BILL AND NATHAN START RECORDING

Context Sensitive Languages

I am supposed to say

Context Sensitive Languages are important in Linguistics.

I am supposed to say

Context Sensitive Languages are important in Linguistics.

It is more accurate to say

I am supposed to say

Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

I am supposed to say Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

I am supposed to say

Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

Our interest in CFL's is:

1) Languages that require a LARGE CFG but a SMALL CSL

I am supposed to say

Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

Our interest in CFL's is:

1) Languages that require a LARGE CFG but a SMALL CSL (Research Project—no results yet.)

I am supposed to say

Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

- 1) Languages that require a LARGE CFG but a SMALL CSL (Research Project—no results yet.)
- 2) Closure properties of CSLs.

I am supposed to say

Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

- 1) Languages that require a LARGE CFG but a SMALL CSL (Research Project—no results yet.)
- 2) Closure properties of CSLs.
- 3) How does CSL compare to P and other classes?

I am supposed to say

Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

- 1) Languages that require a LARGE CFG but a SMALL CSL (Research Project—no results yet.)
- 2) Closure properties of CSLs.
- 3) How does CSL compare to P and other classes? (Spoiler Alert: We don't know!)

I am supposed to say

Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

- 1) Languages that require a LARGE CFG but a SMALL CSL (Research Project—no results yet.)
- 2) Closure properties of CSLs.
- 3) How does CSL compare to P and other classes? (Spoiler Alert: We don't know!)
- 4) Which languages are **not** context sensitive?

I am supposed to say

Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

- 1) Languages that require a LARGE CFG but a SMALL CSL (Research Project—no results yet.)
- 2) Closure properties of CSLs.
- 3) How does CSL compare to P and other classes? (Spoiler Alert: We don't know!)
- 4) Which languages are **not** context sensitive? (Spoiler Alert: very few natural languages that are not CSL are known.)

I am supposed to say

Context Sensitive Languages are important in Linguistics.

It is more accurate to say

Context Sensitive Languages were important in Linguistics.

- 1) Languages that require a LARGE CFG but a SMALL CSL (Research Project—no results yet.)
- 2) Closure properties of CSLs.
- 3) How does CSL compare to P and other classes? (Spoiler Alert: We don't know!)
- 4) Which languages are **not** context sensitive? (Spoiler Alert: very few natural languages that are not CSL are known.)
- 5) Languages that are CSL but not CFL.

Historical Note on Linguistics

One of the motivations for CFL's and CSL's is an attempt to model human language.

This was a success and a success.

Historical Note on Linguistics

One of the motivations for CFL's and CSL's is an attempt to model human language.

This was a success and a success.

 While human language is far more complicated than CFL or CSL; the Mathematical tools these grammars supply were a helpful starting point.

Historical Note on Linguistics

One of the motivations for CFL's and CSL's is an attempt to model human language.

This was a success and a success.

- While human language is far more complicated than CFL or CSL; the Mathematical tools these grammars supply were a helpful starting point.
- 2. Computer languages are far easier to understand since we make them ourselves; hence, CFLs and (to a lesser extend) CSL's were useful within Computer Science.

```
S 	oup ABCS \mid e AB 	oup BA (Note- We allow two nonterminals on the LHS.) AC 	oup CA BC 	oup CB BA 	oup AB CA 	oup AC CB 	oup BC A 	oup AC CCB 	oup BC A 	oup AC CCB 	oup BC A 	oup AC CCB 	oup AC ACC ACC
```

```
S \rightarrow ABCS \mid e
AB \rightarrow BA (Note- We allow two nonterminals on the LHS.)
AC \rightarrow CA
BC \rightarrow CB
BA \rightarrow AB
CA \rightarrow AC
CB \rightarrow BC
A \rightarrow a
B \rightarrow b
C \rightarrow c
1) What lang does this generate?
```

```
S \rightarrow ABCS
AB \rightarrow BA (Note- We allow two nonterminals on the LHS.)
AC \rightarrow CA
BC \rightarrow CB
BA \rightarrow AB
CA \rightarrow AC
CB \rightarrow BC
A \rightarrow a
B \rightarrow b
C \rightarrow c
1) What lang does this generate?
\{w: \#_a(w) = \#_b(w) = \#_c(w)\}\ which is NOT a CFL.
```

```
S \rightarrow ABCS
AB \rightarrow BA (Note- We allow two nonterminals on the LHS.)
AC \rightarrow CA
BC \rightarrow CB
BA \rightarrow AB
CA \rightarrow AC
CB \rightarrow BC
A \rightarrow a
B \rightarrow b
C \rightarrow c
1) What lang does this generate?
\{w: \#_a(w) = \#_b(w) = \#_c(w)\}\ which is NOT a CFL.
2) Context-Free means can replace (say) A by (say) \alpha without
looking at the context of A.
```

```
S \rightarrow ABCS
AB \rightarrow BA (Note- We allow two nonterminals on the LHS.)
AC \rightarrow CA
BC \rightarrow CB
BA \rightarrow AB
CA \rightarrow AC
CB \rightarrow BC
A \rightarrow a
B \rightarrow b
C \rightarrow c
1) What lang does this generate?
```

