BILL AND NATHAN START RECORDING
Review for the Midterm
Rules

1. **Begin** Midterm ON Gradescope: Tuesday March 23, 8:00PM-10:00PM. (IF this is a problem for you contact me ASAP!!)
Rules

1. **Begin** Midterm ON Gradescope: Tuesday March 23, 8:00PM-10:00PM. (IF this is a problem for you contact me ASAP!!

2. **Resources** Midterm is open-everything. The web, my notes, my HW solutions, all fine to use. Cannot ask any other human. Can talk to your cat. Honor System. I trust and respect you.
Rules

1. **Begin** Midterm ON Gradescope: Tuesday March 23, 8:00PM-10:00PM. (IF this is a problem for you contact me ASAP!!)

2. **Resources** Midterm is open-everything. The web, my notes, my HW solutions, all fine to use. Cannot ask any other human. Can talk to your cat. Honor System. I trust and respect you.

3. **Caveat** You must hand in your own work and you must understand what you hand in.

4. **Warning** Mindlessly copying does not work.

5. **Neat** LaTeX is best. Good handwriting okay. Draw Aut, or use LateX tool posted.

6. **Our Intent** This is exam I intended to give out originally. The extra time is meant for you to format and put in LaTeX.

7. **Scope of the Exam**
 - **Short Answer** HWs and lectures.
 - **Long Answer** This Presentation.
Rules

1. **Begin** Midterm ON Gradescope: Tuesday March 23, 8:00PM-10:00PM. (IF this is a problem for you contact me ASAP!!)

2. **Resources** Midterm is open-everything. The web, my notes, my HW solutions, all fine to use. Cannot ask any other human. Can talk to your cat. Honor System. I trust and respect you.

3. **Caveat** You must hand in your own work and you must understand what you hand in.

4. **Warning** Mindlessly copying does not work.
Rules

1. **Begin** Midterm ON Gradescope: Tuesday March 23, 8:00PM-10:00PM. (IF this is a problem for you contact me ASAP!!)

2. **Resources** Midterm is open-everything. The web, my notes, my HW solutions, all fine to use. Cannot ask any other human. Can talk to your cat. Honor System. I trust and respect you.

3. **Caveat** You must hand in your own work and you must understand what you hand in.

4. **Warning** Mindlessly copying does not work.

5. **Neat** LaTex is best. Good handwriting okay. Draw Aut, or use LateX tool posted.
Rules

1. **Begin** Midterm ON Gradescope: Tuesday March 23, 8:00PM-10:00PM. (IF this is a problem for you contact me ASAP!!)

2. **Resources** Midterm is open-everything. The web, my notes, my HW solutions, all fine to use. Cannot ask any other human. Can talk to your cat. Honor System. I trust and respect you.

3. **Caveat** You must hand in your own work and you must understand what you hand in.

4. **Warning** Mindlessly copying does not work.

5. **Neat** LaTex is best. Good handwriting okay. Draw Aut, or use LateX tool posted.

6. **Our Intent** This is exam I intended to give out originally. The extra time is meant for you to format and put in LaTeX.
Rules

1. **Begin** Midterm ON Gradescope: Tuesday March 23, 8:00PM-10:00PM. (IF this is a problem for you contact me ASAP!!)

2. **Resources** Midterm is open-everything. The web, my notes, my HW solutions, all fine to use. Cannot ask any other human. Can talk to your cat. Honor System. I trust and respect you.

3. **Caveat** You must hand in your own work and you must understand what you hand in.

4. **Warning** Mindlessly copying does not work.

5. **Neat** LaTex is best. Good handwriting okay. Draw Aut, or use LateX tool posted.

6. **Our Intent** This is exam I intended to give out originally. The extra time is meant for you to format and put in LaTeX.

7. **Scope of the Exam**
 - **Short Answer** HWs and lectures.
 - **Long Answer** This Presentation.
What We Have Covered: Regular Languages

1. Examples of Reg Langs

2. \{a, b\}^* a \{a, b\}^n (DFA: $2^n + 1$, NFA: $n + 2$, CFG: $\log n$. Cool!)

3. DFA, NFA, REGEX. Equivalence of all of these.

What We Have Covered: Regular Languages

1. Examples of Reg Langs

 Numbers that are \(\equiv i \pmod{j} \)
What We Have Covered: Regular Languages

1. Examples of Reg Langs

Numbers that are $\equiv i \pmod{j}$

$\{w : \#_a(w) \equiv i_1 \pmod{j_1} \land \#_b(w) \equiv i_2 \pmod{j_2}\}$
What We Have Covered: Regular Languages

1. Examples of Reg Langs

 Numbers that are \(\equiv i \pmod{j} \)

 \[\{ w : \#_a(w) \equiv i_1 \pmod{j_1} \land \#_b(w) \equiv i_2 \pmod{j_2} \} \]

 For a fixed string \(w \), \(w\{a, b\}^* \), \(\{a, b\}^* w \)
What We Have Covered: Regular Languages

1. Examples of Reg Langs
 Numbers that are $\equiv i \pmod{j}$
 \[\{ w : \#_a(w) \equiv i_1 \pmod{j_1} \land \#_b(w) \equiv i_2 \pmod{j_2} \} \]
 For a fixed string w, $w \{a, b\}^*, \{a, b\}^* w$

2. $\{a, b\}^* a \{a, b\}^n$ (DFA: 2^{n+1}, NFA: $n + 2$, CFG: $\log n$. Cool!)

