BILL AND NATHAN START RECORDING

HW04 Solutions

$$L = \{w : \#_a(w) \equiv 0 \pmod{n} \lor \#_b(w) \equiv 0 \pmod{n} \lor \#_c(w) \equiv 0 \pmod{n}$$

1) Give a DFA for L with n^3 states. Give it as a table.

$$L = \{w : \#_a(w) \equiv 0 \pmod{n} \lor \#_b(w) \equiv 0 \pmod{n} \lor \#_c(w) \equiv 0 \pmod{n}$$

1) Give a DFA for L with n^3 states. Give it as a table.

Let [n] be $\{0, \ldots, n-1\}$.

$$Q = [n] \times [n] \times [n]$$
. $s = (0,0,0)$. $F = \{(a,b,c) : abc = 0\}$.

The intuition is that we keep track of number of a's mod n AND number of b's mod n AND number of c's mod n.

$$L = \{w : \#_a(w) \equiv 0 \pmod{n} \lor \#_b(w) \equiv 0 \pmod{n} \lor \#_c(w) \equiv 0 \pmod{n}$$

1) Give a DFA for L with n^3 states. Give it as a table.

Let [n] be $\{0, \ldots, n-1\}$.

$$Q = [n] \times [n] \times [n]$$
. $s = (0,0,0)$. $F = \{(a,b,c) : abc = 0\}$.

The intuition is that we keep track of number of a's mod n AND number of b's mod n AND number of c's mod n.

$$\delta((i,j,k),a)=(i+1 \pmod{n},j,k).$$

$$L = \{w : \#_a(w) \equiv 0 \pmod{n} \lor \#_b(w) \equiv 0 \pmod{n} \lor \#_c(w) \lor \#_c(w) \equiv 0 \pmod{n} \lor \#_c(w) \lor \#$$

$$L = \{w : \#_a(w) \equiv 0 \pmod n\} \lor \#_b(w) \equiv 0 \pmod n\} \lor \#_c(w) \equiv 0 \pmod n$$
1) Give a DFA for L with n^3 states. Give it as a table. Let $[n]$ be $\{0, \ldots, n-1\}$. $Q = [n] \times [n] \times [n]$. $s = (0,0,0)$. $F = \{(a,b,c) : abc = 0\}$. The intuition is that we keep track of number of a 's mod a AND number of a 's mod a 's mod

$$L = \{w : \#_a(w) \equiv 0 \pmod{n} \lor \#_b(w) \equiv 0 \pmod{n} \lor \#_c(w) \equiv 0 \pmod{n}$$

Give an NFA for L with MUCH LESS STATES then the DFA.

$$L = \{w: \#_{a}(w) \equiv 0 \pmod{n} \lor \#_{b}(w) \equiv 0 \pmod{n} \lor \#_{c}(w) \equiv 0 \pmod{n}$$

Give an NFA for *L* with MUCH LESS STATES then the DFA. Picture omitted, but the idea is that from the start state there are three *e*-transitions:

$$L = \{w : \#_a(w) \equiv 0 \pmod{n} \lor \#_b(w) \equiv 0 \pmod{n} \lor \#_c(w) \equiv 0 \pmod{n}$$

Give an NFA for *L* with MUCH LESS STATES then the DFA. Picture omitted, but the idea is that from the start state there are three *e*-transitions:

one that is guessing $\#_a(w) \equiv 0 \pmod{m}$,

$$L = \{w: \#_{a}(w) \equiv 0 \pmod{n} \lor \#_{b}(w) \equiv 0 \pmod{n} \lor \#_{c}(w) \equiv 0 \pmod{n}$$

Give an NFA for L with MUCH LESS STATES then the DFA.

Picture omitted, but the idea is that from the start state there are three *e*-transitions:

one that is guessing $\#_a(w) \equiv 0 \pmod{m}$, one that is guessing $\#_b(w) \equiv 0 \pmod{m}$,

$$L = \{w: \#_{a}(w) \equiv 0 \pmod{n} \lor \#_{b}(w) \equiv 0 \pmod{n} \lor \#_{c}(w) \equiv 0 \pmod{n}$$

Give an NFA for L with MUCH LESS STATES then the DFA.

