The Cook-Levin Thm

Exposition by William Gasarch—U of MD
Variants of SAT

1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$.

2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \land \cdots \land C_m$ where each C_i is an \lor of literals.

3. k-SAT is the set of all boolean formulas in SAT of the form $C_1 \land \cdots \land C_m$ where each C_i is an \lor of exactly k literals.

4. DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \lor \cdots \lor C_m$ where each C_i is an \land of literals.

5. k-DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \lor \cdots \lor C_m$ where each C_i is an \land of exactly k literals.
Turing Machines Def

Def A *Turing Machine* is a tuple \((Q, \Sigma, \delta, s, h)\) where

- \(Q\) is a finite set of states. It has the state \(h\).
- \(\Sigma\) is a finite alphabet. It contains the symbol \#.
- \(\delta : (Q \setminus \{h\}) \times \Sigma \rightarrow Q \times \Sigma \cup \{R, L\}\)
- \(s \in Q\) is the start state, \(h\) is the halt state.

Note There are many variants of Turing Machines- more tapes, more heads. All equivalent.
Conventions for our Turing Machines

1. Tape has a left endpoint; however, the tape goes off to infinity to the right.
2. The alphabet has symbols \(\{a, b, \#, $, Y, N\} \).
3. \# is the blank symbol.
4. $ is a separator symbol.
5. Y and N are only used when the machine goes into a halt state. They are YES and NO.
6. The input is written on the left. So the input \(abba \) would be on the tape as

 \[abba###\ldots \]

7. The head is initially on the rightmost symbol of the input. So it he above it would be on the a just before the # symbol.
How to Represent any Computation

Let M be a Turing Machine and $x \in \Sigma^*$. We represent the computation $M(x)$ as follows:

Example The tape has:

$$abba\#ab\text{c}\text{ab}\#a\#\#\#\#\cdots$$

If the machine is in state q and the head is looking at the c then we represent this by:

$$abba\#ab(c, q)ab\#a\#\#\#\#\cdots$$

Convention—extend alphabet and allow symbols $\Sigma \times Q$. The symbol (c, q) means the symbol is c, the state is q, and that square is where the head of the machine is.
We need a term for strings like:

\[abba\#ab(c, q)a \]

Def Strings in \(\Sigma^*(\Sigma \times Q)\Sigma^* \) are **configuration**.

The Computation \(M(x) \) is represented by a sequence of configs.

Key A config is finite since what we don’t see is \#.
Example

If $\delta(s, b) = (q, L)$ and $\delta(q, b) = (p, a)$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>(b, s)</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>(b, q)</td>
<td>b</td>
<td>#</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>(a, p)</td>
<td>b</td>
<td>#</td>
</tr>
</tbody>
</table>

- The left endpoint is the end of the tape.
- The unseen symbols on the right are all #
How to Represent an NP Computation

Let $X \in \text{NP}$.
Let $X \in \text{NP}$. Then there exists a poly p and a TM that runs in time poly q such that

$$X = \{x \mid (\exists y)[|y| = p(|x|) \text{ AND } M(x, y) = Y]\}$$
How to Represent an NP Computation

Let $X \in \text{NP}$. Then there exists a poly p and a TM that runs in time poly q such that

$$X = \{ x \mid (\exists y)[|y| = p(|x|) \text{ AND } M(x, y) = Y] \}$$

$M(x, y)$ runs in time $\leq q(|x| + |y|) = q(|x| + p(|x|))$.