 Others

3. DFA, NFA, REGEX. Equivalence of all of these.

1. **Examples of Reg Langs**

 Numbers that are \(\equiv i \pmod{j} \)

 \(\{w : \#_a(w) \equiv i_1 \pmod{j_1} \land \#_b(w) \equiv i_2 \pmod{j_2}\} \)

 For a fixed string \(w \), \(w\{a, b\}^* \), \(\{a, b\}^*w \)

2. \(\{a, b\}^*a\{a, b\}^n \) (DFA: \(2^{n+1} \), NFA: \(n + 2 \), CFG: \(\log n \). Cool!)

 \(\{a^i : i \neq n\} \) (DFA requires \(\sim n \), NFA \(\sim 2\sqrt{n} + \log \text{stuff} \). Cool!)
What We Have Covered: Regular Languages

1. Examples of Reg Langs
 Numbers that are $\equiv i \pmod{j}$
 $\{w : \#_a(w) \equiv i_1 \pmod{j_1} \land \#_b(w) \equiv i_2 \pmod{j_2}\}$
 For a fixed string w, $w\{a, b\}^*, \{a, b\}^*w$

2. $\{a, b\}^*a\{a, b\}^n$ (DFA: 2^{n+1}, NFA: $n + 2$, CFG: $\log n$. Cool!)
 $\{a^i : i \neq n\}$ (DFA requires $\sim n$, NFA $\sim 2\sqrt{n} + \logstuff$ Cool!)
 Others
What We Have Covered: Regular Languages

1. **Examples of Reg Langs**

 Numbers that are \(\equiv i \pmod{j} \)
 \[
 \{ w : \#_a(w) \equiv i_1 \pmod{j_1} \land \#_b(w) \equiv i_2 \pmod{j_2} \} \]

 For a fixed string \(w \), \(w\{a, b\}^* \), \(\{a, b\}^* w \)

2. \(\{a, b\}^* a \{a, b\}^n \) (DFA: \(2^{n+1} \), NFA: \(n + 2 \), CFG: \(\log n \). Cool!)

 \(\{a^i : i \neq n\} \) (DFA requires \(\sim n \), NFA \(\sim 2\sqrt{n} + \log\text{stuff} \). Cool!)

 Others

3. DFA, NFA, REGEX. Equivalence of all of these.
What We Have Covered: Regular Languages

1. **Examples of Reg Langs**
 - Numbers that are \(\equiv i \pmod{\ell} \)
 - \(\{ w : \#_a(w) \equiv i_1 \pmod{j_1} \land \#_b(w) \equiv i_2 \pmod{j_2} \} \)
 - For a fixed string \(w \), \(w \{ a, b \}^*, \{ a, b \}^* w \)

2. \(\{ a, b \}^* a \{ a, b \}^n \) (DFA: \(2^{n+1} \), NFA: \(n + 2 \), CFG: \(\log n \). Cool!)
 - \(\{ a^i : i \neq n \} \) (DFA requires \(\sim n \), NFA \(\sim 2\sqrt{n} + \log\text{stuff} \). Cool!)
 - Others

3. DFA, NFA, REGEX. Equivalence of all of these.

What We Have Covered: Regular Languages

1. **Examples of Reg Langs**

 Numbers that are $\equiv i \pmod{j}$
 \[
 \{ w : \#_a(w) \equiv i_1 \pmod{j_1} \land \#_b(w) \equiv i_2 \pmod{j_2} \}
 \]

 For a fixed string w, $w\{a, b\}^*, \{a, b\}^* w$

2. $\{a, b\}^* a\{a, b\}^n$ (DFA: 2^{n+1}, NFA: $n + 2$, CFG: $\log n$. Cool!)
 \[
 \{a^i : i \not= n\} \text{ (DFA requires } \sim n, \text{ NFA } \sim 2\sqrt{n + \logstuff} \text{ Cool!)}
 \]

 Others

3. DFA, NFA, REGEX. Equivalence of all of these.

What We Have Covered: Context Free Languages

1. Examples of CFL’s
What We Have Covered: Context Free Languages

1. Examples of CFL’s
 \[\{ a^{k_1n} b^{k_2n} : n \in \mathbb{N} \} \]
1. **Examples of CFL’s**

\[\{ a^{k_1 n} b^{k_2 n} : n \in \mathbb{N} \} \]

\[\{ w : \#_a(w) = \#_b(w) \} \]
What We Have Covered: Context Free Languages

1. Examples of CFL’s

\[
\{ a^{k_1n} b^{k_2n} : n \in \mathbb{N} \}
\]

\[
\{ w : \#_a(w) = \#_b(w) \}
\]

\[
\{ w : k_1 \#_a(w) = k_2 \#_b(w) \}
\]
What We Have Covered: Context Free Languages

1. Examples of CFL’s
 \[\{a^{k_1 n} b^{k_2 n} : n \in \mathbb{N}\} \]
 \[\{w : \#a(w) = \#b(w)\} \]
 \[\{w : k_1 \#a(w) = k_2 \#b(w)\} \]
 \[\{a^n\} \text{ (Interesting: Small CFL, Large NFA)} \]
What We Have Covered: Context Free Languages