Picture omitted, but the idea is that from the start state there are three *e*-transitions:

```
one that is guessing \#_a(w) \equiv 0 \pmod{m}, one that is guessing \#_b(w) \equiv 0 \pmod{m},
```

one that is guessing $\#_c(w) \equiv 0 \pmod{m}$.

$$L = \{w: \#_{a}(w) \equiv 0 \pmod{n} \lor \#_{b}(w) \equiv 0 \pmod{n} \lor \#_{c}(w) \equiv 0 \pmod{n}$$

Give an NFA for L with MUCH LESS STATES then the DFA.

Picture omitted, but the idea is that from the start state there are three *e*-transitions:

one that is guessing $\#_a(w) \equiv 0 \pmod{m}$,

one that is guessing $\#_b(w) \equiv 0 \pmod{m}$,

one that is guessing $\#_c(w) \equiv 0 \pmod{m}$.

Table on next page

```
Q = \{s\} \cup \Sigma \times [n]. \ s = s, \ F = \{(a,0),(b,0),(c,0)\}.
\Delta(s,e) = \{(a,0),(b,0),(c,0)\}
\Delta((a,i),a) = \{(a,i+1 \pmod{n})\}
\Delta((a,i),b) = \{(a,i)\}
\Delta((a,i),c) = \{(a,i)\}
```

```
Q = \{s\} \cup \Sigma \times [n]. \ s = s, \ F = \{(a,0),(b,0),(c,0)\}.
\Delta(s,e) = \{(a,0),(b,0),(c,0)\}
\Delta((a,i),a) = \{(a,i+1 \pmod{n})\}
\Delta((a,i),b) = \{(a,i)\}
\Delta((a,i),c) = \{(a,i)\}
\Delta((b,i),a) = \{(b,i)\}
\Delta((b,i),b) = \{(b,i+1 \pmod{n})\}
\Delta((b,i),c) = \{(b,i)\}
```

```
Q = \{s\} \cup \Sigma \times [n]. \ s = s, \ F = \{(a,0),(b,0),(c,0)\}.
\Delta(s,e) = \{(a,0),(b,0),(c,0)\}
\Delta((a, i), a) = \{(a, i + 1 \pmod{n})\}
\Delta((a, i), b) = \{(a, i)\}
\Delta((a, i), c) = \{(a, i)\}
\Delta((b,i),a) = \{(b,i)\}
\Delta((b, i), b) = \{(b, i + 1 \pmod{n})\}\
\Delta((b,i),c) = \{(b,i)\}
\Delta((c, i), a) = \{(c, i)\}
\Delta((c, i), b) = \{(c, i)\}
\Delta((c, i), c) = \{(c, i + 1 \pmod{n})\}
```

```
Q = \{s\} \cup \Sigma \times [n]. \ s = s, \ F = \{(a,0),(b,0),(c,0)\}.
\Delta(s,e) = \{(a,0),(b,0),(c,0)\}
\Delta((a, i), a) = \{(a, i + 1 \pmod{n})\}
\Delta((a, i), b) = \{(a, i)\}
\Delta((a, i), c) = \{(a, i)\}
\Delta((b,i),a) = \{(b,i)\}
\Delta((b, i), b) = \{(b, i + 1 \pmod{n})\}\
\Delta((b,i),c) = \{(b,i)\}
\Delta((c, i), a) = \{(c, i)\}
\Delta((c, i), b) = \{(c, i)\}
\Delta((c, i), c) = \{(c, i + 1 \pmod{n})\}
This NFA has 3n + 1 states.
```

Prove that ANY DFA for L REQUIRES at least n^3 states.

Prove that ANY DFA for L REQUIRES at least n^3 states.

M: DFA for L. Start state s. Transition δ .

Extend δ to strings.

Let $0 \le i, j, k \le n-1$ and $0 \le i', j', k' \le n-1$.

Prove that ANY DFA for L REQUIRES at least n^3 states.

M: DFA for L. Start state s. Transition δ .

Extend δ to strings.

Let $0 \le i, j, k \le n - 1$ and $0 \le i', j', k' \le n - 1$.

We show

$$\delta(s, a^i b^j c^k) = \delta(s, a^{i'} b^{j'} c^{k'}) \rightarrow i = i' \land j = j' \land k = k'$$

Prove that ANY DFA for L REQUIRES at least n^3 states.

M: DFA for L. Start state s. Transition δ .

Extend δ to strings.

