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HW04 Solutions



Problem 2a

L = {w : #a(w) ≡ 0 (mod n)∨#b(w) ≡ 0 (mod n)∨#c(w) ≡ 0 (mod n)}.

1) Give a DFA for L with n3 states. Give it as a table.

Let [n] be {0, . . . , n − 1}.
Q = [n]× [n]× [n]. s = (0, 0, 0). F = {(a, b, c) : abc = 0}.
The intuition is that we keep track of number of a’s mod n AND
number of b’s mod n AND number of c ’s mod n.
δ((i , j , k), a) = (i + 1 (mod n), j , k).
δ((i , j , k), b) = (i , j + 1 (mod n), k).
δ((i , j , k), c) = (i , j , k + 1 (mod n)).
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Problem 2b-Picture

L = {w : #a(w) ≡ 0 (mod n)∨#b(w) ≡ 0 (mod n)∨#c(w) ≡ 0 (mod n)}.

Give an NFA for L with MUCH LESS STATES then the DFA.

Picture omitted, but the idea is that from the start state there are
three e-transitions:
one that is guessing #a(w) ≡ 0 (mod m),
one that is guessing #b(w) ≡ 0 (mod m),
one that is guessing #c(w) ≡ 0 (mod m).
Table on next page
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Problem 2b-Table

Q = {s} ∪ Σ× [n]. s = s, F = {(a, 0), (b, 0), (c, 0)}.
∆(s, e) = {(a, 0), (b, 0), (c , 0)}
∆((a, i), a) = {(a, i + 1 (mod n))}
∆((a, i), b) = {(a, i)}
∆((a, i), c) = {(a, i)}

∆((b, i), a) = {(b, i)}
∆((b, i), b) = {(b, i + 1 (mod n))}
∆((b, i), c) = {(b, i)}
∆((c , i), a) = {(c , i)}
∆((c , i), b) = {(c , i)}
∆((c , i), c) = {(c , i + 1 (mod n))}
This NFA has 3n + 1 states.
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Problem 3

Prove that ANY DFA for L REQUIRES at least n3 states.

M: DFA for L. Start state s. Transition δ.
Extend δ to strings.
Let 0 ≤ i , j , k ≤ n − 1 and 0 ≤ i ′, j ′, k ′ ≤ n − 1.
We show

δ(s, aibjck) = δ(s, ai
′
bj

′
ck

′
)→ i = i ′ ∧ j = j ′ ∧ k = k ′

Assume δ(s, aibjck) = δ(s, ai
′
bj

′
ck

′
)

Concatenate an−ibn+1−j ′cn+1−k ′
to both strings.

The first string is aibjckan−ibn+1−j ′cn+1−k ′ ∈ L.
The second string isai

′
bj

′
ck

′
an−ibn+1−j ′cn+1−k ′

/∈ L.
A similar argument can be made for j = j ′ and k = k ′.
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Problem 4a

If L ⊆ Σ∗ then LR = {wR : w ∈ L}.
1) Given a DFA for L, construct an NFA for LR .

Inuition: Reverse the arrows.
Let L be regular via DFA (Q,Σ, δ, s,F ).
Here is an NFA for LR : (Q ∪ {s ′},Σ,∆, s ′,F ′) where
For p ∈ Q: ∆(p, σ) = {q : δ(q, σ) = p}
∆(s ′, e) = F
F ′ = {s}.
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Problem 4b

Give L such that:

1) L can be recognized by an O(n) state DFA, AND
2) LR requires an Ω(2n) state DFA.
L = ΣnaΣ∗.
It is easy to draw an O(n) state DFA for L.
LR = Σ∗aΣn which we have shown before requires 2n+1 states.
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Problem 5a

L = {an3 : n ∈ N}. Regular or not?

NOT REGULAR proof omitted but it is is similar to proving

{an2 : n ∈ N}

is not regular which we did in class.
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L = {w : w = wR} (set of all palindromes) Regular or not?

NOT REGULAR.
Assume, by way of contradiction, that L is regular.
Let anban be long enough so that the pumping lemma applies and
|xy | is contained in the a’s.
We omit the rest.
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