1. Examples of CFL’s
 \[
 \{a^{k_1 n} b^{k_2 n} : n \in \mathbb{N}\}
 \]
 \[
 \{w : \#_a(w) = \#_b(w)\}
 \]
 \[
 \{w : k_1 \#_a(w) = k_2 \#_b(w)\}
 \]
 \[
 \{a^n\} \text{ (Interesting: Small CFL, Large NFA)}
 \]

2. Chomsky Normal Form. Needed to make size comparisons.
What We Have Covered: Context Free Languages

1. Examples of CFL’s
 \{a^{k_1n}b^{k_2n} : n \in \mathbb{N}\}
 \{w : \#_a(w) = \#_b(w)\}
 \{w : k_1\#_a(w) = k_2\#_b(w)\}
 \{a^n\} (Interesting: Small CFL, Large NFA)

2. Chomsky Normal Form. Needed to make size comparisons.

What We Have Covered: Context Free Languages

1. **Examples of CFL’s**

 \(\{a^{k_1n}b^{k_2n} : n \in \mathbb{N}\}\)

 \(\{w : \#_a(w) = \#_b(w)\}\)

 \(\{w : k_1\#_a(w) = k_2\#_b(w)\}\)

 \(\{a^n\}\) (Interesting: Small CFL, Large NFA)

2. Chomsky Normal Form. Needed to make size comparisons.

4. **Non-CFL’s:**

 If \(L \subseteq a^*\) and not regular, than not CFL.

 If need to keep track of TWO things then NOT CFL.

 E.g., \(\{a^n b^n c^n : n \in \mathbb{N}\}\)
Equivalence of DFA, NFA, REGEX

1. \(L_{\text{DFA}} \rightarrow L_{\text{REGEX}}:\) Dynamic Programming. \(\alpha\) is exp in number of states.

2. \(L_{\text{REGEX}} \rightarrow L_{\text{NFA}}:\) induction on formation of a REGEX.

3. \(L_{\text{NFA}} \rightarrow L_{\text{DFA}}:\) powerset construction. States blowup exponentially.
Equivalence of DFA, NFA, REGEX

1. $L \text{ DFA} \rightarrow L \text{ REGEX}$:
Equivalence of DFA, NFA, REGEX

1. $L \text{DFA} \rightarrow L \text{REGEX}$: $R(i,j,k)$ Dynamic Programming. $|\alpha|$ is exp in number of states.
Equivalence of DFA, NFA, REGEX

1. $L \text{DFA} \rightarrow L \text{REGEX}$: $R(i, j, k)$ Dynamic Programming. $|\alpha|$ is exp in number of states.

2. $L \text{REGEX} \rightarrow L \text{NFA}$:
Equivalence of DFA, NFA, REGEX

1. $L\text{ DFA} \rightarrow L\text{ REGEX}: R(i, j, k)$ Dynamic Programming. $|\alpha|$ is exp in number of states.

2. $L\text{ REGEX} \rightarrow L\text{ NFA}$: induction on formation of a REGEX.
Equivalence of DFA, NFA, REGEX

1. \(L \text{ DFA} \rightarrow L \text{ REGEX} \): \(R(i, j, k) \) Dynamic Programming. \(|\alpha|\) is exp in number of states.
2. \(L \text{ REGEX} \rightarrow L \text{ NFA} \): induction on formation of a REGEX.
3. \(L \text{ NFA} \rightarrow L \text{ DFA} \):
Equivalence of DFA, NFA, REGEX

1. L DFA $\rightarrow L$ REGEX: $R(i, j, k)$ Dynamic Programming. $|\alpha|$ is exp in number of states.
2. L REGEX $\rightarrow L$ NFA: induction on formation of a REGEX.
Closure Properties

1. **Union** What to use?

 - DFA: Cross Product Construction, or
 - REGEX: by definition, or
 - NFA: e-transitions.

2. **Intersection** What to use?

 - DFA: Cross Product Construction.
 - NFA: Cross Product Construction.

3. **Complimentation** What to use?

 - DFA: Swap final and non-final states.

4. **Concatenation** What to use?

 - NFA: e-transition from one machine to the other.
 - REGEX: by Def.

5. **Star** What to use?

 - NFA: transitions from final to new start/final to start.
 - REGEX: by Def.
Closure Properties

1. **Union** What to use?
 - DFA: Cross Product Construction, or
 - REGEX: by definition, or
 - NFA: e-transitions.
Closure Properties

1. **Union** What to use?
 - DFA: Cross Product Construction, or
 - REGEX: by definition, or
 - NFA: e-transitions.

2. **Intersection** What to use?
Closure Properties

1. **Union** What to use?
 - DFA: Cross Product Construction, or
 - REGEX: by definition, or
 - NFA: e-transitions.

2. **Intersection** What to use?
 - DFA: Cross Product Construction.
 - NFA: Cross Product Construction.
Closure Properties

1. **Union** What to use?
 - DFA: Cross Product Construction, or
 - REGEX: by definition, or
 - NFA: e-transitions.

2. **Intersection** What to use?
 - DFA: Cross Product Construction.
 - NFA: Cross Product Construction.

3. **Complimentation** What to use?
Closure Properties

1. **Union** What to use?
 DFA: Cross Product Construction, or
 REGEX: by definition, or
 NFA: e-transitions.

