
BILL AND NATHAN RECORD LECTURE!!!!

BILL AND NATHAN RECORD LECTURE!!!



UN-TIMED PART OF
FINAL IS TUESDAY

May 11 11:00A.
NO DEAD CAT



FINAL IS THURSDAY
May 13

8:00PM-10:15PM



FILL OUT COURSE
EVALS for ALL YOUR

COURSES!!!



Kolmogorov Complexity

Exposition by William Gasarch—U of MD



The Complexity of a Finite String

Which of these strings looks more random?
(This is NOT a trick question. Your intuitions will be correct. We
will formalize them.)

1. 000000000000000000000000000000000

2. 011010001100000011101010100011001

You prob think the second string is more random then the first.
You are right!
How do we pin this down? Discuss!



The Complexity of a Finite String

Which of these strings looks more random?
(This is NOT a trick question. Your intuitions will be correct. We
will formalize them.)

1. 000000000000000000000000000000000

2. 011010001100000011101010100011001

You prob think the second string is more random then the first.
You are right!
How do we pin this down? Discuss!



The Complexity of a Finite String

Which of these strings looks more random?
(This is NOT a trick question. Your intuitions will be correct. We
will formalize them.)

1. 000000000000000000000000000000000

2. 011010001100000011101010100011001

You prob think the second string is more random then the first.

You are right!
How do we pin this down? Discuss!



The Complexity of a Finite String

Which of these strings looks more random?
(This is NOT a trick question. Your intuitions will be correct. We
will formalize them.)

1. 000000000000000000000000000000000

2. 011010001100000011101010100011001

You prob think the second string is more random then the first.
You are right!

How do we pin this down? Discuss!



The Complexity of a Finite String

Which of these strings looks more random?
(This is NOT a trick question. Your intuitions will be correct. We
will formalize them.)

1. 000000000000000000000000000000000

2. 011010001100000011101010100011001

You prob think the second string is more random then the first.
You are right!
How do we pin this down?

Discuss!



The Complexity of a Finite String

Which of these strings looks more random?
(This is NOT a trick question. Your intuitions will be correct. We
will formalize them.)

1. 000000000000000000000000000000000

2. 011010001100000011101010100011001

You prob think the second string is more random then the first.
You are right!
How do we pin this down? Discuss!



A Programs to Print Out 0 · · · 0

Here is a program to print out
000000000000000000000000000000000

For i = 1 to 33 print(0)

The string was of length 33 but the program is far shorter.

For the string 0n the string is length n, the program is length
lg(n) + O(1).



A Programs to Print Out 0 · · · 0

Here is a program to print out
000000000000000000000000000000000

For i = 1 to 33 print(0)

The string was of length 33 but the program is far shorter.

For the string 0n the string is length n, the program is length
lg(n) + O(1).



A Programs to Print Out 0 · · · 0

Here is a program to print out
000000000000000000000000000000000

For i = 1 to 33 print(0)

The string was of length 33 but the program is far shorter.

For the string 0n the string is length n, the program is length
lg(n) + O(1).



A Programs to Print Out the Second String

Here is a program to print out
01101000110000001110101010001100.

print(01101000110000001110101010001100)

The string is of length 33 and the program is of length 33.

Upshot The less random string required a much shorter program
to print it out then the more random string.



A Programs to Print Out the Second String

Here is a program to print out
01101000110000001110101010001100.

print(01101000110000001110101010001100)

The string is of length 33 and the program is of length 33.

Upshot The less random string required a much shorter program
to print it out then the more random string.



A Programs to Print Out the Second String

Here is a program to print out
01101000110000001110101010001100.

print(01101000110000001110101010001100)

The string is of length 33 and the program is of length 33.

Upshot The less random string required a much shorter program
to print it out then the more random string.



Def of Randomness

Taking a cue from the above two examples, we will define the
Randomness of a string x to be the size of the shortest Turing
Machine (TM) that prints x .
Def

1. If x ∈ {0, 1}n then C(x) is the length of the shortest TM
that, on input e, prints out x . Note that C (x) ≤ n + O(1).

2. If x ∈ {0, 1}n then C(x|y) is the length of the shortest TM
that, on input y , prints out x . Note that C (x |y) ≤ n + O(1).

3. A string is Kolmogorov random if C (x) ≥ n. A string is
Kolmogorov random relative to y if C (x |y) ≥ n.

Do you like these definitions?



Def of Randomness

Taking a cue from the above two examples, we will define the
Randomness of a string x to be the size of the shortest Turing
Machine (TM) that prints x .
Def

1. If x ∈ {0, 1}n then C(x) is the length of the shortest TM
that, on input e, prints out x . Note that C (x) ≤ n + O(1).

2. If x ∈ {0, 1}n then C(x|y) is the length of the shortest TM
that, on input y , prints out x . Note that C (x |y) ≤ n + O(1).

