
Time and Space Classes
Exposition by William Gasarch

1 Deterministic Turing Machines

Turing machines are a model of computation. It is believed that anything that can
be computed can be computed by a Turing Machine. The definition won’t look like
much, and won’t be used much; however, it is good to have a rigorous definition to
refer to.

Def 1.1 A Turing Machine is a tuple (Q,Σ, δ, s, h) where

• Q is a finite set of states. It has the states s, qacc, qrej.

• Σ is a finite alphabet. It contains the symbol #.

• δ : Q− {qacc, qrej} × Σ→ Q× Σ ∪ {R,L}

• s ∈ Q is the start state, qacc is the accept state, qrej is the reject state.

We use the following convention:

1. On input x ∈ Σ∗, x = x1 · · ·xn, the machine starts with tape

#x1x2 · · ·xn#### · · ·

that is one way infinite.

2. The head is initially looking at the xn.

3. If δ(q, σ) = (p, τ) then the state changes from q to p and the symbol σ is
overwritten with τ . The head does not move.

4. If δ(q, σ) = (p, L) then the state changes from q to p and the head moves
Left one square. overwritten with τ . The head does not move. (Similar for
δ(q, σ) = (p,R).

5. If the machine is in state h then it is DONE.

6. If the machine halts in state qacc then we say M ACCEPTS x. If the machine
halts in state qrej then we say M REJECTS x.

Important Note: We can code Turing machines into numbers in many ways. The
important think is that when we do this we can, given a number i, extract out which
Turing Machine it corresponds to (if it does not correspond to one then we just say
its the machine that halts in one step on any input). Hence we can (and will) say
things like

1

• Let M1,M2,M3, . . . be a list of all Turing Machines.

• Run Mi(x). This is easy- given i, we can find Mi, — that is, find the code for
it, and then run it on x.

Def 1.2 A function f is COMPUTABLE if there is a Turing Machine M such that

(∀x)[M(x) = f(x)]

Def 1.3 A set A is DECIDABLE if there is a Turing Machine M such that
For all x:

x ∈ A→M(x)ACCEPTS

x /∈ A→M(x)REJECTS

2 Nondeterministic Turing Machines

Def 2.1 A Turing Machine is a tuple (Q,Σ, δ, s, h) where

• Q is a finite set of states

• Σ is a finite alphabet. It contains the symbol #.

• δ : Q− {qacc, qrej} × Σ→ 2Σ→Q×Σ∪{R,L}

• s ∈ Q is the start state

• h ∈ Q is the halt state.

So if the machine is in a configuration there are MANY choices of what it can do.

Def 2.2 Let M be a nondet TM. The set of x that M ACCEPTS is

{x | SOME choice of moves of the nondet machine leads to qacc }.

(We do not define the notion of M computing a function. There are several ways
to do this, but they will not be useful for us.)

We can define a MULTITAPE Turing Machine. We leave it to you to define
formally. Note that each machine has a constant number of tapes.

2

3 Time and Space Classes

Def 3.1 Let T (n) be a computable function (think of it as increasing). A is in
DTIME(T (n)) if there is a MULTITAPE TM M that decides A and also, for all
x, M(x) halts in time ≤ T (|x|). Convention: By DTIME(T (n)) we really mean
DTIME(O(T (n)). They are actually equivalent by having your TM just take bigger
steps.

Note that this is unfortunately machine dependent. It is possible that if we allow
2-tapes instead of one it would change how much you can do. We won’t have to deal
with this much since we will usually define classes in terms of multi-tape machines,
and we will allow some slack on the time bound, like: DTIME(nO(1)).

It is known that a Multitape DTIME(T (n)) machine can be simulated by (1) a
1-tape DTIME(T (n)2) TM, and also0 (2) a 2-tape DTIME(T (n) log T (n)) TM.

Def 3.2 Let S(n) be a computable function (think of it as increasing). A is in
DSPACE(S(n)) if there is a TM M that decides A and also, for all x, M(x) only uses
space S(|x|). Convention: By DSPACE(S(n)) we really mean DSPACE(O(S(n)).
They are actually equivalent by having your TM just take bigger steps. Convention:
When dealing with space classes we will have an input tape which is read-only and a
separate worktape. When dealing with space-bounded TMs computing functions we
will also have a write-only output tape.