2. **Intersection** What to use?
 DFA: Cross Product Construction.
 NFA: Cross Product Construction.

3. **Complimentation** What to use?
 DFA: Swap final and non-final states.
Closure Properties

1. **Union** What to use?
 DFA: Cross Product Construction, or
 REGEX: by definition, or
 NFA: e-transitions.

2. **Intersection** What to use?
 DFA: Cross Product Construction.
 NFA: Cross Product Construction.

3. **Complimentation** What to use?
 DFA: Swap final and non-final states.

4. **Concatenation** What to use?
Closure Properties

1. **Union** What to use?
 - DFA: Cross Product Construction, or
 - REGEX: by definition, or
 - NFA: e-transitions.

2. **Intersection** What to use?
 - DFA: Cross Product Construction.
 - NFA: Cross Product Construction.

3. **Complimentation** What to use?
 - DFA: Swap final and non-final states.

4. **Concatenation** What to use?
 - NFA: e-transition from one machine to the other.
 - REGEX: By Def.
Closure Properties

1. **Union** What to use?
 DFA: Cross Product Construction, or
 REGEX: by definition, or
 NFA: e-transitions.

2. **Intersection** What to use?
 DFA: Cross Product Construction.
 NFA: Cross Product Construction.

3. **Complimentation** What to use?
 DFA: Swap final and non-final states.

4. **Concatenation** What to use?
 NFA: e-transition from one machine to the other.
 REGEX: By Def.

5. **Star** What to use?
Closure Properties

1. **Union** What to use?
 - DFA: Cross Product Construction, or
 - REGEX: by definition, or
 - NFA: e-transitions.

2. **Intersection** What to use?
 - DFA: Cross Product Construction.
 - NFA: Cross Product Construction.

3. **Complimentation** What to use?
 - DFA: Swap final and non-final states.

4. **Concatenation** What to use?
 - NFA: e-transition from one machine to the other.
 - REGEX: By Def.

5. **Star** What to use?
 - NFA: transitions from final to new start/final to start.
 - REGEX: By Def.
Pumping Lemma

If L is regular then there exists n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \geq n_0$ there exists x, y, z such that:

1. $w = xyz$ and $y \neq e$.
2. $|xy| \leq n_1$.
3. For all $i \geq 0$, $xy^iz \in L$.

Proof is picture on the next slide.
Pumping Lemma

If L is regular then there exists n_0 and n_1 such that the following holds:
For all $w \in L$, $|w| \geq n_0$ there exists x, y, z such that:

1. $w = xyz$ and $y \neq e$.

Proof is picture on the next slide.
Pumping Lemma

If \(L \) is regular then there exists \(n_0 \) and \(n_1 \) such that the following holds:

For all \(w \in L \), \(|w| \geq n_0\) there exists \(x, y, z \) such that:

1. \(w = xyz \) and \(y \neq e \).

2. \(|xy| \leq n_1\).
Pumping Lemma

If L is regular then there exists n_0 and n_1 such that the following holds:
For all $w \in L$, $|w| \geq n_0$ there exists x, y, z such that:

1. $w = xyz$ and $y \neq e$.
2. $|xy| \leq n_1$.
3. For all $i \geq 0$, $xy^iz \in L$.

Proof is picture on the next slide.
We restate it in the way that we use it.

Pumping Lemma If L is reg then for large enough strings w in L there exists x, y, z such that:

1. $w = xyz$ and $y \neq e$.
2. $|xy|$ is short.
3. for all i, $xy^iz \in L$.

We then find some i such that $xy^iz \notin L$ for the contradiction.
How We Use the Pumping Lemma (PL)

We restate it in the way that we use it.

Pumping Lemma If L is reg then for large enough strings w in L there exists x, y, z such that:

1. $w = xyz$ and $y \neq e$.
How We Use the Pumping Lemma (PL)

We restate it in the way that we use it.

Pumping Lemma If L is reg then for large enough strings w in L there exists x, y, z such that:

1. $w = xyz$ and $y \neq e$.
2. $|xy|$ is short.
We restate it in the way that we use it.

Pumping Lemma If L is reg then for large enough strings w in L there exists x, y, z such that:

1. $w = xyz$ and $y \neq e$.
2. $|xy|$ is short .
3. for all i, $xy^iz \in L$.

We then find some i such that $xy^iz \notin L$ for the contradiction.
$L_1 = \{a^n b^n : n \in \mathbb{N}\}$ is Not Regular

Assume L_1 reg. by PL for long enough string $a^n b^n \in L_1$ there exists x, y, z such that:

1. $y \neq \varepsilon$.
2. $|xy|$ is short.
3. For all $i \geq 0$, $xy^i z \in L_1$.

Take w long enough so that the xy part only has a's.

$x = a^{m_1}, y = a^{m_2}, z = a^{n - m_1 - m_2} b^n$. Note $m_2 \geq 1$.

Take $i = 2$ to get $a^{m_1} a^{m_2} a^{m_2} a^{n - m_1 - m_2} b^n \in L_1 a^{n + m_2} b^n \in L_1$.

Contradiction since $m_2 \geq 1$.
$L_1 = \{a^n b^n : n \in \mathbb{N}\}$ is Not Regular

Assume L_1 reg. by PL for long enough string $a^n b^n \in L_1$ there exists x, y, z such that:

1. $y \neq e$.