3. A string is Kolmogorov random if C (x) ≥ n. A string is
Kolmogorov random relative to y if C (x |y) ≥ n.

Do you like these definitions?



Def of Randomness

Taking a cue from the above two examples, we will define the
Randomness of a string x to be the size of the shortest Turing
Machine (TM) that prints x .
Def

1. If x ∈ {0, 1}n then C(x) is the length of the shortest TM
that, on input e, prints out x . Note that C (x) ≤ n + O(1).

2. If x ∈ {0, 1}n then C(x|y) is the length of the shortest TM
that, on input y , prints out x . Note that C (x |y) ≤ n + O(1).

3. A string is Kolmogorov random if C (x) ≥ n. A string is
Kolmogorov random relative to y if C (x |y) ≥ n.

Do you like these definitions?



Def of Randomness

Taking a cue from the above two examples, we will define the
Randomness of a string x to be the size of the shortest Turing
Machine (TM) that prints x .
Def

1. If x ∈ {0, 1}n then C(x) is the length of the shortest TM
that, on input e, prints out x . Note that C (x) ≤ n + O(1).

2. If x ∈ {0, 1}n then C(x|y) is the length of the shortest TM
that, on input y , prints out x . Note that C (x |y) ≤ n + O(1).

3. A string is Kolmogorov random if C (x) ≥ n. A string is
Kolmogorov random relative to y if C (x |y) ≥ n.

Do you like these definitions?



Def of Randomness

Taking a cue from the above two examples, we will define the
Randomness of a string x to be the size of the shortest Turing
Machine (TM) that prints x .
Def

1. If x ∈ {0, 1}n then C(x) is the length of the shortest TM
that, on input e, prints out x . Note that C (x) ≤ n + O(1).

2. If x ∈ {0, 1}n then C(x|y) is the length of the shortest TM
that, on input y , prints out x . Note that C (x |y) ≤ n + O(1).

3. A string is Kolmogorov random if C (x) ≥ n. A string is
Kolmogorov random relative to y if C (x |y) ≥ n.

Do you like these definitions?



Like-Dislike-Like

Like The definition works in that a string with some sort of
pattern will have low randomness.

Dislike Java-Random, Python-Random, 1-tape-TM-Random will
all give different values. Want a def that is model-independent.

Like Translating a program from Java to Python to · · · is only
CONSTANT overhead. If C (x) = n in Java then C (x) will be
n ± O(1) in Python. This will be good enough for our purposes.

Convention We pick one model, TMs, and note that our results
are up to an O(1).



Like-Dislike-Like

Like The definition works in that a string with some sort of
pattern will have low randomness.

Dislike Java-Random, Python-Random, 1-tape-TM-Random will
all give different values. Want a def that is model-independent.

Like Translating a program from Java to Python to · · · is only
CONSTANT overhead. If C (x) = n in Java then C (x) will be
n ± O(1) in Python. This will be good enough for our purposes.

Convention We pick one model, TMs, and note that our results
are up to an O(1).



Like-Dislike-Like

Like The definition works in that a string with some sort of
pattern will have low randomness.

Dislike Java-Random, Python-Random, 1-tape-TM-Random will
all give different values. Want a def that is model-independent.

Like Translating a program from Java to Python to · · · is only
CONSTANT overhead. If C (x) = n in Java then C (x) will be
n ± O(1) in Python. This will be good enough for our purposes.

Convention We pick one model, TMs, and note that our results
are up to an O(1).



Like-Dislike-Like

Like The definition works in that a string with some sort of
pattern will have low randomness.

Dislike Java-Random, Python-Random, 1-tape-TM-Random will
all give different values. Want a def that is model-independent.

Like Translating a program from Java to Python to · · · is only
CONSTANT overhead. If C (x) = n in Java then C (x) will be
n ± O(1) in Python. This will be good enough for our purposes.

Convention We pick one model, TMs, and note that our results
are up to an O(1).



Do Random Strings Exist?

Is there a string of length n that has C (x) ≥ n?

Breakout Rooms



Do Random Strings Exist?

Is there a string of length n that has C (x) ≥ n?

Breakout Rooms



Do Random Strings Exist? (cont)

Thm For all n ∈ N there is a string of length n that has C (x) ≥ n.
How many strings are there of length n? 2n.

How many TMs are there of length ≤ n − 1?
20 + · · ·+ 2n−1 = 2n − 1.

Map all elements of {0, 1}n to the shortest program that prints it
out. Since there are 2n strings and only 2n − 1 programs of length
≤ n − 1 some string maps to a program of length ≥ n.



Do Random Strings Exist? (cont)

Thm For all n ∈ N there is a string of length n that has C (x) ≥ n.
How many strings are there of length n? 2n.

How many TMs are there of length ≤ n − 1?
20 + · · ·+ 2n−1 = 2n − 1.

