BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Nondeterministic Finite Automata (NFA)

An Interesting Example of a DFA

In breakout rooms do the following and keep track of how many states.

 Σ^*a

 $\Sigma^*a\Sigma$

 $\Sigma^* a \Sigma^2$

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG
The number of states is 8.

 $\verb|https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG|$

The number of states is 8.

More generally:

 $\Sigma^* a \Sigma^i$ can be done with 2^{i+1} states.

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG

The number of states is 8.

More generally:

 $\Sigma^* a \Sigma^i$ can be done with 2^{i+1} states.

Prove for $\Sigma^* a \Sigma^3$, with a table.

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG

The number of states is 8.

More generally:

 $\Sigma^* a \Sigma^i$ can be done with 2^{i+1} states.

Prove for $\Sigma^* a \Sigma^3$, with a table.

Might be on 2{HW, MIDTERM, FINAL}.

8 possibilities.

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG
The number of states is 8.
More generally: $\Sigma^* a \Sigma^i \text{ can be done with } 2^{i+1} \text{ states.}$
Prove for $\Sigma^* a \Sigma^3$, with a table.
Might be on 2{HW, MIDTERM, FINAL}.

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG

The number of states is 8.

More generally:

 $\Sigma^* a \Sigma^i$ can be done with 2^{i+1} states.

Prove for $\Sigma^* a \Sigma^3$, with a table.

Might be on 2{HW, MIDTERM, FINAL}.

8 possibilities.

Is there a smaller DFA for $\Sigma^* a \Sigma^i$? Fewer than 2^{i+1} states?

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG

The number of states is 8.

More generally:

 $\Sigma^* a \Sigma^i$ can be done with 2^{i+1} states.

Prove for $\Sigma^* a \Sigma^3$, with a table.

Might be on 2{HW, MIDTERM, FINAL}.

8 possibilities.

Is there a smaller DFA for $\Sigma^* a \Sigma^i$? Fewer than 2^{i+1} states? No. We may prove this later.

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/notes/dfa3.JPG

The number of states is 8.

More generally:

 $\Sigma^* a \Sigma^i$ can be done with 2^{i+1} states.

Prove for $\Sigma^* a \Sigma^3$, with a table.

Might be on 2{HW, MIDTERM, FINAL}.

8 possibilities.

Is there a smaller DFA for $\Sigma^* a \Sigma^i$? Fewer than 2^{i+1} states? No.

We may prove this later.

We now use NFA's informally.

NFA for $\Sigma^* a \Sigma^2$

$$\{w: \#_a \equiv 0 \pmod{3} \vee w: \#_b \equiv 0 \pmod{4}\}$$

$$\{w: \#_a \equiv 0 \pmod{3} \vee w: \#_b \equiv 0 \pmod{4}\}$$

$$\{w: \#_a \equiv 0 \pmod{3} \vee w: \#_b \equiv 0 \pmod{4}\}$$

YES - next slide.

 $\{w: \#_a \equiv 0 \pmod{3} \vee w: \#_b \equiv 0 \pmod{4}\}$

$$\{w: \#_a \equiv 0 \pmod{3} \land w: \#_b \equiv 0 \pmod{4}\}$$

$$\{w: \#_a \equiv 0 \pmod{3} \land w: \#_b \equiv 0 \pmod{4}\}$$

$$\{w: \#_a \equiv 0 \pmod{3} \land w: \#_b \equiv 0 \pmod{4}\}$$

NO. Proof similar to that for DFA. Will come back to this after we define NFA rigorously.

$$\{w: \#_a \equiv 0 \pmod{3} \land w: \#_b \equiv 0 \pmod{4}\}$$

NO. Proof similar to that for DFA. Will come back to this after we define NFA rigorously.

Or might be on HW-MID-FINAL.