Let $0 \le i, j, k \le n - 1$ and $0 \le i', j', k' \le n - 1$.

We show

$$\delta(s, a^i b^j c^k) = \delta(s, a^{i'} b^{j'} c^{k'}) \rightarrow i = i' \land j = j' \land k = k'$$
Assume $\delta(s, a^i b^j c^k) = \delta(s, a^{i'} b^{j'} c^{k'})$

Prove that ANY DFA for L REQUIRES at least n^3 states.

M: DFA for L. Start state s. Transition δ .

Extend δ to strings.

Let $0 \le i, j, k \le n - 1$ and $0 \le i', j', k' \le n - 1$.

We show

$$\delta(s, a^i b^j c^k) = \delta(s, a^{i'} b^{j'} c^{k'}) \rightarrow i = i' \land j = j' \land k = k'$$

Assume $\delta(s, a^i b^j c^k) = \delta(s, a^{i'} b^{j'} c^{k'})$

Concatenate $a^{n-i}b^{n+1-j'}c^{n+1-k'}$ to both strings.

The first string is

Prove that ANY DFA for L REQUIRES at least n^3 states.

M: DFA for L. Start state s. Transition δ .

Extend δ to strings.

Let $0 \le i, j, k \le n - 1$ and $0 \le i', j', k' \le n - 1$.

We show

$$\delta(s, a^i b^j c^k) = \delta(s, a^{i'} b^{j'} c^{k'}) \rightarrow i = i' \land j = j' \land k = k'$$

Assume $\delta(s, a^i b^j c^k) = \delta(s, a^{i'} b^{j'} c^{k'})$

Concatenate $a^{n-i}b^{n+1-j'}c^{n+1-k'}$ to both strings.

The first string is $a^i b^j c^k a^{n-i} b^{n+1-j'} c^{n+1-k'} \in L$.

The second string is

Prove that ANY DFA for L REQUIRES at least n^3 states.

M: DFA for L. Start state s. Transition δ .

Extend δ to strings.

Let $0 \le i, j, k \le n - 1$ and $0 \le i', j', k' \le n - 1$.

We show

$$\delta(s, a^i b^j c^k) = \delta(s, a^{i'} b^{j'} c^{k'}) \rightarrow i = i' \land j = j' \land k = k'$$

Assume $\delta(s, a^i b^j c^k) = \delta(s, a^{i'} b^{j'} c^{k'})$

Concatenate $a^{n-i}b^{n+1-j'}c^{n+1-k'}$ to both strings.

The first string is $a^i b^j c^k a^{n-i} b^{n+1-j'} c^{n+1-k'} \in L$.

The second string $\mathrm{is} a^{i'} b^{j'} c^{k'} a^{n-i} b^{n+1-j'} c^{n+1-k'} \notin L$.

Prove that ANY DFA for L REQUIRES at least n^3 states.

M: DFA for L. Start state s. Transition δ .

Extend δ to strings.

Let $0 \le i, j, k \le n - 1$ and $0 \le i', j', k' \le n - 1$.

We show

$$\delta(s, a^i b^j c^k) = \delta(s, a^{i'} b^{j'} c^{k'}) \rightarrow i = i' \land j = j' \land k = k'$$

Assume $\delta(s, a^i b^j c^k) = \delta(s, a^{i'} b^{j'} c^{k'})$

Concatenate $a^{n-i}b^{n+1-j'}c^{n+1-k'}$ to both strings.

The first string is $a^i b^j c^k a^{n-i} b^{n+1-j'} c^{n+1-k'} \in L$.

The second string is $a^{i'}b^{j'}c^{k'}a^{n-i}b^{n+1-j'}c^{n+1-k'} \notin L$.

A similar argument can be made for j = j' and k = k'.

If $L \subseteq \Sigma^*$ then $L^R = \{ w^R : w \in L \}$. 1) Given a DFA for L, construct an NFA for L^R .