""
How to Represent an NP Computation

Let $X \in \text{NP}$. Then there exists a poly p and a TM that runs in time poly q such that

$$X = \{x \mid (\exists y)[|y| = p(|x|) \text{ AND } M(x, y) = Y]\}$$

$M(x, y)$ runs in time $\leq q(|x| + |y|) = q(|x| + p(|x|)).$
Let $t(n) = q(n + p(n))$, a poly.
How to Represent an NP Computation

Let $X \in \text{NP}$. Then there exists a poly p and a TM that runs in time poly q such that

$$X = \{ x \mid (\exists y)[|y| = p(|x|) \text{ AND } M(x, y) = Y] \}$$

$M(x, y)$ runs in time $\leq q(|x| + |y|) = q(|x| + p(|x|))$. Let $t(n) = q(n + p(n))$, a poly. Here is ALL that matters:

- Numb of steps $M(x, y)$ takes is $\leq t(|x|)$. Hence $\leq t(|x|)$ configs.
- Computation can only look at the first $t(|x|)$ tapes squares on any config.
New Convention

Old Convention

| # | a | a | b | b | (s, b) | # |

means that off to the right there are an infinite number of #.

Tape is \(t(\, | \, x \, |) \) long so know when stops. Can include entire tape. Key Config is finite since what we don't see is never used.
New Convention

Old Convention

```
# a a b b (s, b) #
```

means that off to the right there are an infinite number of #.

New Convention

```
# a a b b (s, b) # ··· #
```

Tape is $t(|x|)$ long so know when stops. Can include entire tape. Key Config is finite since what we don’t see is never used.
Summary of What’s Important

Let $X \in \text{NP}$ via poly q and TM M, so

$$X = \{ x : (\exists y)[|y| = q(|x|) \land M(x, y) = Y] \}$$
Summary of What’s Important

Let $X \in \text{NP}$ via poly q and TM M, so

$$X = \{x : (\exists y)[|y| = q(|x|) \land M(x, y) = Y]\}$$

$x \in X$ implies $(\exists y)[|y| = q(|x|) \land M(x, y) = Y]$ implies $(\exists y, C_1, \ldots, C_t)[C_1, \ldots, C_t$ is an accepting comp of $M(x, y)]$
Theorem

SAT is NP-complete.

We need to prove two things:

1. SAT ∈ NP.

\[
SAT = \{ \phi : (\exists \vec{y})[\phi(\vec{y}) = T] \}
\]

Formally

\[
B = \{ (\phi, \vec{y}) : \phi(\vec{y}) = T \}
\]

The satisfying assignment is the witness.

2. For all \(X \in NP \), \(X \leq SAT \). This is the bulk of the proof.
If $x \in X$ then there is a y of length $p(|x|)$ such that $M(x, y) = Y$.
If $x \in X$ then there is a y and a sequence of configurations C_1, C_2, \ldots, C_t such that

- C_1 is the configuration that says ‘input is x\y, and I am in the starting state.’
- For all i, C_{i+1} follows from C_i (note that M is deterministic) using δ.
- C_t is the configuration that is in state h and the output is Y.
- $t = q(|x| + p(|x|))$.

How to make all of this into a formula?
KEY 1: We have variables for every possible entry in every possible configuration. The variables are

$$\{z_{i,j,\sigma} : 1 \leq i, j \leq t, \sigma \in \Sigma \cup (Q \times \Sigma)\}$$

If there is an accepting sequence of configurations then $z_{i,j,\sigma} = T$ iff the jth symbol in the ith configuration is σ.
Making the $z_{i,j,\sigma}$ Make Sense

Need that for all $1 \leq i, j \leq t$ there exists exactly one σ such that $z_{i,j,\sigma}$ is TRUE.

$$\bigvee_{\sigma \in \Sigma \cup (\Sigma \times Q)} z_{i,j,\sigma}$$

for each $\sigma \in \Sigma \cup (\Sigma \times Q)$

$$z_{i,j,\sigma} \rightarrow \bigwedge_{\tau \in \Sigma \cup (\Sigma \times Q) \setminus \{\sigma\}} \neg z_{i,j,\tau}$$
C_1 is Start Config

C_1 is the \bigwedge of the following:
C_1 starts with x. Let $x = x_1 \cdots x_n$.

$$Z_{1,1,x_1} \wedge \cdots \wedge Z_{1,n-1,x_{n-1}}, Z_{1,n,(x_n,s)} \wedge Z_{1,n+1,\$}$$

