Reductions TO SAT Exposition by William Gasarch

1 Introduction

Recall

Def 1.1 $CLIQ = \{(G, k) \ G \text{ has a clique of size } k \}$

In class we showed SAT \leq CLIQ.

By the Cook-Levin theorem (which we have not proven yet), for all $A \in NP$, $A \leq \text{SAT}$. Hence $\text{CLIQ} \leq \text{SAT}$.

We will prove $CLIQ \leq SAT$ directly.

$2 \quad \text{CLIQ} \le \text{SAT}$

Given (G, k) we want to come up with a formula ϕ such that

 $(G,k) \in \text{CLIQ IFF } \phi \in SAT$

We restate the problem a bit.

Let K_k be the complete graph on k vertices.

Def 2.1 INJ is the set of all (G, k) such that that following is true: There is an injection f of K_k into G such that

for all $1 \le i \le j \le k$, $(f(i), f(j)) \in E$

(E is the set of edges in G.)

It is easy to see that

 $(G,k) \in \text{CLIQ}$ iff $(G,k) \in \text{INJ}$

Theorem 2.2 INJ \leq SAT. Hence CLIQ \leq SAT.

Proof: The input is (G, k).

 K_k has vertices $\{1, \ldots, k\}$ and G has vertices $\{1, \ldots, n\}$.

Our Boolean formula will have variables:

 x_{ij} where $1 \leq i \leq k$ and $1 \leq j \leq n$.

The intention is that the x_{ij} code an injection by having x_{ij} is TRUE if *i* gets mapped to *j*, and FALSE otherwise.

The first few clauses will ensure that the x_{ij} 's codes an injection.

1. For all $1 \leq i \leq k$ the clause $(x_{i1} \vee \cdots \vee x_{in})$. Hence vertex in K_k maps to at least one vertex of G.

2. For all $i, j_1, j_2, \neg x_{ij_1} \lor \neg x_{ij_2}$). Hence vertex in K_k maps to at most one vertex of G.

The above clauses makes the x_{ij} code an injection.

We now need clauses to make sure that that K_k maps to is clique. We do this by Let $i_1, i_2 \in \{1, \ldots, k\}$. We need that i_1 and i_2 map to two vertices that have an edge. Let E be the edges of G. Then we need

$$\bigvee_{(j_1,j_2)\in E} x_{i_1,j_1} \wedge x_{i_2,j_2}$$

SO, the final formula is:

