal Form. but

G′ has size O(log n).

The nonterminals are S, X , A, B, A′, B′. S is the start symbol.

40

Rules to get started.

S → Xn−2Aa

S → Xn−2Bb

Rules to put the A′ and B′ in place.

X → aA′

X → bB′

Rules to move the A′ and B′ to the right.

A′a→ aA′

A′b→ bA′

B′a→ aB′

B′b→ bB′

Rules to move the A or B to the left and at the same time create a′ and b’s out of A′’s and B′s.

A′A→ Aa

A′B → Ba

B′A→ Ab

B′B → Bb

Rules to change A to a and B to b. To be used at the end.

A→ a

B → b

We give an example of how to generate aabaaaabaa.

Use the rules to get started to obtain

S → XXXAa (We use Aa since the word aabaa ended in a.)

Use the rules to put the A′ and B′ in place to obtain

XXXAa⇒ aA′aA′bB′aA′Aa

Use the rules to move the A′ and B′ to obtain

aA′aA′bB′aA′Aa⇒ aabaA′A′B′A′Aa

41

Use the rules to move the A to obtain

aabaA′A′B′A′Aa⇒ aabaAaabaa⇒ aabaaabaa.

Inspired by the example the reader can easily prove that any string in Ln can be generated.

With a bit more thought the reader can show that this way to derive words is essentially the only

way to do it, so the L(G) = Ln.

Clearly G has size O(n).

In order to modify G to form G′ where L(G) = L(G′), G′ is in Chomsky Normal Form, and

G′ is of size O(log n) use the techniques of Lemma 3.1.

Corollary 20.13 Let |Σ| = 2. Let Wn = L2n . For all n:

1. Any CFG for Wn has size 22Ω(n)
.

2. There is a CSG for Wn of size O(n).

21 Languages that have a Small CSG and Require a Ginormous CFG

In Corollary 20.13 we showed that the language Wn = {ww : |w| = 2n} has a CSG of size O(n)

but any CFG for it has size 22Ω(n) . Can we obtain a bigger gap between the size of a CSG and CSF?

Yes. Meyer and Fisher [7] say the following in their Further Results Section:

. . . context-sensitive grammars may be arbitrarily more succint than context-free grammars . . .

The reference given was a paper of Meyer [6]. That paper seems to only talk about Turing

Machines; however, after conversing with Meyer about it, we can now present the proof. This is

essentially his proof but scaled down to CSL’s and CFG’s. We first present a weak version of his

theorem, and then the full version.

We state the theorems in terms of CFG’s and CSL’s but we prove them using PDA’s and LBA’s.

Since the size bounds of CFG’s (CSG’s) and PDA’s (LBA’s) are computably-related (in fact poly-

nomial) this will not matter. Let P1, P2, . . . be an easily accessible list of all PDA’s. They are in

order of size. We assume that Pe is of size ≥ e.

42

Theorem 21.1 Let f be a computable function. For all n there exists Ln such that

1. any CFG for Ln is of size at least f(n),

2. there is a CSL for Ln of size O(n).

Proof: We construct the language Ln by describing an NSPACE(|x|) algorithm 3. The idea is

that Ln will diagonalize against all small PDA’s.

ALGORITHM for Ln

1. Input(x) (Note that all but the last step depend only on n which is a constant. The last step

depends on x.)

2. Compute f(n).

3. For 1 ≤ i ≤ f(n) deterministically simulate Pi on 1i.

4. For a = f(n) + 1, f(n) + 2, . . . determine if (∀i ≤ f(n))[Pa(1
i) 6= Pi(1

i)]. Stop when you

find such an a. (Such and a will be found since the constraints on Pa only affect a finite

number of values.)

5. Simulate nondeterministically the PDA for Pa on x.

For all inputs x the same a is found. Hence Ln = L(Pa). By construction there is no PDA for

L(Pa) of size ≤ f(n).

We now consider the space used on input x. Note that since a is constant (relative to |x|) and

that every step except the last one requires constant space. The last step is a nondeterministic

simulation of a PDA, which can be done in O(|x|) space.

3Traditionally n is the length of the input; however, we are using n as a parameter for the size of the machines
involved so we cannot use it.

43

What is the size of the machine described above? The only parameter the machine needs is n.

All the rest is constant. Hence the machine is of size n+O(1). We can get it to be size log n+O(1)

but we do not need to.

What was it about CSG’s and CFG’s that the proof of Theorem 21.1 use? Can it be generalized?

We consider this point after proving the next theorem which is stronger.

Theorem 21.1 considers the class of computable functions. Meyer’s actually considered the

class of computable-in-HALT functions.

Def 21.2

1. If M ()
e is an oracle Turing machine and A is a set then MA

e,s(x) is the following: Run MA
e (x)

for s steps. If it halts then output whatever it outputs. If not then output DON”T KNOW.

2. HALTs = {(x, e) : Me,s(x) ↓ }.

3. If f ≤T HALT via M ()
i then fs is MHALTs

i,s (x). Note that, for all n, lims→∞ fs(x) = f(x).

Since these are all discrete quanities we have that (∀n)(∃s0)(∀s ≥ s0)[fs(n) = f(n)].