C_1 then has $q(|x|)$ symbols from $\{a, b\}$, so NOT the funny symbols.

$$\bigwedge_{j=n+2}^{n+q(|x|)+1} \bigvee_{\sigma \in \{a, b\}} Z_{1,j,\sigma}$$

C_1 then has all blanks:

$$\bigwedge_{j=q(n)+n+3}^{t(n)} Z_{1,j,\#}$$
C_1 is Start Config: Example

$x = ab$, $p(n) = n^2$, and $q(n) = 2n$

$|y| = 4$. Input to M is of length $2 + 4 + 1 = 7$, so $M(x, y)$ runs

$\leq 2 \times 7 = 14$ steps.

Formula saying C_1 codes x as input is

$$Z_{1,1,a} \land Z_{1,2,(b,s)} \land Z_{1,3,\#} \land$$

$$(Z_{1,4,a} \lor Z_{1,4,b}) \land (Z_{1,5,a} \lor Z_{1,5,b}) \land (Z_{1,6,a} \lor Z_{1,6,b}) \land (Z_{1,7,a} \lor Z_{1,7,b}) \land$$

$$Z_{1,8,\#} \land \cdots \land Z_{1,23,\#}$$
C_t is an Accept Config

Convention $M(x,y)$ accepts means $M(x,y)$ leaves a Y on the left most square and the head is on the left most square. The state in C_t is h, the halt state,

$$Z_{t,1,(Y,h)}$$
C_i leads to C_{i+1}

Thought Experiment: What if $\delta(q, a) = (p, b)$. Then:

<table>
<thead>
<tr>
<th>σ_1</th>
<th>(a, q)</th>
<th>σ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_1</td>
<td>(b, p)</td>
<td>σ_2</td>
</tr>
</tbody>
</table>

Formula is a \land over relevant i, j, σ_1, σ_2 of:

$\left(z_{ij}\sigma_1 \land z_{i(j+1),(a,q)} \land z_{i,(j+2)\sigma_2} \right) \rightarrow$

$\left(z_{(i+1)j}\sigma_1 \land z_{(i+1)(j+1),(b,p)} \land z_{(i+1),(j+2)\sigma_2} \right)$
Thought Experiment: What if $\delta(q, a) = (p, L)$. Then:

\[
\begin{array}{ccc}
\sigma_1 & (a, q) & \sigma_2 \\
(\sigma_1, p) & a & \sigma_2 \\
\end{array}
\]

One can make a formula out of this as well. (Leave for HW.)
C_i leads to C_{i+1}

Note that only the symbols at or near the head get changed.

Also need a formula saying that if the (i,j) spot is NOT near the head and $z_{i,j,\sigma}$ then $z_{i+1,j,\sigma}$.
Putting it All Together

On input x you output a formula ϕ constructed as follows

1. $t(|x|) = q(|x| + p(|x|))$. We call this t.
2. Variables $\{z_{i,j,\tau} : 1 \leq i, j \leq t, \tau \in \Sigma \cup (\Sigma \times Q)\}$.
3. Formula saying:
 3.1 For all $1 \leq i, j \leq t$, exists ONE σ with $z_{i,j,\sigma} = T$.
 3.2 C_1 is the start config with x.
 3.3 C_t is the accept config.
 3.4 For each instruction of the TM have a formula saying C_i goes to C_{i+1} if that instruction is relevant.
 3.5 If head is not within 2 square of (i,j) and $z_{ij,\sigma}$ then $z_{(i+1)j,\sigma}$.
Important Upshot

- If $\text{SAT} \in \text{P}$ then every set in NP is in P, so we would have $\text{P} = \text{NP}$.
- We will soon have more NP-complete problems.
- If any NP-complete problem is in P then $\text{P} = \text{NP}$.
- In the year 2000 the Clay Math Institute posted seven math problems and offered $1,000,000$ for the solution to any of them. Resolving P vs NP was one of them.
Variants of SAT: Which ones are Hard? I

1. SAT is the set of all boolean formulas that are satisfiable.
1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$.

NP-complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \land \cdots \land C_m$ where each C_i is an \lor of literals. NP-complete. The proof of Cook-Levin yields a CNF formula.