Map all elements of {0, 1}n to the shortest program that prints it
out. Since there are 2n strings and only 2n − 1 programs of length
≤ n − 1 some string maps to a program of length ≥ n.



Do Random Strings Exist? (cont)

Thm For all n ∈ N there is a string of length n that has C (x) ≥ n.
How many strings are there of length n? 2n.

How many TMs are there of length ≤ n − 1?
20 + · · ·+ 2n−1 = 2n − 1.

Map all elements of {0, 1}n to the shortest program that prints it
out. Since there are 2n strings and only 2n − 1 programs of length
≤ n − 1 some string maps to a program of length ≥ n.



Application of
Kolmogorov Complexity
to Proving Languages

Not Regular

Exposition by William Gasarch—U of MD



L1 = {anbn : n ∈ N} is Not Regular

Assume L1 is regular via M = (Q, {a, b}, δ, s,F ).

Let n be a number such that C (n) is large (we say how large later).

We describe a short machine that prints out n.

This step is preprocessing. Feed an into M. It ends in state r .

Key bn is the only string x such that δ(r , x) ∈ F .

The following program prints out n.
Compute δ(r , b), δ(r , bb), · · · until find an m such that
δ(r , bm) ∈ F . Print out m.

Since the only extension of an that is in L1 is anbn, m = n. Hence
the program prints out n.

What is the length of the program? To describe the program all
you need is M (size O(1)) and some O(1) code. The program is of
size O(1), say A.

Pick n such that C (n) > A. Then you have a program of size
A < C (n) printing out n, which is a contradiction.



L1 = {anbn : n ∈ N} is Not Regular

Assume L1 is regular via M = (Q, {a, b}, δ, s,F ).

Let n be a number such that C (n) is large (we say how large later).

We describe a short machine that prints out n.

This step is preprocessing. Feed an into M. It ends in state r .

Key bn is the only string x such that δ(r , x) ∈ F .

The following program prints out n.
Compute δ(r , b), δ(r , bb), · · · until find an m such that
δ(r , bm) ∈ F . Print out m.

Since the only extension of an that is in L1 is anbn, m = n. Hence
the program prints out n.

What is the length of the program? To describe the program all
you need is M (size O(1)) and some O(1) code. The program is of
size O(1), say A.

Pick n such that C (n) > A. Then you have a program of size
A < C (n) printing out n, which is a contradiction.



L1 = {anbn : n ∈ N} is Not Regular

Assume L1 is regular via M = (Q, {a, b}, δ, s,F ).

Let n be a number such that C (n) is large (we say how large later).

We describe a short machine that prints out n.

This step is preprocessing. Feed an into M. It ends in state r .

Key bn is the only string x such that δ(r , x) ∈ F .

The following program prints out n.
Compute δ(r , b), δ(r , bb), · · · until find an m such that
δ(r , bm) ∈ F . Print out m.

Since the only extension of an that is in L1 is anbn, m = n. Hence
the program prints out n.

What is the length of the program? To describe the program all
you need is M (size O(1)) and some O(1) code. The program is of
size O(1), say A.

Pick n such that C (n) > A. Then you have a program of size
A < C (n) printing out n, which is a contradiction.



L1 = {anbn : n ∈ N} is Not Regular

Assume L1 is regular via M = (Q, {a, b}, δ, s,F ).

Let n be a number such that C (n) is large (we say how large later).

We describe a short machine that prints out n.

This step is preprocessing. Feed an into M. It ends in state r .

Key bn is the only string x such that δ(r , x) ∈ F .

The following program prints out n.
Compute δ(r , b), δ(r , bb), · · · until find an m such that
δ(r , bm) ∈ F . Print out m.

Since the only extension of an that is in L1 is anbn, m = n. Hence
the program prints out n.

What is the length of the program? To describe the program all
you need is M (size O(1)) and some O(1) code. The program is of
size O(1), say A.

Pick n such that C (n) > A. Then you have a program of size
A < C (n) printing out n, which is a contradiction.



L1 = {anbn : n ∈ N} is Not Regular

Assume L1 is regular via M = (Q, {a, b}, δ, s,F ).

Let n be a number such that C (n) is large (we say how large later).

We describe a short machine that prints out n.

This step is preprocessing. Feed an into M. It ends in state r .

Key bn is the only string x such that δ(r , x) ∈ F .

The following program prints out n.
Compute δ(r , b), δ(r , bb), · · · until find an m such that
δ(r , bm) ∈ F . Print out m.

Since the only extension of an that is in L1 is anbn, m = n. Hence
the program prints out n.

What is the length of the program? To describe the program all
you need is M (size O(1)) and some O(1) code. The program is of
size O(1), say A.

Pick n such that C (n) > A. Then you have a program of size
A < C (n) printing out n, which is a contradiction.