- $\{w : \#_a(w) = \#_b(w) = \#_c(w)\}$ which is NOT a CFL.
- 2) Context-Free means can replace (say) A by (say) α without looking at the **context** of A.
- 3) Context-Sensitive means can replace (say) A by (say) α AND look at what is around A. We actually allow more than that.

 $S
ightarrow abc \mid aXbc \mid e$ Xb
ightarrow bX bY
ightarrow Yb Xc
ightarrow Ybcc $aY
ightarrow aa \mid aaX$

```
S 	o abc \mid aXbc \mid e

Xb 	o bX

bY 	o Yb

Xc 	o Ybcc

aY 	o aa \mid aaX

The set of all strings Generated is
```

$$S o abc \mid aXbc \mid e$$

 $Xb o bX$
 $bY o Yb$
 $Xc o Ybcc$
 $aY o aa \mid aaX$
The set of all strings **Generated** is

$$S o abc \mid aXbc \mid e$$

 $Xb o bX$
 $bY o Yb$
 $Xc o Ybcc$
 $aY o aa \mid aaX$
The set of all strings **Generated** is

$$L = \{a^n b^n c^n : n \in \mathbb{N}\}$$

Note It's a real mess to prove, and not that intuitive.

I knew that $\{a^{n^2} : n \in \mathbb{N}\}$ is a CSL (will say why later).

I knew that $\{a^{n^2}: n \in \mathbb{N}\}$ is a CSL (will say why later). I searched through books and the web to find a CSG for it since students are our future! and you deserve to know this grammar! (I sincerely meant this as a positive thing.)

I knew that $\{a^{n^2}: n \in \mathbb{N}\}$ is a CSL (will say why later). I searched through books and the web to find a CSG for it since **students are our future!** and you **deserve** to know this grammar! (I sincerely meant this as a positive thing.) All I could find was a paper that gave a CSL for $\{a^{f_n}: n \in \mathbb{N}\}$ $\{f_n \text{ is } n\text{th fib number}\}$.

I knew that $\{a^{n^2} : n \in \mathbb{N}\}$ is a CSL (will say why later). I searched through books and the web to find a CSG for it since students are our future! and you deserve to know this grammar! (I sincerely meant this as a positive thing.)

All I could find was a paper that gave a CSL for $\{a^{f_n}: n \in \mathbb{N}\}$ $(f_n \text{ is } n\text{th fib number}).$

Here is the paper: cslfib.pdf.

I knew that $\{a^{n^2}: n \in \mathbb{N}\}$ is a CSL (will say why later).

I searched through books and the web to find a CSG for it since **students are our future!** and you **deserve** to know this grammar! (I sincerely meant this as a positive thing.)

All I could find was a paper that gave a CSL for $\{a^{f_n}: n \in \mathbb{N}\}$ $(f_n \text{ is } n\text{th fib number}).$

Here is the paper: cslfib.pdf.

You do not **deserve** to know this grammar (I sincerly mean this as a positive thing.)

I knew that $\{a^{n^2}: n \in \mathbb{N}\}$ is a CSL (will say why later).

I searched through books and the web to find a CSG for it since students are our future! and you deserve to know this grammar! (I sincerely meant this as a positive thing.)