3. k-SAT is the set of all boolean formulas in SAT of the form $C_1 \land \cdots \land C_m$ where each C_i is an \lor of exactly k literals. 3-SAT is NP-complete, 2-SAT is in Poly Time.
1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$. NP-Complete.
1. SAT is the set of all boolean formulas that are satisfiable. That is, \(\phi(\vec{x}) \in SAT \) if there exists a vector \(\vec{b} \) such that \(\phi(\vec{b}) = TRUE \). NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form \(C_1 \land \cdots \land C_m \) where each \(C_i \) is an \(\lor \) of literals.
Variants of SAT: Which ones are Hard? I

1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$. NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \land \cdots \land C_m$ where each C_i is an \lor of literals. NP-complete.
Variants of SAT: Which ones are Hard? I

1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$. NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \land \cdots \land C_m$ where each C_i is an \lor of literals. NP-complete. The proof of Cook-Levin yields a CNF formula.
1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$. NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \land \cdots \land C_m$ where each C_i is an \lor of literals. NP-complete. The proof of Cook-Levin yields a CNF formula.

3. k-SAT is the set of all boolean formulas in SAT of the form $C_1 \land \cdots \land C_m$ where each C_i is an \lor of exactly k literals.
Variants of SAT: Which ones are Hard? I

1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$. NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \land \cdots \land C_m$ where each C_i is an \lor of literals. NP-complete. The proof of Cook-Levin yields a CNF formula.

3. k-SAT is the set of all boolean formulas in SAT of the form $C_1 \land \cdots \land C_m$ where each C_i is an \lor of exactly k literals. 3-SAT is NP-complete, 2-SAT is in Poly Time.
1. DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \lor \cdots \lor C_m$ where each C_i is an \land of literals.
1. DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \lor \cdots \lor C_m$ where each C_i is an \land of literals. Poly Time. If some C_i does not have (say) both x and $\neg x$ then satisfiable, else not.

2. k-DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \lor \cdots \lor C_m$ where each C_i is an \land of exactly k literals.
1. DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \lor \cdots \lor C_m$ where each C_i is an \land of literals. Poly Time. If some C_i does not have (say) both x and $\neg x$ then satisfiable, else not.

2. k-DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \lor \cdots \lor C_m$ where each C_i is an \land of exactly k literals. Poly Time since DNFSAT is Poly Time.
CNFSAT Hard; DNFSAT Easy.

CNFSAT \rightarrow DNFSAT. Collect $1,000,000$

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT problem in Poly time, and now know if ϕ is in SAT.
CNFSAT Hard; DNFSAT Easy.
CNFSAT \rightarrow DNFSAT. Collect $1,000,000$

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT problem in Poly time, and now know if ϕ is in SAT.

Show me the Money! $1,000,000$ is mine!
CNFSAT Hard; DNFSAT Easy.
CNFSAT \rightarrow DNFSAT. Collect $1,000,000$

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT problem in Poly time, and now know if ϕ is in SAT.

Show me the Money! $1,000,000$ is mine!

Bad News This does not work.
CNFSAT Hard; DNFSAT Easy.
CNFSAT \rightarrow DNFSAT. Collect $1,000,000$

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT problem in Poly time, and now know if ϕ is in SAT.

Show me the Money! $1,000,000$ is mine!

Bad News This does not work.

Good News The reason it does not work is interesting.
CNFSAT Hard; DNFSAT Easy.
CNFSAT \rightarrow DNFSAT. Collect $1,000,000$

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT problem in Poly time, and now know if ϕ is in SAT.

Show me the Money! $1,000,000$ is mine!

Bad News This does not work.

Good News The reason it does not work is interesting.