L1 = {anbn : n ∈ N} is Not Regular

Assume L1 is regular via M = (Q, {a, b}, δ, s,F ).

Let n be a number such that C (n) is large (we say how large later).

We describe a short machine that prints out n.

This step is preprocessing. Feed an into M. It ends in state r .

Key bn is the only string x such that δ(r , x) ∈ F .

The following program prints out n.
Compute δ(r , b), δ(r , bb), · · · until find an m such that
δ(r , bm) ∈ F . Print out m.

Since the only extension of an that is in L1 is anbn, m = n. Hence
the program prints out n.

What is the length of the program? To describe the program all
you need is M (size O(1)) and some O(1) code. The program is of
size O(1), say A.

Pick n such that C (n) > A. Then you have a program of size
A < C (n) printing out n, which is a contradiction.



L1 = {anbn : n ∈ N} is Not Regular

Assume L1 is regular via M = (Q, {a, b}, δ, s,F ).

Let n be a number such that C (n) is large (we say how large later).

We describe a short machine that prints out n.

This step is preprocessing. Feed an into M. It ends in state r .

Key bn is the only string x such that δ(r , x) ∈ F .

The following program prints out n.
Compute δ(r , b), δ(r , bb), · · · until find an m such that
δ(r , bm) ∈ F . Print out m.

Since the only extension of an that is in L1 is anbn, m = n. Hence
the program prints out n.

What is the length of the program? To describe the program all
you need is M (size O(1)) and some O(1) code. The program is of
size O(1), say A.

Pick n such that C (n) > A. Then you have a program of size
A < C (n) printing out n, which is a contradiction.



L1 = {anbn : n ∈ N} is Not Regular

Assume L1 is regular via M = (Q, {a, b}, δ, s,F ).

Let n be a number such that C (n) is large (we say how large later).

We describe a short machine that prints out n.

This step is preprocessing. Feed an into M. It ends in state r .

Key bn is the only string x such that δ(r , x) ∈ F .

The following program prints out n.
Compute δ(r , b), δ(r , bb), · · · until find an m such that
δ(r , bm) ∈ F . Print out m.

Since the only extension of an that is in L1 is anbn, m = n. Hence
the program prints out n.

What is the length of the program? To describe the program all
you need is M (size O(1)) and some O(1) code. The program is of
size O(1), say A.

Pick n such that C (n) > A. Then you have a program of size
A < C (n) printing out n, which is a contradiction.



L1 = {anbn : n ∈ N} is Not Regular

Assume L1 is regular via M = (Q, {a, b}, δ, s,F ).

Let n be a number such that C (n) is large (we say how large later).

We describe a short machine that prints out n.

This step is preprocessing. Feed an into M. It ends in state r .

Key bn is the only string x such that δ(r , x) ∈ F .

The following program prints out n.
Compute δ(r , b), δ(r , bb), · · · until find an m such that
δ(r , bm) ∈ F . Print out m.

Since the only extension of an that is in L1 is anbn, m = n. Hence
the program prints out n.

What is the length of the program? To describe the program all
you need is M (size O(1)) and some O(1) code. The program is of
size O(1), say A.

Pick n such that C (n) > A. Then you have a program of size
A < C (n) printing out n, which is a contradiction.



L2 = {ap : p is prime} is Not Regular

Assume L2 is regular via M = (Q, {a, b}, δ, s,F ).
Let pi be the ith prime.

Lemma For all N there exists i such that pi+1 − pi ≥ N.
Pf There are no primes between (N + 1)! + 2 and (N + 1)! +N + 1.
And Now Back to Our Proof

Let i be a number such that C (pi+1 − pi ) is large (we say how
large later).

We describe a short machine that prints out pi+1 − pi .

This step is preprocessing. Feed api into M. It ends in state r .

Key 0 api api+1−pi ∈ L2.

Key 1 api api+1−pi−1 /∈ L2.

Key 2 api api+1−pi−2 /∈ L2.

Real Key api+1−pi is the shortest string x such that api x ∈ L2.



L2 = {ap : p is prime} is Not Regular

Assume L2 is regular via M = (Q, {a, b}, δ, s,F ).
Let pi be the ith prime.
Lemma For all N there exists i such that pi+1 − pi ≥ N.

Pf There are no primes between (N + 1)! + 2 and (N + 1)! +N + 1.
And Now Back to Our Proof

Let i be a number such that C (pi+1 − pi ) is large (we say how
large later).

We describe a short machine that prints out pi+1 − pi .

This step is preprocessing. Feed api into M. It ends in state r .

Key 0 api api+1−pi ∈ L2.

Key 1 api api+1−pi−1 /∈ L2.

Key 2 api api+1−pi−2 /∈ L2.

Real Key api+1−pi is the shortest string x such that api x ∈ L2.