All I could find was a paper that gave a CSL for $\{a^{f_n}: n \in \mathbb{N}\}\$ $(f_n \text{ is } n\text{th fib number}).$

Here is the paper: cslfib.pdf.

You do not **deserve** to know this grammar (I sincerly mean this as a positive thing.)

Here is a deal:

I am **not obligated** to teach this gramamar.

You are not responsible to learn this grammar.

I knew that $\{a^{n^2}: n \in \mathbb{N}\}$ is a CSL (will say why later).

I searched through books and the web to find a CSG for it since students are our future! and you deserve to know this grammar! (I sincerely meant this as a positive thing.)

All I could find was a paper that gave a CSL for $\{a^{f_n}: n \in \mathbb{N}\}$ $(f_n \text{ is } n\text{th fib number}).$

Here is the paper: cslfib.pdf.

You do not **deserve** to know this grammar (I sincerly mean this as a positive thing.)

Here is a deal:

I am not obligated to teach this gramamar.

You are not responsible to learn this grammar.

Upshot CSG's are messy and we are not going to deal with them much.

Definition of Context Sensitive Grammars

Def A **Context Sensitive Grammar** is a tuple $G = (N, \Sigma, R, S)$

- N is a finite set of nonterminals.
- $ightharpoonup \Sigma$ is a finite **alphabet**. Note $\Sigma \cap N = \emptyset$.
- ▶ $R \subseteq (N \cup \Sigma)^* N(N \cup \Sigma)^* \times (N \cup \Sigma)^*$ and are called **Rules**.
- $ightharpoonup S \in N$, the start symbol.

Note

Definition of Context Sensitive Grammars

Def A **Context Sensitive Grammar** is a tuple $G = (N, \Sigma, R, S)$

- N is a finite set of nonterminals.
- $ightharpoonup \Sigma$ is a finite **alphabet**. Note $\Sigma \cap N = \emptyset$.
- ▶ $R \subseteq (N \cup \Sigma)^* N(N \cup \Sigma)^* \times (N \cup \Sigma)^*$ and are called **Rules**.
- ▶ $S \in N$, the start symbol.

Note

The LHS must have at least one nonterminal.

Definition of Context Sensitive Grammars

Def A **Context Sensitive Grammar** is a tuple $G = (N, \Sigma, R, S)$

- N is a finite set of **nonterminals**.
- $ightharpoonup \Sigma$ is a finite **alphabet**. Note $\Sigma \cap N = \emptyset$.
- ▶ $R \subseteq (N \cup \Sigma)^* N(N \cup \Sigma)^* \times (N \cup \Sigma)^*$ and are called **Rules**.
- ▶ $S \in N$, the start symbol.

Note

- The LHS must have at least one nonterminal.
- 2) There are alternative definitions that are equivalent, which I won't get into here.

If A is non-terminal then the CSG gives us gives us rules like:

- ightharpoonup A
 ightharpoonup AB
- ightharpoonup A
 ightarrow a

If A is non-terminal then the CSG gives us gives us rules like:

- ightharpoonup A
 ightharpoonup AB
- ightharpoonup A
 ightharpoonup a

 $A \Rightarrow AAaASdD$ is valid when the RHS is a string of **terminals** and non-terminals that can be produced from A (LHS is a single non-terminal).

If A is non-terminal then the CSG gives us gives us rules like:

- ightharpoonup A
 ightharpoonup AB
- ightharpoonup A
 ightharpoonup a

 $A \Rightarrow AAaASdD$ is valid when the RHS is a string of **terminals** and non-terminals that can be produced from A (LHS is a single non-terminal).

Examples: If we have rules

 $A \rightarrow BCD$

 $BC \rightarrow BcA$

 $BcA \rightarrow Aa$

. . .

Then we have

So $A \Rightarrow AaD$

If A is non-terminal then the CSG gives us gives us rules like:

- ightharpoonup A
 ightharpoonup AB
- ightharpoonup A
 ightharpoonup a

 $A \Rightarrow AAaASdD$ is valid when the RHS is a string of **terminals** and non-terminals that can be produced from A (LHS is a single non-terminal).

Examples: If we have rules

 $A \rightarrow BCD$

 $BC \rightarrow BcA$

 $BcA \rightarrow Aa$

. . .

