BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!
Deterministic Finite Automata (DFA): Closure Properties
How do you compliment a regular language?

Example

I find the way all of your strings have only a's so lovely!

Compliment

An expression of admiration.

Complement

The complement of L is $\Sigma^* - L$.
How do you compliment a regular language?

Example How do you compliment a^*?
How do you compliment a regular language?

Example How do you compliment \(a^* \)?

I find the way all of your strings have only \(a \)'s so lovely!
How do you compliment a regular language?

Example How do you compliment a^*?

I find the way all of your strings have only a’s so lovely!

Compliment An expression of admiration.
How do you compliment a regular language?

Example How do you compliment a^*?

I find the way all of your strings have only a’s so lovely!

Compliment An expression of admiration.

Complement The complement of L is $\Sigma^* - L$.
How do you complement a regular language?

Informally

Swap the final and non-final states.

Formally

If L is regular via $(Q, \Sigma, \delta, s, F)$ then L is regular via $(Q, \Sigma, \delta, s, Q - F)$.

Note

If DFA for L has n states then DFA for L has n states.
How do you complement a regular language?

Informally Swap the final and non-final states.
How do you complement a regular language?

Informally Swap the final and non-final states.

Formally If L is regular via

$$(Q, \Sigma, \delta, s, F)$$

then \overline{L} is regular via

$$(Q, \Sigma, \delta, s, Q - F).$$
Regular Lang Closed Under Complementation

How do you complement a regular language?

Informally Swap the final and non-final states.

Formally If L is regular via

$$(Q, \Sigma, \delta, s, F)$$

then \bar{L} is regular via

$$(Q, \Sigma, \delta, s, Q - F).$$

Note If DFA for L has n states then DFA for \bar{L} has n states.
Regular Lang Closed Under Union

IF \(L_1, L_2 \) are regular we want to show that \(L_1 \cup L_2 \) is regular.
Regular Lang Closed Under Union

IF L_1, L_2 are regular we want to show that $L_1 \cup L_2$ is regular.

Informally Create a DFA that runs both the DFA for L_1 and L_2 at the same time.
Regular Lang Closed Under Union

IF \(L_1, L_2 \) are regular we want to show that \(L_1 \cup L_2 \) is regular.

Informally Create a DFA that runs both the DFA for \(L_1 \) and \(L_2 \) at the same time.

Formally If \(L_1 \) is regular via \((Q_1, \Sigma, \delta_1, s_1, F_1)\) and \(L_2 \) is regular via \((Q_2, \Sigma, \delta_2, s_2, F_2)\) then \(L_1 \cup L_2 \) is regular via:

\[
(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F_1 \times Q_2 \cup Q_1 \times F_2)
\]
Regular Lang Closed Under Union

If L_1, L_2 are regular we want to show that $L_1 \cup L_2$ is regular.

Informally Create a DFA that runs both the DFA for L_1 and L_2 at the same time.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$ then $L_1 \cup L_2$ is regular via:

$$(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F)$$

where

$$\delta(((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$$

and

Note: The number of states in DFA for $L_1 \cup L_2$ is n_1n_2.
Regular Lang Closed Under Union

IF L_1, L_2 are regular we want to show that $L_1 \cup L_2$ is regular.

Informally Create a DFA that runs both the DFA for L_1 and L_2 at the same time.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$
and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$
then $L_1 \cup L_2$ is regular via:

$$(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F)$$

where

$$\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$$

and

$$F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$$
Regular Lang Closed Under Union

IF L_1, L_2 are regular we want to show that $L_1 \cup L_2$ is regular.

Informally Create a DFA that runs both the DFA for L_1 and L_2 at the same time.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$
and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$
then $L_1 \cup L_2$ is regular via:

$$(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F)$$

where

$$\delta(((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$$

and

$$F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$$

Note The number of states in DFA for $L_1 \cup L_2$ is n_1n_2.
Regular Lang Closed Under Intersection

IF L_1, L_2 are regular we want to show that $L_1 \cap L_2$ is regular.
Regular Lang Closed Under Intersection

IF L_1, L_2 are regular we want to show that $L_1 \cap L_2$ is regular.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$
and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$
Regular Lang Closed Under Intersection

IF \(L_1, L_2 \) are regular we want to show that \(L_1 \cap L_2 \) is regular.