If $L \subseteq \Sigma^*$ then $L^R = \{ w^R : w \in L \}$. 1) Given a DFA for L, construct an NFA for L^R . Inuition: Reverse the arrows.

```
If L \subseteq \Sigma^* then L^R = \{w^R : w \in L\}.
1) Given a DFA for L, construct an NFA for L^R.
Inuition: Reverse the arrows.
Let L be regular via DFA (Q, \Sigma, \delta, s, F).
```

```
If L \subseteq \Sigma^* then L^R = \{w^R : w \in L\}.

1) Given a DFA for L, construct an NFA for L^R.

Inuition: Reverse the arrows.

Let L be regular via DFA (Q, \Sigma, \delta, s, F).

Here is an NFA for L^R: (Q \cup \{s'\}, \Sigma, \Delta, s', F') where
```

```
If L \subseteq \Sigma^* then L^R = \{w^R : w \in L\}.

1) Given a DFA for L, construct an NFA for L^R.

Inuition: Reverse the arrows.

Let L be regular via DFA (Q, \Sigma, \delta, s, F).

Here is an NFA for L^R: (Q \cup \{s'\}, \Sigma, \Delta, s', F') where For p \in Q: \Delta(p, \sigma) = \{q : \delta(q, \sigma) = p\}

\Delta(s', e) = F
```

```
If L \subseteq \Sigma^* then L^R = \{w^R : w \in L\}.

1) Given a DFA for L, construct an NFA for L^R.

Inuition: Reverse the arrows.

Let L be regular via DFA (Q, \Sigma, \delta, s, F).

Here is an NFA for L^R: (Q \cup \{s'\}, \Sigma, \Delta, s', F') where For p \in Q: \Delta(p, \sigma) = \{q : \delta(q, \sigma) = p\}

\Delta(s', e) = F

F' = \{s\}.
```

Give L such that:

Give L such that:

1) L can be recognized by an O(n) state DFA, AND

Give L such that:

- 1) L can be recognized by an O(n) state DFA, AND
- 2) L^R requires an $\Omega(2^n)$ state DFA.

Give L such that:

- 1) L can be recognized by an O(n) state DFA, AND
- 2) L^R requires an $\Omega(2^n)$ state DFA.

$$L = \Sigma^n a \Sigma^*$$
.

It is easy to draw an O(n) state DFA for L.

Give L such that:

- 1) L can be recognized by an O(n) state DFA, AND
- 2) L^R requires an $\Omega(2^n)$ state DFA.

$$L = \Sigma^n a \Sigma^*$$
.

It is easy to draw an O(n) state DFA for L.

 $L^R = \Sigma^* a \Sigma^n$ which we have shown before requires 2^{n+1} states.

Problem 5a

 $L = \{a^{n^3} : n \in \mathbb{N}\}$. Regular or not?

Problem 5a

 $L = \{a^{n^3} : n \in \mathbb{N}\}$. Regular or not? NOT REGULAR proof omitted but it is is similar to proving

$$\{a^{n^2}:n\in\mathbb{N}\}$$

is not regular which we did in class.

Problem 5b

$$L = \{w : w = w^R\}$$
 (set of all palindromes) Regular or not?

Problem 5b

 $L = \{w : w = w^R\}$ (set of all palindromes) Regular or not? NOT REGULAR. Assume, by way of contradiction, that L is regular.

Problem 5b

 $L = \{w : w = w^R\}$ (set of all palindromes) Regular or not? NOT REGULAR.

Assume, by way of contradiction, that L is regular.

Let a^nba^n be long enough so that the pumping lemma applies and |xy| is contained in the a's.

Problem 5h

 $L = \{w : w = w^R\}$ (set of all palindromes) Regular or not? NOT REGULAR.

Assume, by way of contradiction, that L is regular.

Let aⁿbaⁿ be long enough so that the pumping lemma applies and |xy| is contained in the a's.

We omit the rest.

Problem 5c

$$L = \{a^{\lceil \log_2 n \rceil} : n \in \mathbb{N}\}.$$

Problem 5c

$$L = \{a^{\lceil \log_2 n \rceil} : n \in \mathbb{N}\}.$$

REGULAR

Problem 5c

```
L = \{a^{\lceil \log_2 n \rceil} : n \in \mathbb{N}\}.
REGULAR
This is just a^*.
```

Problem 5d

 $\{a^nb^{2m}:n,m\in\mathbb{N}\}.$

Problem 5d

```
\{a^nb^{2m}: n, m \in \mathbb{N}\}.
REGULAR.
```

Problem 5d

```
\{a^nb^{2m}:n,m\in\mathbb{N}\}.
REGULAR.
This is just a^*(bb)^*.
```