Then we have

So $A \Rightarrow AaD$

Then, if w is string of **non-terminals only**, we define L(G) by:

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow w \}$$

We'll come back to this later.

CLOSURE PROPERTIES

If L_1, L_2 are Context Sensitive Languages then

1. Is $L_1 \cup L_2$ a context sensitive Lang?

- 1. Is $L_1 \cup L_2$ a context sensitive Lang? Yes, Easy.
- 2. Is $L_1 \cap L_2$ a context sensitive Lang?

- 1. Is $L_1 \cup L_2$ a context sensitive Lang? Yes, Easy.
- 2. Is $L_1 \cap L_2$ a context sensitive Lang? Yes, Hard.
- 3. Is $L_1 \cdot L_2$ a context sensitive Lang?

- 1. Is $L_1 \cup L_2$ a context sensitive Lang? Yes, Easy.
- 2. Is $L_1 \cap L_2$ a context sensitive Lang? Yes, Hard.
- 3. Is $L_1 \cdot L_2$ a context sensitive Lang? Yes, Easy.
- 4. Is $\overline{L_1}$ a context sensitive Lang?

- 1. Is $L_1 \cup L_2$ a context sensitive Lang? Yes, Easy.
- 2. Is $L_1 \cap L_2$ a context sensitive Lang? Yes, Hard.
- 3. Is $L_1 \cdot L_2$ a context sensitive Lang? Yes, Easy.
- 4. Is $\overline{L_1}$ a context sensitive Lang? Yes, Hard.
- 5. IS L_1^* is a context sensitive Lang?

- 1. Is $L_1 \cup L_2$ a context sensitive Lang? Yes, Easy.
- 2. Is $L_1 \cap L_2$ a context sensitive Lang? Yes, Hard.
- 3. Is $L_1 \cdot L_2$ a context sensitive Lang? Yes, Easy.
- 4. Is $\overline{L_1}$ a context sensitive Lang? Yes, Hard.
- 5. IS L_1^* is a context sensitive Lang? Yes, Easy.

1) There is a no pumping theorem for CSL's.

- 1) There is a no pumping theorem for CSL's.
- 2) Recall:

- 1) There is a no pumping theorem for CSL's.
- 2) Recall:

DFA's are **Recognizers**, Regex are **Generators**.

- 1) There is a no pumping theorem for CSL's.
- 2) Recall:

DFA's are **Recognizers**, Regex are **Generators**.

PDA's are **Recognizers**, CFG's are **Generators**.

- 1) There is a no pumping theorem for CSL's.
- 2) Recall:

DFA's are **Recognizers**, Regex are **Generators**.

PDA's are **Recognizers**, CFG's are **Generators**.

CSL's are **Generators**.

- 1) There is a no pumping theorem for CSL's.
- 2) Recall:

DFA's are **Recognizers**, Regex are **Generators**.

PDA's are **Recognizers**, CFG's are **Generators**.

CSL's are **Generators**.

There is a **Recognizer** equivalent to it:

LBA's

- 1) There is a no pumping theorem for CSL's.
- 2) Recall:

DFA's are **Recognizers**, Regex are **Generators**.

PDA's are **Recognizers**, CFG's are **Generators**.

CSL's are **Generators**.

There is a **Recognizer** equivalent to it:

LBA's

LBA stands for **Linear Bounded Automata**.

They are nondeterministic Turing machines with O(n) space.

- 1) There is a no pumping theorem for CSL's.
- 2) Recall:

DFA's are **Recognizers**, Regex are **Generators**.

PDA's are **Recognizers**, CFG's are **Generators**.

CSL's are **Generators**.

There is a **Recognizer** equivalent to it:

LBA's

LBA stands for Linear Bounded Automata.

They are nondeterministic Turing machines with O(n) space.

The proof that LBA-recognizers and CSG-generators are equivalent is messy so we won't be doing it. We won't deal with LBA's in this course at all.

Later is Now

I said earlier:

I knew that $\{a^{n^2}: n \in \mathbb{N}\}$ is a CSL (will say why later).

Later is Now

I said earlier:

I knew that $\{a^{n^2} : n \in \mathbb{N}\}$ is a CSL (will say why later).