 $\{a^n: n \not\equiv 0 \pmod{15}\}$

Note A DFA for this **requires** 15 states. Can a smaller NFA recognize it? VOTE.

$$\{a^n: n\not\equiv 0 \pmod{15}\}$$

YES - next slide

 $\{a^n: n \not\equiv 0 \pmod{15}\}$

$$\{a^n: n\not\equiv 0 \pmod{15}\}$$

Prove that the NFA in the last slide works. Need

$$(n \not\equiv 0 \pmod{3} \lor n \not\equiv 0 \pmod{5}) \implies n \not\equiv 0 \pmod{15}$$

Take the contrapositive

$$n \equiv 0 \pmod{15} \implies (n \equiv 0 \pmod{3} \land n \equiv 0 \pmod{5})$$

$$\{a^n: n \equiv 0 \pmod{15}\}$$

$$\{a^n: n \equiv 0 \pmod{15}\}$$

NO. Proof similar to that for DFA. Will come back to this after we define NFA rigorously.

$$\{a^n: n \equiv 0 \pmod{15}\}$$

NO. Proof similar to that for DFA. Will come back to this after we define NFA rigorously.

Or might be on HW-MID-FINAL.

NFA's Intuitively

- 1. An NFA is a DFA that can guess.
- 2. NFAs do not really exist.
- 3. Good for \cup since can guess which one.
- 4. An NFA accepts iff SOME guess accepts.

Def An **NFA** is a tuple $(Q, \Sigma, \Delta, s, F)$ where:

- 1. Q is a finite set of **states**.
- 2. Σ is a finite alphabet.
- **3**. $\Delta: Q \times (\Sigma \cup \{e\}) \rightarrow 2^Q$ is the *transition function*.
- 4. $s \in S$ is the start state.
- 5. $F \in Q$ is the set of **final states**.

Def An **NFA** is a tuple $(Q, \Sigma, \Delta, s, F)$ where:

- 1. Q is a finite set of **states**.
- 2. Σ is a finite alphabet.
- **3**. $\Delta: Q \times (\Sigma \cup \{e\}) \rightarrow 2^Q$ is the *transition function*.
- 4. $s \in S$ is the start state.
- 5. $F \in Q$ is the set of **final states**.

Def If M is an NFA and $x \in \Sigma^*$ then M(x) accepts if when you run M on x some sequence of guesses end up in a **final state**.

Def An **NFA** is a tuple $(Q, \Sigma, \Delta, s, F)$ where:

- 1. Q is a finite set of states.
- 2. Σ is a finite alphabet.
- **3**. $\Delta: Q \times (\Sigma \cup \{e\}) \rightarrow 2^Q$ is the *transition function*.
- 4. $s \in S$ is the start state.
- 5. $F \in Q$ is the set of **final states**.

Def If M is an NFA and $x \in \Sigma^*$ then M(x) accepts if when you run M on x some sequence of guesses end up in a **final state**. **Note** When you run M(x) and choose a path one of three things can happen: (1) ends in a final state, (2) ends in a non-final state, (3) cannot process.

Def An **NFA** is a tuple $(Q, \Sigma, \Delta, s, F)$ where:

- 1. Q is a finite set of **states**.
- 2. Σ is a finite alphabet.
- **3**. $\Delta: Q \times (\Sigma \cup \{e\}) \rightarrow 2^Q$ is the *transition function*.
- 4. $s \in S$ is the start state.
- 5. $F \in Q$ is the set of **final states**.

Def If M is an NFA and $x \in \Sigma^*$ then M(x) accepts if when you run M on x some sequence of guesses end up in a **final state**. **Note** When you run M(x) and choose a path one of three things can happen: (1) ends in a final state, (2) ends in a non-final state, (3) cannot process.

Def If M is an NFA then $L(M) = \{x : M(x) \text{ accepts } \}$.

Is Every NFA-lang a DFA-lang?

Is Every NFA-lang a DFA-lang?

1. We have seen several langs where the NFA is smaller than the DFA.

Is Every NFA-lang a DFA-lang?

- 1. We have seen several langs where the NFA is smaller than the DFA.
- 2. We have NOT seen any langs that an NFA can do but a DFA cannot do.