L2 = {ap : p is prime} is Not Regular

Assume L2 is regular via M = (Q, {a, b}, δ, s,F ).
Let pi be the ith prime.
Lemma For all N there exists i such that pi+1 − pi ≥ N.
Pf There are no primes between (N + 1)! + 2 and (N + 1)! +N + 1.

And Now Back to Our Proof

Let i be a number such that C (pi+1 − pi ) is large (we say how
large later).

We describe a short machine that prints out pi+1 − pi .

This step is preprocessing. Feed api into M. It ends in state r .

Key 0 api api+1−pi ∈ L2.

Key 1 api api+1−pi−1 /∈ L2.

Key 2 api api+1−pi−2 /∈ L2.

Real Key api+1−pi is the shortest string x such that api x ∈ L2.



L2 = {ap : p is prime} is Not Regular

Assume L2 is regular via M = (Q, {a, b}, δ, s,F ).
Let pi be the ith prime.
Lemma For all N there exists i such that pi+1 − pi ≥ N.
Pf There are no primes between (N + 1)! + 2 and (N + 1)! +N + 1.
And Now Back to Our Proof

Let i be a number such that C (pi+1 − pi ) is large (we say how
large later).

We describe a short machine that prints out pi+1 − pi .

This step is preprocessing. Feed api into M. It ends in state r .

Key 0 api api+1−pi ∈ L2.

Key 1 api api+1−pi−1 /∈ L2.

Key 2 api api+1−pi−2 /∈ L2.

Real Key api+1−pi is the shortest string x such that api x ∈ L2.



L2 = {ap : p is prime} is Not Regular

Assume L2 is regular via M = (Q, {a, b}, δ, s,F ).
Let pi be the ith prime.
Lemma For all N there exists i such that pi+1 − pi ≥ N.
Pf There are no primes between (N + 1)! + 2 and (N + 1)! +N + 1.
And Now Back to Our Proof

Let i be a number such that C (pi+1 − pi ) is large (we say how
large later).

We describe a short machine that prints out pi+1 − pi .

This step is preprocessing. Feed api into M. It ends in state r .

Key 0 api api+1−pi ∈ L2.

Key 1 api api+1−pi−1 /∈ L2.

Key 2 api api+1−pi−2 /∈ L2.

Real Key api+1−pi is the shortest string x such that api x ∈ L2.



L2 = {ap : p is prime} is Not Regular

Assume L2 is regular via M = (Q, {a, b}, δ, s,F ).
Let pi be the ith prime.
Lemma For all N there exists i such that pi+1 − pi ≥ N.
Pf There are no primes between (N + 1)! + 2 and (N + 1)! +N + 1.
And Now Back to Our Proof

Let i be a number such that C (pi+1 − pi ) is large (we say how
large later).

We describe a short machine that prints out pi+1 − pi .

This step is preprocessing. Feed api into M. It ends in state r .

Key 0 api api+1−pi ∈ L2.

Key 1 api api+1−pi−1 /∈ L2.

Key 2 api api+1−pi−2 /∈ L2.

Real Key api+1−pi is the shortest string x such that api x ∈ L2.



L2 = {ap : p is prime} is Not Regular

Assume L2 is regular via M = (Q, {a, b}, δ, s,F ).
Let pi be the ith prime.
Lemma For all N there exists i such that pi+1 − pi ≥ N.
Pf There are no primes between (N + 1)! + 2 and (N + 1)! +N + 1.
And Now Back to Our Proof

Let i be a number such that C (pi+1 − pi ) is large (we say how
large later).

We describe a short machine that prints out pi+1 − pi .

This step is preprocessing. Feed api into M. It ends in state r .

Key 0 api api+1−pi ∈ L2.

Key 1 api api+1−pi−1 /∈ L2.

Key 2 api api+1−pi−2 /∈ L2.

Real Key api+1−pi is the shortest string x such that api x ∈ L2.



L2 = {ap : p is prime} is Not Regular

Assume L2 is regular via M = (Q, {a, b}, δ, s,F ).
Let pi be the ith prime.
Lemma For all N there exists i such that pi+1 − pi ≥ N.
Pf There are no primes between (N + 1)! + 2 and (N + 1)! +N + 1.
And Now Back to Our Proof

Let i be a number such that C (pi+1 − pi ) is large (we say how
large later).

We describe a short machine that prints out pi+1 − pi .

This step is preprocessing. Feed api into M. It ends in state r .

Key 0 api api+1−pi ∈ L2.

Key 1 api api+1−pi−1 /∈ L2.

Key 2 api api+1−pi−2 /∈ L2.

Real Key api+1−pi is the shortest string x such that api x ∈ L2.



L2 = {ap : p is prime} is Not Regular

Assume L2 is regular via M = (Q, {a, b}, δ, s,F ).
Let pi be the ith prime.
Lemma For all N there exists i such that pi+1 − pi ≥ N.
Pf There are no primes between (N + 1)! + 2 and (N + 1)! +N + 1.
And Now Back to Our Proof

Let i be a number such that C (pi+1 − pi ) is large (we say how
large later).

