Hard Cases for SAT Solvers

William Gasarch-U of MD
Example

The AND of the following:

1. $x_{11} \lor x_{12}$
2. $x_{21} \lor x_{22}$
3. $x_{31} \lor x_{32}$
4. $\neg x_{11} \lor \neg x_{21}$
5. $\neg x_{11} \lor \neg x_{31}$
6. $\neg x_{21} \lor \neg x_{31}$
7. $\neg x_{12} \lor \neg x_{22}$
8. $\neg x_{12} \lor \neg x_{32}$
9. $\neg x_{22} \lor \neg x_{32}$

This is Pigeonhole Principle: x_{ij} is putting ith pigeon in jth hole! Can't put 3 pigeons into 2 holes! So Fml is NOT satisfiable.
Example

The AND of the following:

1. $x_{11} \lor x_{12}$
2. $x_{21} \lor x_{22}$
3. $x_{31} \lor x_{32}$
4. $\neg x_{11} \lor \neg x_{21}$
5. $\neg x_{11} \lor \neg x_{31}$
6. $\neg x_{21} \lor \neg x_{31}$
7. $\neg x_{12} \lor \neg x_{22}$
8. $\neg x_{12} \lor \neg x_{32}$
9. $\neg x_{22} \lor \neg x_{32}$

This is Pigeonhole Principle: x_{ij} is putting ith pigeon in j hole!
Example

The AND of the following:

1. \(x_{11} \lor x_{12} \)
2. \(x_{21} \lor x_{22} \)
3. \(x_{31} \lor x_{32} \)
4. \(\neg x_{11} \lor \neg x_{21} \)
5. \(\neg x_{11} \lor \neg x_{31} \)
6. \(\neg x_{21} \lor \neg x_{31} \)
7. \(\neg x_{12} \lor \neg x_{22} \)
8. \(\neg x_{12} \lor \neg x_{32} \)
9. \(\neg x_{22} \lor \neg x_{32} \)

This is Pigeonhole Principle: \(x_{ij} \) is putting \(i \)th pigeon in \(j \) hole! Can’t put 3 pigeons into 2 holes! So Fml is NOT satisfiable.
PHP: Pigeon Hole Principle

Let \(n < m \). \(n \) is NUMBER OF HOLES, \(m \) is NUMBER OF PIGEONS. \(x_{ij} \) will be thought of as Pigeon \(i \) IS in Hole \(j \).

Definition

\(\text{PHP}_n^m \) is the AND of the following:

1. For \(1 \leq i \leq m \)

\[x_{i1} \lor x_{i2} \lor \cdots \lor x_{in} \]

(Pigeon \(i \) is in SOME Hole.)

2. For \(1 \leq i_1 < i_2 \leq m \) and \(1 \leq j \leq n \)

\[\neg x_{i1j} \lor \neg x_{i2j} \]

(Hole \(j \) does not have BOTH Pigeon \(i_1 \) and Pigeon \(i_2 \).)

NOTE: \(\text{PHP}_n^m \) has \(nm \) **VARS** and \(O(mn^2) \) **CLAUSES** and is NOT satisfiable.
What is Known

1. If $n < m$ then PHP^{m}_n is not satisfiable.
2. The proof of this is by the Pigeon hole principle and not by Truth Table, it was by mathematical reasoning.
3. There is a proof technique called Resolution that is used to show formulas are not satisfiable. It is known that resolution proofs that PHP^{m}_n is not satisfiable are large.
4. Our speculation is that the SAT Solvers we have been studying will take a long time on PHP^{m}_n.
5. Try our out SAT solvers on PHP^{n+1}_n, PHP^{n+2}_n, \ldots and see if it takes a long time. See what happens as the m gets bigger.