Take $i = 2$ to get $a^{m_1} a^{m_2} a^{m_2} a^{n-m_1-m_2} b^n \in L_1$ $a^n + m_2 b^n \in L_1$

Contradiction since $m_2 \geq 1$.

$L_1 = \{a^n b^n : n \in \mathbb{N}\}$ is Not Regular

Assume L_1 reg. by PL for long enough string $a^n b^n \in L_1$ there exists x, y, z such that:

1. $y \neq e$.
2. $|xy|$ is short.
$L_1 = \{a^n b^n : n \in \mathbb{N}\}$ is Not Regular

Assume L_1 reg. by PL for long enough string $a^n b^n \in L_1$ there exists x, y, z such that:

1. $y \neq e$.
2. $|xy|$ is short.
3. For all $i \geq 0$, $xy^i z \in L_1$.

Take w long enough so that the xy part only has a's.

$x = a^{m_1}$, $y = a^{m_2}$, $z = a^{n - m_1 - m_2} b^n$. Note $m_2 \geq 1$.

Take $i = 2$ to get $a^{m_1} a^{m_2} a^{m_2} a^{n - m_1 - m_2} b^n \in L_1$

$\Rightarrow a^{n + m_2} b^n \in L_1$.

Contradiction since $m_2 \geq 1$.

$L_1 = \{a^n b^n : n \in \mathbb{N}\} \text{ is Not Regular}$

Assume L_1 reg. by PL for long enough string $a^n b^n \in L_1$ there exists x, y, z such that:

1. $y \neq e$.
2. $|xy|$ is short.
3. For all $i \geq 0$, $xy^i z \in L_1$.

Take w long enough so that the xy part only has a’s.
Let $L_1 = \{a^n b^n : n \in \mathbb{N}\}$ be a language. Assume L_1 is regular. By the Pumping Lemma (PL) for long enough strings $a^n b^n \in L_1$, there exists x, y, z such that:

1. $y \neq e$.
2. $|xy|$ is short.
3. For all $i \geq 0$, $xy^i z \in L_1$.

Take w long enough so that the xy part only contains a’s. Let $x = a^{m_1}$, $y = a^{m_2}$, and $z = a^{n-m_1-m_2} b^n$. Note $m_2 \geq 1$. This contradicts the assumption that L_1 is regular.
$L_1 = \{a^n b^n : n \in \mathbb{N}\}$ is Not Regular

Assume L_1 reg. by PL for long enough string $a^n b^n \in L_1$ there exists x, y, z such that:

1. $y \neq e$.
2. $|xy|$ is short.
3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a's. $x = a^{m_1}$, $y = a^{m_2}$, $z = a^{n-m_1-m_2}b^n$. Note $m_2 \geq 1$.

Take $i = 2$ to get

$$a^{m_1}a^{m_2}a^{m_2}a^{n-m_1-m_2}b^n \in L_1$$
\(L_1 = \{a^n b^n : n \in \mathbb{N}\} \) is Not Regular

Assume \(L_1 \) reg. by PL for long enough string \(a^n b^n \in L_1 \) there exists \(x, y, z \) such that:

1. \(y \neq e \).
2. \(|xy|\) is short.
3. For all \(i \geq 0 \), \(xy^i z \in L_1 \).

Take \(w \) long enough so that the \(xy \) part only has \(a \)'s.
\(x = a^{m_1}, y = a^{m_2}, z = a^{n-m_1-m_2}b^n \). Note \(m_2 \geq 1 \).

Take \(i = 2 \) to get
\[
a^{m_1} a^{m_2} a^{m_2} a^{n-m_1-m_2} b^n \in L_1
\]
\[
a^{n+m_2} b^n \in L_1
\]
$L_1 = \{a^n b^n : n \in \mathbb{N}\}$ is Not Regular

Assume L_1 reg. by PL for long enough string $a^n b^n \in L_1$ there exists x, y, z such that:

1. $y \neq e$.
2. $|xy|$ is short.
3. For all $i \geq 0$, $xy^i z \in L_1$.

Take w long enough so that the xy part only has a’s.
$x = a^{m_1}$, $y = a^{m_2}$, $z = a^{n-m_1-m_2} b^n$. Note $m_2 \geq 1$.
Take $i = 2$ to get

$$a^{m_1} a^{m_2} a^{m_2} a^{n-m_1-m_2} b^n \in L_1$$

$$a^{n+m_2} b^n \in L_1$$

Contradiction since $m_2 \geq 1.$
\(L_2 = \{ w : \#a(w) = \#b(w) \} \) is Not Regular

Proof: Same Proof as \(L_1 \) not Reg : Still look at \(a^m b^m \).