We describe a short machine that prints out pi+1 − pi .

This step is preprocessing. Feed api into M. It ends in state r .

Key 0 api api+1−pi ∈ L2.

Key 1 api api+1−pi−1 /∈ L2.

Key 2 api api+1−pi−2 /∈ L2.

Real Key api+1−pi is the shortest string x such that api x ∈ L2.



L2 = {ap : p is prime} is Not Regular

Assume L2 is regular via M = (Q, {a, b}, δ, s,F ).
Let pi be the ith prime.
Lemma For all N there exists i such that pi+1 − pi ≥ N.
Pf There are no primes between (N + 1)! + 2 and (N + 1)! +N + 1.
And Now Back to Our Proof

Let i be a number such that C (pi+1 − pi ) is large (we say how
large later).

We describe a short machine that prints out pi+1 − pi .

This step is preprocessing. Feed api into M. It ends in state r .

Key 0 api api+1−pi ∈ L2.

Key 1 api api+1−pi−1 /∈ L2.

Key 2 api api+1−pi−2 /∈ L2.

Real Key api+1−pi is the shortest string x such that api x ∈ L2.



L2 = {ap : p is prime} is Not Regular

Assume L2 is regular via M = (Q, {a, b}, δ, s,F ).
Let pi be the ith prime.
Lemma For all N there exists i such that pi+1 − pi ≥ N.
Pf There are no primes between (N + 1)! + 2 and (N + 1)! +N + 1.
And Now Back to Our Proof

Let i be a number such that C (pi+1 − pi ) is large (we say how
large later).

We describe a short machine that prints out pi+1 − pi .

This step is preprocessing. Feed api into M. It ends in state r .

Key 0 api api+1−pi ∈ L2.

Key 1 api api+1−pi−1 /∈ L2.

Key 2 api api+1−pi−2 /∈ L2.

Real Key api+1−pi is the shortest string x such that api x ∈ L2.



L2 = {ap : p is prime } is Not Regular (cont.)

The following program prints out pi+1 − pi .
Compute δ(r , a), δ(r , aa), · · · until find FIRST m such that
δ(r , am) ∈ F . Print out m.

Since the smallest m such that api+m ∈ L2 is pi+1 − pi , this
program will print out

pi+1 − pi

What is the length of the program? To describe the program all
you need is M and some O(1) code. The program is of size O(1),
say A.

Pick i such that C (pi+1 − pi ) ≥ A. Then you have a program of
size A < C (pi+1 − pi ) printing out pi+1 − pi which is a
contradiction.



L2 = {ap : p is prime } is Not Regular (cont.)

The following program prints out pi+1 − pi .
Compute δ(r , a), δ(r , aa), · · · until find FIRST m such that
δ(r , am) ∈ F . Print out m.

Since the smallest m such that api+m ∈ L2 is pi+1 − pi , this
program will print out

pi+1 − pi

What is the length of the program? To describe the program all
you need is M and some O(1) code. The program is of size O(1),
say A.

Pick i such that C (pi+1 − pi ) ≥ A. Then you have a program of
size A < C (pi+1 − pi ) printing out pi+1 − pi which is a
contradiction.



L2 = {ap : p is prime } is Not Regular (cont.)

The following program prints out pi+1 − pi .
Compute δ(r , a), δ(r , aa), · · · until find FIRST m such that
δ(r , am) ∈ F . Print out m.

Since the smallest m such that api+m ∈ L2 is pi+1 − pi , this
program will print out

pi+1 − pi

What is the length of the program? To describe the program all
you need is M and some O(1) code. The program is of size O(1),
say A.

Pick i such that C (pi+1 − pi ) ≥ A. Then you have a program of
size A < C (pi+1 − pi ) printing out pi+1 − pi which is a
contradiction.



L2 = {ap : p is prime } is Not Regular (cont.)

The following program prints out pi+1 − pi .
Compute δ(r , a), δ(r , aa), · · · until find FIRST m such that
δ(r , am) ∈ F . Print out m.

Since the smallest m such that api+m ∈ L2 is pi+1 − pi , this
program will print out

pi+1 − pi

What is the length of the program? To describe the program all
you need is M and some O(1) code. The program is of size O(1),
say A.

Pick i such that C (pi+1 − pi ) ≥ A. Then you have a program of
size A < C (pi+1 − pi ) printing out pi+1 − pi which is a
contradiction.



L2 = {ap : p is prime } is Not Regular (cont.)

The following program prints out pi+1 − pi .
Compute δ(r , a), δ(r , aa), · · · until find FIRST m such that
δ(r , am) ∈ F . Print out m.

Since the smallest m such that api+m ∈ L2 is pi+1 − pi , this
program will print out

pi+1 − pi

What is the length of the program? To describe the program all
you need is M and some O(1) code. The program is of size O(1),
say A.