It is known that a Multitape DSPACE(S(n)) machine can be simulated by a
1-tape DSPACE(S(n)) TM.

Def 3.3 Let T (n) be a computable function (think of it as increasing). A is in
NTIME(T (n)) if there is a Nondet TM M that decides A and also, for all x, M(x),
on any path, halts in time ≤ T (|x|). Convention: By NTIME(T (n)) we really mean
NTIME(O(T (n)). They are actually equivalent by having your TM just take bigger
steps.

Def 3.4 Let S(n) be a computable function (think of it as increasing). A is in
NSPACE(S(n)) if there is a Nondet TM M that decides A and also, for all x, M(x),
on any path, only uses space ≤ S(|x|). Convention: By NSPACE(S(n)) we really
mean NSPACE(O(S(n)). They are actually equivalent by having your TM just take
bigger steps.

4 The Only Theorem about Time Classes Worth

Mentioning

In the next section we will discuss what is wrong with these classes. But before that
I will prove one theorem bout DTIME(T (n)) which is interesting. In the next section

3

I will discuss why this theorem is interesting even though, in general DTIME(T (n))
is not.
Important Note: Imagine doing the following: Take a list of TMs M1,M2, . . . and
then bound Mi by T (n). That is, when you run Mi if it has not halted by T (|x|)
steps then shut it off and declare its answer to be 0. To save on notation we will also
call this list

M1,M2,M3, . . .

KEY- if a set is in DTIME(T (n) then there is an i such that Mi decides it in time
T (n).

And now the one interesting theorem.

Theorem 4.1 Let T (n) be any computable function. Then there exists a decidable
set A /∈ DTIME(T (n)).

Proof: We give an algorithm for the set A which will define A and show that A
is computable.

Warning: A is a contrived set. It was constructed for the sole purpose of being
decidable but not in DTIME(T (n).

Let M1,M2, . . . , be a list of all Turing Machines.
We define the set A.

1. Input(x)

2. Run Mx(x) for T (|x|) steps.

(a) If Mx(x) halts within T (|x|) steps and outputs 1 (which means yes) then
output 0 (which means no)

(b) If Mx(x) has any other behavious (e.g. does not halt within T (|x|) steps,
halts and says 1, halts and outputs 1993) then output 1.

Let

A = {x : The above algorithm outputs 1 on input x }
We claim that A /∈ DTIME(T (n)).
Assume that A ∈ DTIME(T (n)). Then there is a machine Mx such that, for all

y:

• Mx(y) = A(y).

• Mx(y) halts within T (|y|) steps

Look at Mx(x). It halts within T (|x|) steps. Hence the algorithm above would
KNOW what Mx(x) is AND intentionally given the OTHER answer. Hence Mx and
A differ on x. So Mx DOES NOT decide A. Contradiction.

4

5 Whats Wrong with the Time Space Classes and

How to Fix the Problem

The problem with DTIME(T (n)) and the other classes is that they are model depen-
dent. When talking about DTIME(n2) you really need so say if you are working with
a 1-tape Turing Machine or a 2-tape Turing Machine or other variants. An example
look at the language

PAL = {w : w = wR}.
On a 2-tape Turing Machine PAL ∈ DTIME(n): Copy the string to the other tape

and then compare them. On a 1-tape Turing Machine it seems to require n2 time,
and in fact one can prove this. So on a 2-tape Turing Machine PAL ∈ DTIME(n2)
and, for all T (n) such that T (n) << n2, PAL /∈ DTIME(T (n)). To say all of this
properly we would need a subscript to denote how many tapes. But it doesn’t stop
there! What about if we have a 2-dimensional Turing Machine? 3-dimensional? k-
dimensional? What if we have a Turing Machine that is allowed to do the Hokey
Pokey and Turn itself about (cause THATS what its all about!).

We are NOT going to go there. We are NOT going to define TIME and SPACE
on all variants of Turing Machines So what to do instead? There are a few options:

1. If you want to study SORTING then use a model of computation that fits
that problem. Decision trees works there. More generally let the model fit the
application. This works for particular problems and even classes of problems.
The Pointer Machine Models are one success story. One can even view DFA’s
in this light. The PRO of this approach is that we can make fine distinctions:
n vs n log n that matter for the real world. problems people care about. The
CON is that we can’t prove or even define large classes of problems. This work
is very interesting and given how I change this course around it may be in this
course someday; but not today.