Formally If \(L_1 \) is regular via \((Q_1, \Sigma, \delta_1, s_1, F_1)\)
and \(L_2 \) is regular via \((Q_2, \Sigma, \delta_2, s_2, F_2)\)
then \(L_1 \cap L_2 \) is regular via:

\[
(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F_1 \times F_2)
\]
IF L_1, L_2 are regular we want to show that $L_1 \cap L_2$ is regular.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$
and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$
then $L_1 \cap L_2$ is regular via:

$$(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F)$$

where

$$\delta(((q_1, q_2), \sigma)) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$$

and

Note
The number of states in DFA for $L_1 \cap L_2$ is $n_1 n_2$.
IF L_1, L_2 are regular we want to show that $L_1 \cap L_2$ is regular.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$ then $L_1 \cap L_2$ is regular via:

$$(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F)$$

where

$$\delta(((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$$

and

$$F = F_1 \times F_2$$
Regular Lang Closed Under Intersection

IF L_1, L_2 are regular we want to show that $L_1 \cap L_2$ is regular.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$
and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$
then $L_1 \cap L_2$ is regular via:

$$(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F)$$

where

$$\delta(((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$$

and

$$F = F_1 \times F_2$$

Note The number of states in DFA for $L_1 \cap L_2$ is $n_1 n_2$.
Regular Lang Closed Under Concatenation?

Question Is the following true?

IF L_1, L_2 are regular then $L_1 \cdot L_2$ is regular.
Regular Lang Closed Under Concatenation?

Question Is the following true?

IF L_1, L_2 are regular then $L_1 \cdot L_2$ is regular.

Vote YES, NO, or UNKNOWN TO SCIENCE.
Regular Lang Closed Under Concatenation?

Question Is the following true?

IF L_1, L_2 are regular then $L_1 \cdot L_2$ is regular.

Vote YES, NO, or UNKNOWN TO SCIENCE.

YES
Regular Lang Closed Under Concatenation?

Question Is the following true?

IF \(L_1, L_2 \) are regular then \(L_1 \cdot L_2 \) is regular.

Vote YES, NO, or UNKNOWN TO SCIENCE.

YES

Good News There is a way to prove it using DFAs.
Regular Lang Closed Under Concatenation?

Question Is the following true?
 IF \(L_1, L_2 \) are regular then \(L_1 \cdot L_2 \) is regular.

Vote YES, NO, or UNKNOWN TO SCIENCE.

YES

Good News There is a way to prove it using DFAs.

Bad News Proof is a mess!
Regular Lang Closed Under Concatenation?

Question Is the following true?

IF \(L_1, L_2 \) are regular then \(L_1 \cdot L_2 \) is regular.

Vote YES, NO, or UNKNOWN TO SCIENCE.

YES

Good News There is a way to prove it using DFAs.

Bad News Proof is a mess!

Good News We can have a nice proof after we establish equivalence of DFAs and NFAs.
Regular Lang Closed Under \ast?

Question Is the following true?

IF L is regular then L^\ast is regular.
Question Is the following true? IF L is regular then L^* is regular.

Vote YES, NO, or UNKNOWN TO SCIENCE.
Question Is the following true?
IF L is regular then L^* is regular.

Vote YES, NO, or UNKNOWN TO SCIENCE.

YES
Regular Lang Closed Under $*$?

Question Is the following true?

IF L is regular then L^* is regular.

Vote YES, NO, or UNKNOWN TO SCIENCE.

YES

Good News There is a way to prove it using DFAs.
Question Is the following true?
 IF \(L \) is regular then \(L^* \) is regular.

Vote YES, NO, or UNKNOWN TO SCIENCE.

YES

Good News There is a way to prove it using DFAs.

Bad News Proof is a mess!
Regular Lang Closed Under ∗?

Question Is the following true?

\[
\text{IF } L \text{ is regular then } L^* \text{ is regular.}
\]

Vote YES, NO, or UNKNOWN TO SCIENCE.

YES

Good News There is a way to prove it using DFAs.

Bad News Proof is a mess!

Good News We can have a nice proof after we establish equivalence of DFAs and NFAs.
X means **Can’t Prove Easily**

$n_1 + n_2$ (and similar) is number of states in new machine if L_i reg via n_i-state machine.

<table>
<thead>
<tr>
<th>Closure Property</th>
<th>DFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_1 \cup L_2$</td>
<td>n_1n_2</td>
</tr>
<tr>
<td>$L_1 \cap L_2$</td>
<td>n_1n_2</td>
</tr>
<tr>
<td>$L_1 \cdot L_2$</td>
<td>n_1n_2</td>
</tr>
<tr>
<td>\overline{L}</td>
<td>X</td>
</tr>
<tr>
<td>L^*</td>
<td>X</td>
</tr>
</tbody>
</table>
BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!