Pick i such that C (pi+1 − pi ) ≥ A. Then you have a program of
size A < C (pi+1 − pi ) printing out pi+1 − pi which is a
contradiction.



L3 = {aibj : gcd of i , j is 1 } is Not Regular

Assume L3 is regular via M = (Q, {a, b}, δ, s,F ).

Let p be a large prime (we say how large later).

We describe a short machine that prints out p.

This step is preprocessing. Feed a(p−1)! into M. It ends in state r .

Key 1 a(p−1)!b ∈ L3 AND a(p−1)!bp ∈ L3.

Key 2 a(p−1)!b2 /∈ L3.

Key 3 a(p−1)!b3 /∈ L3.

Real Key p is the smallest m ≥ 2 such that a(p−1)!bm ∈ L3.



L3 = {aibj : gcd of i , j is 1 } is Not Regular

Assume L3 is regular via M = (Q, {a, b}, δ, s,F ).

Let p be a large prime (we say how large later).

We describe a short machine that prints out p.

This step is preprocessing. Feed a(p−1)! into M. It ends in state r .

Key 1 a(p−1)!b ∈ L3 AND a(p−1)!bp ∈ L3.

Key 2 a(p−1)!b2 /∈ L3.

Key 3 a(p−1)!b3 /∈ L3.

Real Key p is the smallest m ≥ 2 such that a(p−1)!bm ∈ L3.



L3 = {aibj : gcd of i , j is 1 } is Not Regular

Assume L3 is regular via M = (Q, {a, b}, δ, s,F ).

Let p be a large prime (we say how large later).

We describe a short machine that prints out p.

This step is preprocessing. Feed a(p−1)! into M. It ends in state r .

Key 1 a(p−1)!b ∈ L3 AND a(p−1)!bp ∈ L3.

Key 2 a(p−1)!b2 /∈ L3.

Key 3 a(p−1)!b3 /∈ L3.

Real Key p is the smallest m ≥ 2 such that a(p−1)!bm ∈ L3.



L3 = {aibj : gcd of i , j is 1 } is Not Regular

Assume L3 is regular via M = (Q, {a, b}, δ, s,F ).

Let p be a large prime (we say how large later).

We describe a short machine that prints out p.

This step is preprocessing. Feed a(p−1)! into M. It ends in state r .

Key 1 a(p−1)!b ∈ L3 AND a(p−1)!bp ∈ L3.

Key 2 a(p−1)!b2 /∈ L3.

Key 3 a(p−1)!b3 /∈ L3.

Real Key p is the smallest m ≥ 2 such that a(p−1)!bm ∈ L3.



L3 = {aibj : gcd of i , j is 1 } is Not Regular

Assume L3 is regular via M = (Q, {a, b}, δ, s,F ).

Let p be a large prime (we say how large later).

We describe a short machine that prints out p.

This step is preprocessing. Feed a(p−1)! into M. It ends in state r .

Key 1 a(p−1)!b ∈ L3 AND a(p−1)!bp ∈ L3.

Key 2 a(p−1)!b2 /∈ L3.

Key 3 a(p−1)!b3 /∈ L3.

Real Key p is the smallest m ≥ 2 such that a(p−1)!bm ∈ L3.



L3 = {aibj : gcd of i , j is 1 } is Not Regular

Assume L3 is regular via M = (Q, {a, b}, δ, s,F ).

Let p be a large prime (we say how large later).

We describe a short machine that prints out p.

This step is preprocessing. Feed a(p−1)! into M. It ends in state r .

Key 1 a(p−1)!b ∈ L3 AND a(p−1)!bp ∈ L3.

Key 2 a(p−1)!b2 /∈ L3.

Key 3 a(p−1)!b3 /∈ L3.

Real Key p is the smallest m ≥ 2 such that a(p−1)!bm ∈ L3.



L3 = {aibj : gcd of i , j is 1 } is Not Regular

Assume L3 is regular via M = (Q, {a, b}, δ, s,F ).

Let p be a large prime (we say how large later).

We describe a short machine that prints out p.

This step is preprocessing. Feed a(p−1)! into M. It ends in state r .

Key 1 a(p−1)!b ∈ L3 AND a(p−1)!bp ∈ L3.

Key 2 a(p−1)!b2 /∈ L3.

Key 3 a(p−1)!b3 /∈ L3.

Real Key p is the smallest m ≥ 2 such that a(p−1)!bm ∈ L3.



L3 = {aibj : gcd of i , j is 1 } is Not Regular

Assume L3 is regular via M = (Q, {a, b}, δ, s,F ).

Let p be a large prime (we say how large later).

We describe a short machine that prints out p.

This step is preprocessing. Feed a(p−1)! into M. It ends in state r .

