CLIQ ≤ SAT

Exposition by William Gasarch—U of MD
CLIQ ≤ SAT. Why?

Bill Today we will prove CLIQ ≤ SAT.
CLIQ ≤ SAT. Why?

Bill Today we will prove CLIQ ≤ SAT.
Yaelle That’s stupid! We know CLIQ ≤ SAT by Cook-Levin.
${\text{CLIQ}} \leq {\text{SAT}}$. Why?

Bill Today we will prove $\text{CLIQ} \leq \text{SAT}$.

Yaelle That’s stupid! We know $\text{CLIQ} \leq \text{SAT}$ by Cook-Levin.

Bill Write a program that will, given (G, k) produce ϕ such that

$$(G, k) \in \text{CLIQ} \text{ iff } \phi \in \text{SAT}$$
CLIQ \leq SAT. Why?

Bill Today we will prove CLIQ \leq SAT.

Yaelle That’s stupid! We know CLIQ \leq SAT by Cook-Levin.

Bill Write a program that will, given \((G, k)\) produce \(\phi\) such that

\[(G, k) \in \text{CLIQ} \text{ iff } \phi \in \text{SAT} \]

Yaelle Deal with Turing Machines? That’s **insane**!
Today we will prove CLIQ ≤ SAT.

That’s stupid! We know CLIQ ≤ SAT by Cook-Levin.

Write a program that will, given \((G, k)\) produce \(\phi\) such that

\[(G, k) \in \text{CLIQ} \iff \phi \in \text{SAT}\]

Deal with Turing Machines? That’s insane!

Correct. I will show CLIQ ≤ SAT in a sane way.
Bill Today we will prove CLIQ ≤ SAT.

Yaelle That’s stupid! We know CLIQ ≤ SAT by Cook-Levin.

Bill Write a program that will, given \((G, k)\) produce \(\phi\) such that

\[(G, k) \in \text{CLIQ} \text{ iff } \phi \in \text{SAT}\]

Yaelle Deal with Turing Machines? That’s insane!

Bill Correct. I will show CLIQ ≤ SAT in a sane way.

Yaelle Why? Not practical since SAT is hard. Not theoretically interesting since we already know CLIQ ≤ SAT.
Bill Today we will prove CLIQ ≤ SAT.
Yaelle That’s stupid! We know CLIQ ≤ SAT by Cook-Levin.
Bill Write a program that will, given \((G, k)\) produce \(\phi\) such that
\[
(G, k) \in \text{CLIQ} \text{ iff } \phi \in \text{SAT}
\]
Yaelle Deal with Turing Machines? That’s insane!
Bill Correct. I will show CLIQ ≤ SAT in a sane way.
Yaelle Why? Not practical since SAT is hard. Not theoretically interesting since we already know CLIQ ≤ SAT.
Bill Because there are awesome SAT Solvers!
Old View, New View

I want to solve CLIQ. Since $\text{SAT} \leq \text{CLIQ}$, CLIQ is probably hard. Darn!

I want to solve CLIQ. I know from Cook-Levin that $\text{CLIQ} \leq \text{SAT}$. That reduction is insane (hard and blow up). If I can find a better reduction of $\text{CLIQ} \leq \text{SAT}$ then to solve a CLIQ problem I can transform it to a SAT problem, and solve that.

Caveat

1. SAT solvers are only good on some problems.
2. Getting the reductions to not blow up is not always possible.
Old View, New View

Old View I want to solve CLIQ. Since $\text{SAT} \leq \text{CLIQ}$, CLIQ is probably hard. Darn!
Old View, New View

Old View I want to solve CLIQ. Since $\text{SAT} \leq \text{CLIQ}$, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that $\text{CLIQ} \leq \text{SAT}$.

Caveat
1. SAT solvers are only good on some problems.
2. Getting the reductions to not blow up is not always possible.
Old View I want to solve CLIQ. Since $\text{SAT} \leq \text{CLIQ}$, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that $\text{CLIQ} \leq \text{SAT}$. That reduction is insane (hard and blow up).
Old View, New View

Old View I want to solve CLIQ. Since SAT \leq CLIQ, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that CLIQ \leq SAT.
That reduction is insane (hard and blow up).
If I can find a better reduction of CLIQ \leq SAT then to solve a CLIQ problem I can transform it to a SAT problem, and solve that.
Old View, New View

Old View I want to solve CLIQ. Since \(\text{SAT} \leq \text{CLIQ} \), CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that \(\text{CLIQ} \leq \text{SAT} \). That reduction is insane (hard and blow up). If I can find a better reduction of \(\text{CLIQ} \leq \text{SAT} \) then to solve a CLIQ problem I can transform it to a SAT problem, and solve that.