Key Pumping Lemma says for ALL long enough \(w \in L \).
\(L_4 = \{ a^{n^2} : n \in \mathbb{N} \} \) is Not Regular
$L_4 = \{a^{n^2} : n \in \mathbb{N}\}$ is Not Regular

Proof

By Pumping Lemma for long enough $a^{n^2} \in L_4$ there exists $x = a^{n_1}$, $y = a^{n_2}$, $z = a^{n_3}$ such that

$$a^{n_1}(a^{n_2})^i a^{n_3} \in L_4$$
\[L_4 = \{ a^{n^2} : n \in \mathbb{N} \} \text{ is Not Regular} \]

Proof

By Pumping Lemma for long enough \(a^{n^2} \in L_4 \) there exists \(x = a^{n_1}, y = a^{n_2}, z = a^{n_3} \) such that

\[
a^{n_1} (a^{n_2})^i a^{n_3} \in L_4
\]

\((\forall i \geq 0)[n_1 + in_2 + n_3 \text{ is a square}].\)
$L_4 = \{a^{n^2} : n \in \mathbb{N}\}$ is Not Regular

Proof

By Pumping Lemma for long enough $a^{n^2} \in L_4$ there exists $x = a^{n_1}$, $y = a^{n_2}$, $z = a^{n_3}$ such that

$$a^{n_1}(a^{n_2})^i a^{n_3} \in L_4$$

$$(\forall i \geq 0)[n_1 + in_2 + n_3 \text{ is a square}].$$

$$(n_1 + n_3) = x^2$$
\[L_4 = \{ a^{n^2} : n \in \mathbb{N} \} \text{ is Not Regular} \]

Proof

By Pumping Lemma for long enough \(a^{n^2} \in L_4 \) there exists \(x = a^{n_1}, y = a^{n_2}, z = a^{n_3} \) such that

\[
a^{n_1}(a^{n_2})^i a^{n_3} \in L_4
\]

\[
(\forall i \geq 0) [n_1 + in_2 + n_3 \text{ is a square}].
\]

\[
(n_1 + n_3) = x^2
\]

\[
(n_1 + n_3) + n_2 \geq (x + 1)^2
\]
$L_4 = \{a^{n^2} : n \in \mathbb{N}\}$ is Not Regular

Proof
By Pumping Lemma for long enough $a^{n^2} \in L_4$ there exists $x = a^{n_1}, y = a^{n_2}, z = a^{n_3}$ such that

$$a^{n_1}(a^{n_2})^i a^{n_3} \in L_4$$

$$(\forall i \geq 0)[n_1 + in_2 + n_3 \text{ is a square}].$$

$$(n_1 + n_3) = x^2$$

$$(n_1 + n_3) + n_2 \geq (x + 1)^2$$

$$(n_1 + n_3) + 2n_2 \geq (x + 2)^2$$
\[L_4 = \{ a^{n^2} : n \in \mathbb{N} \} \text{ is Not Regular (cont)} \]

\[(n_1 + n_3) = x^2\]
$L_4 = \{a^{n^2} : n \in \mathbb{N}\} \text{ is Not Regular (cont)}$

\[(n_1 + n_3) = x^2 \]

\[(n_1 + n_3) + n_2 \geq (x + 1)^2 \]
$L_4 = \{a^{n^2} : n \in \mathbb{N}\}$ is Not Regular (cont)

\[(n_1 + n_3) = x^2\]

\[(n_1 + n_3) + n_2 \geq (x + 1)^2\]

\[(n_1 + n_3) + 2n_2 \geq (x + 2)^2\]
$L_4 = \{a^{n^2} : n \in \mathbb{N}\}$ is Not Regular (cont)

\[(n_1 + n_3) = x^2\]

\[(n_1 + n_3) + n_2 \geq (x + 1)^2\]

\[(n_1 + n_3) + 2n_2 \geq (x + 2)^2\]

\[(n_1 + n_3) + in_2 \geq x^2 + 2ix + i^2\]
$L_4 = \{a^{n^2} : n \in \mathbb{N}\}$ is Not Regular (cont)

\[(n_1 + n_3) = x^2\]

\[(n_1 + n_3) + n_2 \geq (x + 1)^2\]

\[(n_1 + n_3) + 2n_2 \geq (x + 2)^2\]

\[(n_1 + n_3) + in_2 \geq x^2 + 2ix + i^2\]

\[(n_1 + n_3) + in_2 \geq i^2\]
\(L_4 = \{ a^{n^2} : n \in \mathbb{N} \} \) is Not Regular (cont)

\[
(n_1 + n_3) = x^2
\]

\[
(n_1 + n_3) + n_2 \geq (x + 1)^2
\]

\[
(n_1 + n_3) + 2n_2 \geq (x + 2)^2
\]

\[
(n_1 + n_3) + in_2 \geq x^2 + 2ix + i^2
\]

\[
(n_1 + n_3) + in_2 \geq i^2
\]

\[
\frac{(n_1 + n_3)}{i} + n_2 \geq i
\]

As \(i \) increases the LHS decreases and the RHS goes to infinity, so this cannot hold for all \(i \).
$L_8 = \{ a^{n_1} b^m c^{n_2} : n_1, n_2 > m \}$ is Not Regular

Problematic Neither pumping on the left or on the right works. (I give proof that uses $i = 0$ case. Students came up with two other proofs. (1) Use closure of REG under PREFIX, (2) Carefully pump in the middle-not safe for work.
\[L_8 = \{ a^{n_1} b^m c^{n_2} : n_1, n_2 > m \} \text{ is Not Regular} \]

Problematic Neither pumping on the left or on the right works. (I give proof that uses \(i = 0 \) case. Students came up with two other proofs. (1) Use closure of REG under PREFIX, (2) Carefully pump in the middle-not safe for work.