Theorem 21.3 Let f ≤T HALT . For all n there exists Ln such that

1. any CFG for Ln is of size at least f(n),

2. there is a CSL for Ln of size O(n).

Proof: This proof will be similar to (but not identical to) the proof of Theorem 21.1.

We construct the language Ln by describing an NSPACE(|x|) algorithm. The idea is that

Ln will diagonalize against all small PDA’s. The difference between this proof and the proof of

Theorem 21.1 is that in this proof we can only approximate the line between small and large PDA’s

via fs(n).

ALGORITHM for Ln

44

1. Input(x). Let s = |x|. Carry out the algorithm given below unless the computation uses

more than s space, in which case you stop and just say NO. Note that all steps but the last

only depend on s.

2. Compute fs(n) and store it.

3. Compute Ln on all strings of length ≤ lg lg s and store the results.

4. Simulate deterministically P1, P2, . . . , Pfs(n) on inputs of length ≤ lg lg s. Using the mem-

bership information about Ln that was calculated in the last step we find some i, z, 1 ≤ i ≤

fs(n) (there may not be any) such that (Pi) 6= Ln. Let ACTIV E = {i1, . . . , im} be the set

of i such that we do not know that L(Pi) 6= Ln. Store the list ACTIV E.

5. Search for (a, {xi : i ∈ ACTIV E}) such that a ≥ fs(n) and for all i ∈ ACTIV E,

Pi(xi) 6= Pa(xi). When one is found goto the next step. (Such and a will be found since the

constraints on Pa only affect a finite number of values.)

6. Simulate nondeterministically the PDA for Pa on x.

Since f ≤T HALT there exists s0 such that, for all s, s′ ≥ s0, fs(n) = fs′(n). There will

exist s′0 ≥ s0 such that for all x, |x| ≥ s′0, when the algorithm is run on x the same value of a will

be found. We do not have that L(Pa) = Ln. However, we do have that (1) Ln differs from every

L(Pi) with i ≤ f(n) either because i was found to not equal Ln, or because i ∈ ACTIV E and

a witness to the difference with Pa was found, and (2) Ln and L(Pa) differ on a finite number of

strings, hence Ln is a CFL.

The machine operates in nondeterministic linear space since for all but the last step we do not

allow it to use more than |x| space, and the last step is a nondeterministic simulation of a PDA

which is nondeterministic linear space.

The machine is of size n for the same reasons given for the machine in Theorem 21.1.

45

What was it about CFG’s and CSG’s that made this proof work? The fact that we could simulate

CFG’s with CSG’s with very little overhead is all we needed. We will not formalize this; however,

we will still use it in the next section.

BILL- NEED UPPER BOUNDS.

22 Small TM, Ginormous CSG

There is an enormous size difference between TM’s and CSG’s. The following porism can be

obtained by modifying the proof Theorem 21.3. The theorem is due to Meyer [6].

Porism 22.1 Let f ≤T HALT . For all n there exists Ln such that

1. any CSG for Ln is of size at least f(n),

2. there is a TM for Ln of size O(n).

BILL- NEED UPPER BOUNDS

23 Acknowledgment

We thank: Richard Beigel for help with some of the context free grammars in this paper; Albert

Meyer for help with Theorem 21.3; Jefferey Shallit whose paper [2] inspired this survey; Karthik

Gopalan for help with some of the proofs and for proofreading;, and Sam Zbarsky for help with

Lemma 3.1.

References

[1] A. Ehrenfeucht and P. Zeiger. Complexity measures for regular expressions. Journal of

Computer and System Sciences, 12(1):134–146, 1976.

[2] K. Ellul, B. Krawetz, J. Shallit, and M. Wang. Regular expressions: new results and open

problems. Journal of Automata, Languages, and Combinatorics, 10(4):407–437, 2005.

46

[3] Y. Filmus. Lower bounds for context-free grammars. Information Processing Letters,

111(18):895–898, 2011.

[4] J. Hartmanis. On the succinctness of different representations of languages. SIAM Journal

on Computing, 9(1):114–120, 1980.

[5] L. Hay. On the recursion-theoretic complexity of relative succinctness of representations of

languages. Information and Computation, 52(1):1–7, 1982.

[6] A. Meyer. Program size in restricted programming languages. Information and Control,

21(4):382–394, 1972.

[7] A. Meyer and M. Fischer. Economy of description by automata, grammars and formal sys-

tems. In Proceedings of the 12th Annual Symposium on Switching and Automta Theory, pages

188–191, Washington, DC, 1971. IEEE.

[8] C. H. Papadimitriou and H. R. Lewis. Elements of the Theory of Computation. Prentice-Hall,

Inc., 1981.

[9] R. Soare. Computability and recursion. The Bulletin of Symbolic Logic, 2(4), 1996.

[10] R. E. Stearns. A regularity test for pushdown machines. Information and Control, 11(2):323–

340, 1967.

[11] S. Yu, Q. Zhuange, and K. Salomaa. The state complexities of some basic operations on

regular languages. Theoretical Computer Science, 125(2):315–328, 1994.

47