2. We noted above that PAL is in DTIME(n) on 1-tape TM’s but requires DTIME(n2)
on 2-tape TM’s. Whats a square factor between friends? What is we decide we
don’t care about polynomial factors. It turns out that ALL variants of Turing
machines are equivalent up to poly time and space. Hence we can define P , NP
by a 1-tape TM confident that the definition will not change if you go to 2-tape
or even a TM that does the hokey pokey. The PRO of this approach is that
we can prove theorems about classes of problems. The CON is that we cannot
make fine distinctions. To us n and n100 are the same. This is the approach we
take. We will need to use 1-Tape TM’s a few times but not much.

Def 5.1 For all of the definitions below, 1-tape and multitape are equivalent. This
is important in the proof of Cooks theorem and later in the proof that a particular
lang is EXPSPACE complete and hence not in P.

5

1. P = DTIME(nO(1)).

2. NP = NTIME(nO(1)). This is equivalent of just using 1-tape TM’s. (This is
equivalent to our quantifier definition.)

3. EXP = DTIME(2nO(1)
).

4. NEXP = NTIME(2nO(1)
).

5. L = DSPACE(O(log n)).

6. NL = NSPACE(O(log n)).

7. PSPACE = DSPACE(nO(1)).

8. NSPACE = NSPACE(nO(1)).

9. EXPSPACE = DSPACE(2nO(1)
).

10. NEXPSPACE = NSPACE(2nO(1)
).

6 Easy Relations Between Classes

The following theorem is trivial.

Theorem 6.1 Let T (n) and S(n) be computable functions (think of as increasing).

1. DTIME(T (n)) ⊆ NTIME(T (n)).

2. DSPACE(S(n)) ⊆ NSPACE(S(n)).

3. DTIME(T (n)) ⊆ DSPACE(T (n)).

4. NTIME(T (n)) ⊆ NSPACE(T (n)).

The following theorem is easy but not trivial.

Theorem 6.2 Let T (n) and S(n) be computable functions (think of as increasing).

1. NTIME(T (n)) ⊆ DTIME(2O(T (n))). (Just simulate ALL possible paths.)

2. NTIME(T (n)) ⊆ DSPACE(O(T (n))). (Just simulate ALL possible paths- keep
a counter for which path you are simulating.)

6

7 Sophisticated Relations Between Classes

Theorem 7.1 Let S(n) be computable functions (think of as increasing). Then

NSPACE(S(n)) ⊆ DSPACE(S(n)2).

Proof: Let A ∈ NSPACE(S(n) via TM M . Given x we want to determine if
SOME path in M(x) goes to an accept state.

We will assume M has 1 worktape. The modification for many tapes are easy.
A configuration (henceforth config) is a snapshot of the S(n) squares of the work-

tape, the state, and where the head is. It does not include the input.
Note that we CANNOT write down all of possible configs. Even so, consider the

following: There are 2O(S(n) configurations. Consider them to be nodes of a graph
(which we CANNOT write down). There is an edge from C to D if from C you can
get, in one step to D. Since M is nondeterministic there may be more than one. Note
that you have to know x as well as C and D to tell if there is an edge.

We can now restate the problem: Given a directed graph by being given a program
E that will, given two nodes (a, b can tell if (a, b) is an edge, and given two nodes
s, t (in our case s is the start configuration and t is the accepting configuration which
we can assume is unique) determine if there is a path from s to t. The graph has N
nodes. (In our case N = 2O(S(n)).) Do the problem in O((logN)2) space).

We assume the graph is fixed and write a program E that will, give a, b, t, tell if
there is a path from a to b of length ≤ t.

ALG(a, b, t)

1. If t = 0 then if a = b output YES, else output NO.

2. If t = 1 then if E(a, b) = 1 output YES, else output NO.

3. For all v ∈ V
If ALG(a, v, t/2) = Y ES AND ALG(v, b, t/2) = Y ES then output YES

The depth of recursion is O(log t) and each recursion need to store a, b, t which is
O(log t). Hence the program runs in space O((log t)2).

We run this on OUR graph with t = 2S(n) and get the result.

Corollary 7.2 PSPACE = NPSPACE.

What do we know about NL ? Using the above we get

NSPACE(log n) ⊆ DSPACE((log n)2)) ⊆ DTIME(2(logn)2).