Caveat This does not always work.
Old View, New View

Old View I want to solve CLIQ. Since $\text{SAT} \leq \text{CLIQ}$, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that $\text{CLIQ} \leq \text{SAT}$. That reduction is insane (hard and blow up). If I can find a better reduction of $\text{CLIQ} \leq \text{SAT}$ then to solve a CLIQ problem I can transform it to a SAT problem, and solve that.

Caveat This does not always work.

1. SAT solvers are only good on some problems.
Old View I want to solve CLIQ. Since SAT \leq CLIQ, CLIQ is probably hard. Darn!

New View I want to solve CLIQ. I know from Cook-Levin that CLIQ \leq SAT.
That reduction is insane (hard and blow up).
If I can find a better reduction of CLIQ \leq SAT then to solve a CLIQ problem I can transform it to a SAT problem, and solve that.

Caveat This does not always work.

1. SAT solvers are only good on some problems.
2. Getting the reductions to not blow up is not always possible.
Does G have a clique of size k?
How to View CLIQ

Does G have a clique of size k?

We rephrase that:

I will go to the Zoom whiteboard and do an example, drawing with the mouse.
Wish me luck.
Does G have a clique of size k?
We rephrase that:
Let $G = (V, E)$.

I will go to the Zoom whiteboard and do an example, drawing with the mouse.

Wish me luck.
Does G have a clique of size k?

We rephrase that:

Let $G = (V, E)$.

G has a clique of size k is equivalent to:

There is a 1-1 function $\{1, \ldots, k\} \rightarrow V$ such that for all $1 \leq a, b \leq k$, $(f(a), f(b)) \in E$.

I will go to the Zoom whiteboard and do an example, drawing with the mouse.

Wish me luck.
Does G have a clique of size k?

We rephrase that:

Let $G = (V, E)$.

G has a clique of size k is equivalent to:

There is a 1-1 function $\{1, \ldots, k\} \rightarrow V$ such that for all $1 \leq a, b \leq k$, $(f(a), f(b)) \in E$.

I will go to the Zoom whiteboard and do an example, drawing with the mouse.
Does G have a clique of size k?

We rephrase that:

Let $G = (V, E)$.

G has a clique of size k is equivalent to:

There is a 1-1 function $\{1, \ldots, k\} \rightarrow V$ such that for all $1 \leq a, b \leq k$, $(f(a), f(b)) \in E$.

I will go to the Zoom whiteboard and do an example, drawing with the mouse. Wish me luck.
We want to know:

Is there a 1-1 function \(\{1, \ldots, k\} \rightarrow V \) such that for all \(1 \leq a, b \leq k \), \((f(a), f(b)) \in E \).
We want to know:

Is there a 1-1 function \(\{1, \ldots, k\} \rightarrow V \) such that for all \(1 \leq a, b \leq k \), \((f(a), f(b)) \in E\).

We formulate this as a Boolean Formula.
We want to know:

Is there a 1-1 function \(\{1, \ldots, k\} \rightarrow V \) such that for all \(1 \leq a, b \leq k, (f(a), f(b)) \in E \).

We formulate this as a Boolean Formula.

For \(1 \leq i \leq k, 1 \leq j \leq n \), have Boolean Vars \(x_{ij} \).
We want to know:

Is there a 1-1 function \(\{1, \ldots, k\} \rightarrow V \) such that for all \(1 \leq a, b \leq k, (f(a), f(b)) \in E \).

We formulate this as a Boolean Formula.

For \(1 \leq i \leq k, 1 \leq j \leq n \), have Boolean Vars \(x_{ij} \).

Intent

\[
x_{ij} = \begin{cases}
T & \text{if numb } i \text{ maps to vertex } j \\
F & \text{if numb } i \text{ does not map to vertex } j
\end{cases}
\]
The formula is in diff parts to guarantee diff things.
Formula: x_{ij} Represent a 1-1 Function

The formula is in diff parts to guarantee diff things.