So what to do? Let’s go back to the pumping lemma with a carefully chosen string.
$L_8 = \{ a^{n_1} b^m c^{n_2} : n_1, n_2 > m \}$ is Not Regular

Problematic Neither pumping on the left or on the right works. (I give proof that uses $i = 0$ case. Students came up with two other proofs. (1) Use closure of REG under PREFIX, (2) Carefully pump in the middle-not safe for work. **So what to do?** Let’s go back to the pumping lemma with a carefully chosen string. $w = a^n b^{n-1} c^n$.
Problematic Neither pumping on the left or on the right works. (I give proof that uses $i = 0$ case. Students came up with two other proofs. (1) Use closure of REG under PREFIX, (2) Carefully pump in the middle—not safe for work.

So what to do? Let’s go back to the pumping lemma with a carefully chosen string.

$w = a^n b^{n-1} c^n$.

$x = a^{n_1}$, $y = a^{n_2}$, $z = a^{n-n_1-n_2} b^{n-1} c^n$.

$L_8 = \{ a^{n_1} b^m c^{n_2} : n_1, n_2 > m \}$ is Not Regular
Problematic Neither pumping on the left or on the right works. (I give proof that uses $i = 0$ case. Students came up with two other proofs. (1) Use closure of REG under PREFIX, (2) Carefully pump in the middle-not safe for work.
So what to do? Let’s go back to the pumping lemma with a carefully chosen string.

$$w = a^n b^{n-1} c^n.$$

$$x = a^{n_1}, \ y = a^{n_2}, \ z = a^{n-n_1-n_2} b^{n-1} c^n.$$

For all $i \geq 0$, $xy^i z \in L_8$.

$L_8 = \{a^{n_1} b^m c^{n_2} : n_1, n_2 > m\}$ is Not Regular
Problematic Neither pumping on the left or on the right works. (I give proof that uses $i = 0$ case. Students came up with two other proofs. (1) Use closure of REG under PREFIX, (2) Carefully pump in the middle-not safe for work.

So what to do? Let’s go back to the pumping lemma with a carefully chosen string.

$w = a^n b^{n-1} c^n$.

$x = a^{n_1}$, $y = a^{n_2}$, $z = a^{n-n_1-n_2} b^{n-1} c^n$.

For all $i \geq 0$, $xy^i z \in L_8$.

$$xy^i z = a^{n_1 + in_2 + (n-n_1-n_2)} b^{n-1} c^n$$
\[L_8 = \{ a^{n_1} b^m c^{n_2} : n_1, n_2 > m \} \text{ is Not Regular (Cont)} \]

\[xy^i z = a^{n_1 + in_2 + (n - n_1 - n_2)} b^{n-1} c^n \]
$L_8 = \{a^{n_1}b^mc^{n_2} : n_1, n_2 > m\}$ is Not Regular (Cont)

$$xy^iz = a^{n_1+in_2+(n-n_1-n_2)}b^{n-1}c^n$$

For all i $xy^iz = a^{n_1+in_2+(n-n_1-n_2)}b^{n-1}c^n \in L_8$.
$L_8 = \{ a^{n_1} b^m c^{n_2} : n_1, n_2 > m \}$ is Not Regular (Cont)

$$xy^i z = a^{n_1+in_2+(n-n_1-n_2)} b^{n-1} c^n$$

For all i $xy^i z = a^{n_1+in_2+(n-n_1-n_2)} b^{n-1} c^n \in L_8$.

Key We are used to thinking of i large. But we can also take $i = 0$, cut out that part of the word. We take $i = 0$ to get

$$xy^0 z = a^{n-n_2} b^{n-1} c^n$$
$L_8 = \{ a^{n_1} b^m c^{n_2} : n_1, n_2 > m \}$ is Not Regular (Cont)

$$xy^iz = a^{n_1+in_2+(n-n_1-n_2)} b^{n-1} c^n$$

For all i $xy^iz = a^{n_1+in_2+(n-n_1-n_2)} b^{n-1} c^n \in L_8$.

Key We are used to thinking of i large. But we can also take $i = 0$, cut out that part of the word. We take $i = 0$ to get

$$xy^0z = a^{n-n_2} b^{n-1} c^n$$

Since $n_2 \geq 1$, we have that $\#a(xy^0z) < n \leq n - 1 = \#b(xy^0z)$. Hence $xy^0z \not\in L_8$.

(There were two other proofs by students: One used that REG closed under PREFIX, and one managed to pump in the middle.)
$i = 0$ Case as a Picture
Answer to SUBSEQ Problem: CFL

If L is CFL than $SUBSEQ(L)$ is CFL.
If L is CFL than $\text{SUBSEQ}(L)$ is CFL. YES.
If L is CFL than $\text{SUBSEQ}(L)$ is CFL. YES.
Let M be a CFL for L in Chomsky Normal Form.
We form a CFL $\text{SUBSEQ}(L)$.
For every rule $A \rightarrow \sigma$ we add $A \rightarrow \epsilon$.
Context Free Languages

Definition
A **Context Free Grammar (CFL)** is \((V, \Sigma, P, S)\)

- \(V\) is set of **nonterminals**
- \(\Sigma\) is the **alphabet**, also called **terminals**
- \(P \subseteq V \times (V \cup \Sigma)^*\) are the **productions** or **rules**
- \(S \in V\) is the start symbol.
Context Free Languages

Definition
A **Context Free Grammar (CFL)** is \((V, \Sigma, P, S)\)

- \(V\) is set of nonterminals
- \(\Sigma\) is the alphabet, also called terminals
- \(P \subseteq V \times (V \cup \Sigma)^*\) are the productions or rules
- \(S \in V\) is the start symbol.