Key 1 a(p−1)!b ∈ L3 AND a(p−1)!bp ∈ L3.

Key 2 a(p−1)!b2 /∈ L3.

Key 3 a(p−1)!b3 /∈ L3.

Real Key p is the smallest m ≥ 2 such that a(p−1)!bm ∈ L3.



L3 = {aibj : gcd of i , j is 1 } is Not Regular

The following program prints out p.
Compute δ(r ,b2), δ(r ,b3), · · · until find FIRST m ≥ 2 such
that δ(r ,bm) ∈ F . Print out m.
From comments above m = p.

What is the length of the program? To describe the program all
you need is M and some O(1) code. The program is of size O(1),
say A.

Pick prime p such that C (p) ≥ A. Then you have a program of
size A < C (p) printing out p which is a contradiction.



L3 = {aibj : gcd of i , j is 1 } is Not Regular

The following program prints out p.
Compute δ(r ,b2), δ(r ,b3), · · · until find FIRST m ≥ 2 such
that δ(r ,bm) ∈ F . Print out m.

From comments above m = p.

What is the length of the program? To describe the program all
you need is M and some O(1) code. The program is of size O(1),
say A.

Pick prime p such that C (p) ≥ A. Then you have a program of
size A < C (p) printing out p which is a contradiction.



L3 = {aibj : gcd of i , j is 1 } is Not Regular

The following program prints out p.
Compute δ(r ,b2), δ(r ,b3), · · · until find FIRST m ≥ 2 such
that δ(r ,bm) ∈ F . Print out m.
From comments above m = p.

What is the length of the program? To describe the program all
you need is M and some O(1) code. The program is of size O(1),
say A.

Pick prime p such that C (p) ≥ A. Then you have a program of
size A < C (p) printing out p which is a contradiction.



L3 = {aibj : gcd of i , j is 1 } is Not Regular

The following program prints out p.
Compute δ(r ,b2), δ(r ,b3), · · · until find FIRST m ≥ 2 such
that δ(r ,bm) ∈ F . Print out m.
From comments above m = p.

What is the length of the program? To describe the program all
you need is M and some O(1) code. The program is of size O(1),
say A.

Pick prime p such that C (p) ≥ A. Then you have a program of
size A < C (p) printing out p which is a contradiction.



L3 = {aibj : gcd of i , j is 1 } is Not Regular

The following program prints out p.
Compute δ(r ,b2), δ(r ,b3), · · · until find FIRST m ≥ 2 such
that δ(r ,bm) ∈ F . Print out m.
From comments above m = p.

What is the length of the program? To describe the program all
you need is M and some O(1) code. The program is of size O(1),
say A.

Pick prime p such that C (p) ≥ A. Then you have a program of
size A < C (p) printing out p which is a contradiction.



Kolm Complexity Also Applies To

1. Proves that other langs are not regular.

2. Proves that langs are not CFG.

3. Can use it to show some langs require a large DFA, NFA,
CFG, TM.

4. Can use in proves of average case analysis. If an algorithm
runs in time BLAH on a Kolg random input, then its average
case is BLAH.



Kolm Complexity Also Applies To

1. Proves that other langs are not regular.

2. Proves that langs are not CFG.

3. Can use it to show some langs require a large DFA, NFA,
CFG, TM.

4. Can use in proves of average case analysis. If an algorithm
runs in time BLAH on a Kolg random input, then its average
case is BLAH.



Kolm Complexity Also Applies To

1. Proves that other langs are not regular.

2. Proves that langs are not CFG.

3. Can use it to show some langs require a large DFA, NFA,
CFG, TM.

4. Can use in proves of average case analysis. If an algorithm
runs in time BLAH on a Kolg random input, then its average
case is BLAH.



Kolm Complexity Also Applies To

1. Proves that other langs are not regular.

2. Proves that langs are not CFG.

3. Can use it to show some langs require a large DFA, NFA,
CFG, TM.

4. Can use in proves of average case analysis. If an algorithm
runs in time BLAH on a Kolg random input, then its average
case is BLAH.



Kolm Complexity Also Applies To

1. Proves that other langs are not regular.

2. Proves that langs are not CFG.

3. Can use it to show some langs require a large DFA, NFA,
CFG, TM.

4. Can use in proves of average case analysis. If an algorithm
runs in time BLAH on a Kolg random input, then its average
case is BLAH.



BILL AND NATHAN STOP RECORDING
LECTURE!!!!

BILL AND NATHAN STOP RECORDING LECTURE!!!



UN-TIMED PART OF
FINAL IS TUESDAY

May 11 11:00A.
NO DEAD CAT

Exposition by William Gasarch—U of MD



FINAL IS THURSDAY
May 13

8:00PM-10:15PM

Exposition by William Gasarch—U of MD



FILL OUT COURSE
EVALS for ALL YOUR

COURSES!!!

Exposition by William Gasarch—U of MD