Every i maps to at least one j

For $1 \leq i \leq k$

$$x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$$
Formula: x_{ij} Represent a 1-1 Function

The formula is in diff parts to guarantee diff things.

Every i maps to at least one j
For $1 \leq i \leq k$

$$x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$$

Every i maps to at most one j
For $1 \leq i \leq k$, for $1 \leq j_1 < j_2 \leq n$

$$\neg (x_{ij_1} \land x_{ij_2})$$

Note So far all we've used about G is that it has n vertices.
Formula: x_{ij} Represent a 1-1 Function

The formula is in diff parts to guarantee diff things.

Every i maps to at least one $j
For $1 \leq i \leq k$

$$x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$$

Every i maps to at at most one $j
For $1 \leq i \leq k$, for $1 \leq j_1 < j_2 \leq n$

$$\neg (x_{ij_1} \land x_{ij_2})$$

The mapping is 1-1
For $1 \leq i_1 < i_2 \leq k$, for $1 \leq j \leq n$

$$\neg (x_{i_1,j} \land x_{i_2,j})$$
Formula: x_{ij} Represent a 1-1 Function

The formula is in different parts to guarantee different things.

Every i maps to at least one $j
For $1 \leq i \leq k$

$$x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$$

Every i maps to at most one $j
For $1 \leq i \leq k$, for $1 \leq j_1 < j_2 \leq n$

$$\neg (x_{ij_1} \land x_{ij_2})$$

The mapping is 1-1
For $1 \leq i_1 < i_2 \leq k$, for $1 \leq j \leq n$

$$\neg (x_{i_1,j} \land x_{i_2,j})$$

Note So far all we’ve used about G is that it has n vertices.
We need that if i_1 maps to j_1 and i_2 maps to j_2 then $(j_1, j_2) \in E$.
We need that if i_1 maps to j_1 and i_2 maps to j_2 then $(j_1, j_2) \in E$.

For every $1 \leq i_1 < i_2 \leq k$

\[
\bigvee_{(j_1, j_2) \in E} x_{i_1j_1} \land x_{i_2j_2}.
\]
How Big is the Formula

We state the parts of the formula and how long they are.
How Big is the Formula

We state the parts of the formula and how long they are.

For $1 \leq i \leq k$: $x_i^1 \lor x_i^2 \lor \cdots \lor x_i^n$. $O(kn)$.
We state the parts of the formula and how long they are.

For $1 \leq i \leq k$: $x_{i_1} \lor x_{i_2} \lor \cdots \lor x_{i_n}$. $O(kn)$.

For $1 \leq i \leq k$, for $1 \leq j_1 < j_2 \leq n$ $\neg(x_{ij_1} \land x_{ij_2})$. $O(kn^2)$
How Big is the Formula

We state the parts of the formula and how long they are.

For $1 \leq i \leq k$: $x_{i_1} \lor x_{i_2} \lor \cdots \lor x_{i_n}$. $O(kn)$.

For $1 \leq i \leq k$, for $1 \leq j_1 < j_2 \leq n$ $\neg(x_{ij_1} \land x_{ij_2})$. $O(kn^2)$

For $1 \leq i_1 < i_2 \leq k$, for $1 \leq j \leq n$ $\neg(x_{i_1,j} \land x_{i_2,j})$. $O(k^2n)$
How Big is the Formula

We state the parts of the formula and how long they are.

For $1 \leq i \leq k$: $x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$. $O(kn)$.

For $1 \leq i \leq k$, for $1 \leq j_1 < j_2 \leq n$: $\neg(x_{ij_1} \land x_{ij_2})$. $O(kn^2)$

For $1 \leq i_1 < i_2 \leq k$, for $1 \leq j \leq n$: $\neg(x_{i_1j} \land x_{i_2j})$. $O(k^2n)$

For every $1 \leq i_1 < i_2 \leq k$, $\bigvee_{(j_1,j_2) \in E} x_{i_1j_1} \land x_{i_2j_2}$. $O(k^2|E|)$
How Big is the Formula

We state the parts of the formula and how long they are.

For $1 \leq i \leq k$: $x_{i_1} \lor x_{i_2} \lor \cdots \lor x_{i_n}$. $O(kn)$.