\(L(G)\) is the set of strings generated by CFL \(G\).

A **Context Free Lang (CFL)** is a lang that is \(L(G)\) for some CFL \(G\).
Context Free Languages

Definition
A **Context Free Grammar (CFL)** is (V, Σ, P, S)

- V is set of **nonterminals**
- Σ is the **alphabet**, also called **terminals**
- $P \subseteq V \times (V \cup \Sigma)^*$ are the **productions** or **rules**
- $S \in V$ is the start symbol.

$L(G)$ is the set of strings generated by CFL G.

A **Context Free Lang (CFL)** is a lang that is $L(G)$ for some CFL G.

A CFL is in **Chomsky Normal Form (CNF)** if all of the productions are either of the form

- $A \rightarrow BC$
- $A \rightarrow \sigma$ where $\sigma \in \Sigma$
- $A \rightarrow e$ (I didn’t include it in class, but I am now.)

Note: If G is a CFL then there exists a CNF CFL that generates it.
Examples of CFL’s that are NOT Regular

\{ a^n b^n : n \in \mathbb{N} \}

S \rightarrow aSb | e
Examples of CFL’s that are NOT Regular

\[\{ a^n b^n : n \in \mathbb{N} \} \]

\[S \rightarrow aSb|e \]

\[\{ w : \#_a(w) = \#_b(w) \} \]

\[S \rightarrow aSbS \]

\[S \rightarrow bSaS \]

\[S \rightarrow SS \]

\[S \rightarrow e \]

To prove it works requires a proof by induction
Examples of CFL’s that are NOT Regular

\{a^n b^n : n \in \mathbb{N}\}
S \rightarrow aSb|e

\{w : \#_a(w) = \#_b(w)\}
S \rightarrow aSbS
S \rightarrow bSaS
S \rightarrow SS
S \rightarrow e

To prove it works requires a proof by induction
Not to worry, I will ASSUME you could do such a proof and hence WILL NOT make you.
Examples of Langs with Small CFL’s, Large NFA’s

\[L = \{a^n\} \]

- NFA requires \(\geq n - 2 \) states. Let's prove it.
Examples of Langs with Small CFL’s, Large NFA’s

\[L = \{a^n\} \]

- **NFA requires** \(\geq n - 2 \) states. Let's prove it
 If \(M \) is an NFA with \(\leq n - 2 \) states then find a path from the start state to the final state. Let \(a^m \) be the shortest string that take you from the start state to the final state. Since the number of states is \(\leq n - 2 \), \(m \leq n - 2 \). So we have \(a^m \) accepted when it should not be. Contradiction.

- There is a CNF CFL with \(\leq 2 \log_2 n \) rules.
 For \(n = 2^n \) VERY EASY. If not then have to write \(n \) as a sum of powers of 2. Example on next slide.
CNF CFG for \(\{ a^{10} \} \)

\[10 = 2^3 + 2^1 \]
CNF CFG for \(\{a^{10}\} \)

\[
10 = 2^3 + 2^1 \\
S \rightarrow XY
\]
CNF CFG for \(\{ a^{10} \} \)

\[10 = 2^3 + 2^1 \]

\[S \rightarrow XY \] We make \(X \Rightarrow a^8 \) and \(Y \Rightarrow a^2 \).
CNF CFG for \(\{ a^{10} \} \)

\[
10 = 2^3 + 2^1
\]

\[
S \rightarrow XY \text{ We make } X \Rightarrow a^8 \text{ and } Y \Rightarrow a^2.
\]

\[
X \rightarrow X_1X_1
\]

\[
X_1 \rightarrow X_2X_2
\]

\[
X_2 \rightarrow X_3X_3
\]

\[
X_3 \rightarrow a
\]

\[
Y \rightarrow Y_1Y_1
\]

\[
Y_1 \rightarrow a
\]

Can shorten a bit: We need \(Y \Rightarrow aa \), so can just use \(X_2 \).
10 = 2^3 + 2^1

S \rightarrow XY \text{ We make } X \Rightarrow a^8 \text{ and } Y \Rightarrow a^2.
X \rightarrow X_1 X_1
X_1 \rightarrow X_2 X_2
X_2 \rightarrow X_3 X_3
X_3 \rightarrow a
Y \rightarrow Y_1 Y_1
Y_1 \rightarrow a

Can shorten a bit: We need Y \Rightarrow aa, so can just use X_2.
CNF CFG for \(\{a^{10}\} \)

\[10 = 2^3 + 2^1 \]

\[S \to XY \quad \text{We make } X \Rightarrow a^8 \text{ and } Y \Rightarrow a^2. \]

\[X \to X_1X_1 \]
\[X_1 \to X_2X_2 \]
\[X_2 \to X_3X_3 \]
\[X_3 \to a \]
\[Y \to Y_1Y_1 \]
\[Y_1 \to a \]

Can shorten a bit: We need \(Y \Rightarrow aa \), so can just use \(X_2 \).

\[S \to XX_2 \]
\[X \to X_1X_1 \]
\[X_1 \to X_2X_2 \]
\[X_2 \to X_3X_3 \]
\[X_3 \to a \]