It is easy to write an LBA for $\{a^{n^2} : n \in \mathbb{N}\}$

Later is Now

I said earlier:

I knew that $\{a^{n^2}: n \in \mathbb{N}\}$ is a CSL (will say why later).

It is easy to write an LBA for $\{a^{n^2}:n\in\mathbb{N}\}$ Hence it is easy to show that $\{a^{n^2}:n\in\mathbb{N}\}$ and many other languages are CSL's without using CSG's.

In this slide we only refer to decidable languages.

1) Not known how CSL and NP compare. Likely incomparable.

- 1) Not known how CSL and NP compare. Likely incomparable.
- 2) Proving incompatibility seems hard.

- 1) Not known how CSL and NP compare. Likely incomparable.
- 2) Proving incompatibility seems hard.
- 3) Proving a langauge is NOT CSL seems hard.

- 1) Not known how CSL and NP compare. Likely incomparable.
- 2) Proving incompatibility seems hard.
- 3) Proving a langauge is NOT CSL seems hard.
- 4) One can construct a (contrived) language that is NOT CSL.

- 1) Not known how CSL and NP compare. Likely incomparable.
- 2) Proving incompatibility seems hard.
- 3) Proving a langauge is NOT CSL seems hard.
- 4) One can construct a (contrived) language that is NOT CSL.
- 5) I know of one natural language that is provably not CSL:

- 1) Not known how CSL and NP compare. Likely incomparable.
- 2) Proving incompatibility seems hard.
- 3) Proving a langauge is NOT CSL seems hard.
- 4) One can construct a (contrived) language that is NOT CSL.
- 5) I know of **one** natural language that is provably not CSL: Given two trex α and β , is $L(\alpha) = L(\beta)$.

In this slide we only refer to decidable languages.

- 1) Not known how CSL and NP compare. Likely incomparable.
- 2) Proving incompatibility seems hard.
- 3) Proving a langauge is NOT CSL seems hard.
- 4) One can construct a (contrived) language that is NOT CSL.
- 5) I know of **one** natural language that is provably not CSL: Given two trex α and β , is $L(\alpha) = L(\beta)$.

Open question Some variants of Chess and Go might be provably not CSL.

1) REG \subset CFL \subset CSL \subset DEC

- 1) REG \subset CFL \subset CSL \subset DEC
- 2) REG has both a recognizer and a generator: DFA and REGEX.

- 1) REG \subset CFL \subset CSL \subset DEC
- 2) REG has both a recognizer and a generator: DFA and REGEX.
- 3) CFL has both a recognizer and a generator: CFG and PDA.

- 1) REG \subset CFL \subset CSL \subset DEC
- 2) REG has both a recognizer and a generator: DFA and REGEX.
- 3) CFL has both a recognizer and a generator: CFG and PDA.
- 4) CSL has both a recognizer and a generator: CSG and LBA.

- 1) REG \subset CFL \subset CSL \subset DEC
- 2) REG has both a recognizer and a generator: DFA and REGEX.
- 3) CFL has both a recognizer and a generator: CFG and PDA.
- 4) CSL has both a recognizer and a generator: CSG and LBA.
- 5) DEC has both a recognizer and a generator: Later in this course.

- 1) REG \subset CFL \subset CSL \subset DEC
- 2) REG has both a recognizer and a generator: DFA and REGEX.
- 3) CFL has both a recognizer and a generator: CFG and PDA.
- 4) CSL has both a recognizer and a generator: CSG and LBA.
- 5) DEC has both a recognizer and a generator: Later in this course.
- 6) Over time CFLs and CSLs were taken out of the course and P and NP were put in. Also, less time on DEC.

- 1) REG \subset CFL \subset CSL \subset DEC
- 2) REG has both a recognizer and a generator: DFA and REGEX.
- 3) CFL has both a recognizer and a generator: CFG and PDA.
- 4) CSL has both a recognizer and a generator: CSG and LBA.
- 5) DEC has both a recognizer and a generator: Later in this course.
- 6) Over time CFLs and CSLs were taken out of the course and P and NP were put in. Also, less time on DEC.
- 7) I prefer the new version.