For $1 \leq i \leq k$, for $1 \leq j_1 < j_2 \leq n$: $\neg(x_{i j_1} \land x_{i j_2})$. $O(kn^2)$

For $1 \leq i_1 < i_2 \leq k$, for $1 \leq j \leq n$: $\neg(x_{i_1 j} \land x_{i_2 j})$. $O(k^2n)$

For every $1 \leq i_1 < i_2 \leq k$, $\lor_{(j_1, j_2) \in E} x_{i_1 j_1} \land x_{i_2 j_2}$. $O(k^2|E|)$

▶ The formula is of size $O(kn^2) + O(k^2n) + O(k^2|E|)$.

▶ The construction is easy to do. Yaelle could code this up.

▶ The constants are small.

▶ Usually $k \ll n$ so the real issue is the n^2 and the $|E|$.

Upshot: probably really good on sparse graphs.
How Big is the Formula

We state the parts of the formula and how long they are.

For $1 \leq i \leq k$: $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$. $O(kn)$.

For $1 \leq i \leq k$, for $1 \leq j_1 < j_2 \leq n$: $\lnot (x_{ij_1} \land x_{ij_2})$. $O(kn^2)$.

For $1 \leq i_1 < i_2 \leq k$, for $1 \leq j \leq n$: $\lnot (x_{i_1j} \land x_{i_2j})$. $O(k^2n)$.

For every $1 \leq i_1 < i_2 \leq k$, $\bigvee_{(j_1,j_2) \in E} x_{i_1j_1} \land x_{i_2j_2}$. $O(k^2|E|)$

- The formula is of size $O(kn^2) + O(k^2n) + O(k^2|E|)$.
- The construction is easy to do. Yaelle could code this up.
How Big is the Formula

We state the parts of the formula and how long they are.

For $1 \leq i \leq k$: $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$. $O(kn)$.

For $1 \leq i \leq k$, for $1 \leq j_1 < j_2 \leq n$: $\neg(x_{i_j1} \land x_{i_j2})$. $O(kn^2)$

For $1 \leq i_1 < i_2 \leq k$, for $1 \leq j \leq n$: $\neg(x_{i_1,j} \land x_{i_2,j})$. $O(k^2n)$

For every $1 \leq i_1 < i_2 \leq k$, $\lor_{(j_1,j_2) \in E} x_{i_1,j_1} \land x_{i_2,j_2}$. $O(k^2|E|)$

- The formula is of size $O(kn^2) + O(k^2n) + O(k^2|E|)$.
- The construction is easy to do. Yaelle could code this up.
- The constants are small.
How Big is the Formula

We state the parts of the formula and how long they are.

For $1 \leq i \leq k$: $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$. $O(kn)$.

For $1 \leq i \leq k$, for $1 \leq j_1 < j_2 \leq n \neg (x_{ij_1} \land x_{ij_2})$. $O(kn^2)$

For $1 \leq i_1 < i_2 \leq k$, for $1 \leq j \leq n \neg (x_{i_1,j} \land x_{i_2,j})$. $O(k^2n)$

For every $1 \leq i_1 < i_2 \leq k$, $\lor_{(j_1,j_2) \in E} x_{i_1j_1} \land x_{i_2j_2}$. $O(k^2|E|)$

- The formula is of size $O(kn^2) + O(k^2n) + O(k^2|E|)$.
- The construction is easy to do. Yaelle could code this up.
- The constants are small.
- Usually $k \ll n$ so the real issue is the n^2 and the $|E|$.
How Big is the Formula

We state the parts of the formula and how long they are.

For $1 \leq i \leq k$: $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$. $O(kn)$.

For $1 \leq i \leq k$, for $1 \leq j_1 < j_2 \leq n$ $\neg(x_{ij_1} \land x_{ij_2})$. $O(kn^2)$

For $1 \leq i_1 < i_2 \leq k$, for $1 \leq j \leq n$ $\neg(x_{i_1,j} \land x_{i_2,j})$. $O(k^2n)$

For every $1 \leq i_1 < i_2 \leq k$, $\bigvee_{(j_1,j_2) \in E} x_{i_1,j_1} \land x_{i_2,j_2}$. $O(k^2|E|)$

▶ The formula is of size $O(kn^2) + O(k^2n) + O(k^2|E|)$.

▶ The construction is easy to do. Yaelle could code this up.

▶ The constants are small.

▶ Usually $k \ll n$ so the real issue is the n^2 and the $|E|$.

▶ Upshot: probably really good on sparse graphs.