Can we do better? YES!

7

Theorem 7.3 NL ⊆ P .

Proof: Let A ∈ NL via TM M . Given x we want to determine if SOME path in
M(x) goes to an accept state.

We will assume M has 1 worktape. The modification for many tapes are easy.
A configuration is as in the last theorem. KEY- we CAN write down all possi-

ble configs. In the last theorem we had a graph IMPLICITLY. Here we have one
EXPLICITLY.

Write down all of possible config. There are only 2O(logn) of them which is some
poly, say nc. Consider them to be nodes of a graph. We draw a directed graph from
u to v if from u you CAN go to v in one step (note that this depends on both u and
x).

x ∈ A iff there is a path from the start config to an accept config in the graph.
This can be determined in time poly in the size of the graph which is poly in nc so
poly.

Note 7.4 So we know NL ⊆ P . Do we think NL 6= P or NL = P? Do we think this
is hard to determine? We think NP 6= P . And we think it will be hard to determine.
Why do we think that? There has been work no proving that some problems are hard
to determine. NL vs P was one of them. It was part of my PhD thesis.

8 Time and Space Hierarchy Theorems

Important Note: Imagine doing the following: Take a list of TMs M1,M2, . . . and
then bound Mi by T (n). That is, when you run Mi if it has not halted by T (|x|)
steps then shut it off and declare its answer to be 0. To save on notation we will also
call this list

M1,M2,M3, . . .

KEY- if a set is in DTIME(T (n) then there is an i such that Mi decides it in time
T (n).

KEY- if Mi decides a set then it is in DTIME(T (n)).
Hence we have a list that represents all of DTIME(T (n)).
Does more time help? YES but the proof involves some details we will skip.

Theorem 8.1 (The Time Hierarchy Theorem) For all computable increasing T (n)
there exists a set A such that

A ∈ DTIME(T (n) log T (n)))−DTIME(T (n)).

8

Proof: Let M1,M2, . . . , represent all of DTIME(T (n)) as described above.
We construct a set A to NOT be in DTIME(T (n)). We will want A and to

DISAGREE with M1, to DISAGREE with M2, etc. Lets state this in terms of
REQUIREMENTS

Ri : A and Mi differ on some string.
We want A to satisfy all of these requirements.
Here is our algorithm for A. It will be a subset of 0∗.

1. Input 0i.

2. Run Mi(0
i). If the results is 1 then output 0. If the results is 0 then output 1.

Note that, for all i, Mi and A DIFFER on 0i. Hence every Ri is satisfied. Therefore
A /∈ DTIME(T (n)).

How do we get A ∈ DTIME(T (n)) log T (n))? It is KNOWN that any multitape
DTIME(T (n)) TM can be SIMULATED by a 2-tape TM in time T (n) log T (n). So
we use this to run Mi(0

i) in the algorithm. The entire algorithm can then be one in
time T (n) log T (n).

Corollary 8.2 P ⊂ EXP.

The following theorem is proved similarly:

Theorem 8.3 (The Space Hierarchy Theorem) Let S1 and S2 be computable increas-

ing functions. Assume limn→∞
S1(n)
S2(n)

=∞. Then there exists a set A such that

A ∈ DSPACE(S1(n))s ⊆ DSPACE(S1(n)).

Corollary 8.4 L ⊂ PSPACE.

There are also nondeterministic versions of the hierarchy theorems which we state
without proof. The proofs are similar but a bit more technical.

Theorem 8.5 (The Nondet Time Hierarchy Theorem) For all computable increasing
T (n) there exists a set A such that

A ∈ NTIME(T (n) log T (n)))− NTIME(T (n)).

Corollary 8.6 NP ⊂ NEXP.

9

Theorem 8.7 (The Nondet Space Hierarchy Theorem) Let S1 and S2 be computable

increasing functions. Assume limn→∞
S1(n)
S2(n)

=∞. Then there exists a set A such that

A ∈ NSPACE(S1(n))s ⊆ NSPACE(S1(n)).

Corollary 8.8 NL ⊂ NSPACE.

Note that NSPACE = PSPACE and NL ⊆ P . Hence we have

NL ⊆ P ⊆ PSPACE

and

NL ⊂ PSPACE.

Therefore we have that EITHER
NL ⊂ P OR P ⊂ PSPACE. We think both are true.

10