Bad News I’d rather have the $1,000,000$ than be enlightened.
Vote on whether the following statement is TRUE or FALSE:

There is a proof that CNFSAT ≤ DNFSAT is NOT true. That is, there is NO poly time algorithm that will transform ϕ in CNF form to ψ in DNF form such that $\phi \in \text{SAT}$ iff $\psi \in \text{SAT}$.

TRUE, we DO have a proof! Hard to believe.
Vote on CNF vs DNF

Vote on whether the following statement is TRUE or FALSE:

*There is a proof that CNFSAT \leq DNFSAT is NOT true. That is, there is NO poly time algorithm that will transform ϕ in CNF form to ψ in DNF form such that $\phi \in \text{SAT}$ iff $\psi \in \text{SAT}$. TRUE, we Do have a proof!. Hard to believe."
Convert the following into CNF form

1. \((x_1 \lor y_1)\)
2. \((x_1 \lor y_1) \land (x_2 \lor y_2)\)
3. \((x_1 \lor y_1) \land (x_2 \lor y_2) \land (x_3 \lor y_3)\)
4. \((x_1 \lor y_1) \land (x_2 \lor y_2) \land (x_3 \lor y_3) \land (x_4 \land y_4)\)
CNF vs DNF

Convert the following into DNF form

1. \((x_1 \lor y_1)\)
Convert the following into DNF form

1. \((x_1 \lor y_1)\)
 \[x_1 \lor y_1\]

2. \((x_1 \lor y_1) \land (x_2 \lor y_2)\)
CNF vs DNF

Convert the following into DNF form

1. \((x_1 \lor y_1)\)
 \[x_1 \lor y_1\]

2. \((x_1 \lor y_1) \land (x_2 \lor y_2)\)
 \[(x_1 \land x_2) \lor (x_1 \land y_2) \lor (y_1 \land x_2) \lor (y_1 \land y_2).\]

3. \((x_1 \lor y_1) \land (x_2 \lor y_2) \land (x_3 \lor y_3)\)
CNF vs DNF

Convert the following into DNF form

1. \((x_1 \lor y_1)\)
 \[x_1 \lor y_1\]

2. \((x_1 \lor y_1) \land (x_2 \lor y_2)\)
 \[(x_1 \land x_2) \lor (x_1 \land y_2) \lor (y_1 \land x_2) \lor (y_1 \lor y_2). \]

3. \((x_1 \lor y_1) \land (x_2 \lor y_2) \land (x_3 \lor y_3)\)
 \[(x_1 \land x_2 \land x_3) \land (x_1 \land x_2 \land y_3) \land (x_1 \land y_2 \land x_3) \land (x_1 \land y_2 \land y_3) \land \]
 \[(y_1 \land x_2 \land x_3) \land (y_1 \land x_2 \land y_3) \land (y_1 \land y_2 \land x_3) \land (y_1 \land y_2 \land y_3) \]

4. \((x_1 \lor y_1) \land (x_2 \lor y_2) \land (x_3 \lor y_3) \land (x_4 \lor y_4)\)
CNF vs DNF

Convert the following into DNF form

1. \((x_1 \lor y_1)\)
 \[x_1 \lor y_1\]

2. \((x_1 \lor y_1) \land (x_2 \lor y_2)\)
 \[(x_1 \land x_2) \lor (x_1 \land y_2) \lor (y_1 \land x_2) \lor (y_1 \land y_2).\]

3. \((x_1 \lor y_1) \land (x_2 \lor y_2) \land (x_3 \lor y_3)\)
 \[(x_1 \land x_2 \land x_3) \land (x_1 \land x_2 \land y_3) \land (x_1 \land y_2 \land x_3) \land (x_1 \land y_2 \land y_3) \land \]
 \[(y_1 \land x_2 \land x_3) \land (y_1 \land x_2 \land y_3) \land (y_1 \land y_2 \land x_3) \land (y_1 \land y_2 \land y_3) \land \]
 \[\]

4. \((x_1 \lor y_1) \land (x_2 \lor y_2) \land (x_3 \lor y_3) \land (x_4 \lor y_4)\)
 Not going to do it but it would take 16 clauses.