- 1. We have seen several langs where the NFA is smaller than the DFA.
- 2. We have NOT seen any langs that an NFA can do but a DFA cannot do.
- SO, is every NFA-lang also a DFA-lang?

- 1. We have seen several langs where the NFA is smaller than the DFA.
- 2. We have NOT seen any langs that an NFA can do but a DFA cannot do.
- SO, is every NFA-lang also a DFA-lang? Vote.

- 1. We have seen several langs where the NFA is smaller than the DFA.
- 2. We have NOT seen any langs that an NFA can do but a DFA cannot do.
- SO, is every NFA-lang also a DFA-lang? Vote. Yes.

Thm If L is accepted by an NFA then L is accepted by a DFA. **Pf** L is accepted by NFA $(Q, \Sigma, \Delta, s, F)$ where $\Delta: Q \times (\Sigma \cup \{e\}) \rightarrow 2^Q$.

Thm If L is accepted by an NFA then L is accepted by a DFA. Pf L is accepted by NFA $(Q, \Sigma, \Delta, s, F)$ where $\Delta: Q \times (\Sigma \cup \{e\}) \to 2^Q$. First we get rid of the e-transitions.

Thm If L is accepted by an NFA then L is accepted by a DFA.

Pf *L* is accepted by NFA $(Q, \Sigma, \Delta, s, F)$ where

 $\Delta: Q \times (\Sigma \cup \{e\}) \to 2^Q.$

First we get rid of the *e*-transitions.

Notation $\Delta(q, e^i \sigma e^j)$ means that we take state q, feed in e i times, then feed in σ , then feed in e j times. Do all possible transitions so this will be a set of states.

Thm If L is accepted by an NFA then L is accepted by a DFA.

Pf L is accepted by NFA $(Q, \Sigma, \Delta, s, F)$ where

$$\Delta: Q \times (\Sigma \cup \{e\}) \to 2^Q.$$

First we get rid of the *e*-transitions.

Notation $\Delta(q, e^i \sigma e^j)$ means that we take state q, feed in e i times, then feed in σ , then feed in e j times. Do all possible transitions so this will be a set of states.

$$\Delta_1(q,\sigma) = \bigcup_{0 \leq i,j \leq n} \Delta(q,e^i\sigma e^j).$$

Thm If L is accepted by an NFA then L is accepted by a DFA.

Pf L is accepted by NFA $(Q, \Sigma, \Delta, s, F)$ where

$$\Delta: Q \times (\Sigma \cup \{e\}) \to 2^Q.$$

First we get rid of the *e*-transitions.

Notation $\Delta(q, e^i \sigma e^j)$ means that we take state q, feed in e i times, then feed in σ , then feed in e j times. Do all possible transitions so this will be a set of states.

$$\Delta_1(q,\sigma) = \bigcup_{0 \le i,j \le n} \Delta(q,e^i\sigma e^j).$$

NFA $(Q, \Sigma, \Delta_1, s, F)$ accepts same lang as $(Q, \Sigma, \Delta, s, F)$.

Thm If L is accepted by an NFA then L is accepted by a DFA.

Pf L is accepted by NFA $(Q, \Sigma, \Delta, s, F)$ where

$$\Delta: Q \times (\Sigma \cup \{e\}) \rightarrow 2^Q$$
.

First we get rid of the *e*-transitions.

Notation $\Delta(q, e^i \sigma e^j)$ means that we take state q, feed in e i times, then feed in σ , then feed in e j times. Do all possible transitions so this will be a set of states.

$$\Delta_1(q,\sigma) = \bigcup_{0 \le i,j \le n} \Delta(q,e^i\sigma e^j).$$

NFA $(Q, \Sigma, \Delta_1, s, F)$ accepts same lang as $(Q, \Sigma, \Delta, s, F)$. We will work with an NFA that has NO *e*-transitions.

Thm If L is accepted by an NFA then L is accepted by a DFA.

Pf L is accepted by NFA $(Q, \Sigma, \Delta, s, F)$ where

$$\Delta: Q \times (\Sigma \cup \{e\}) \rightarrow 2^Q$$
.

First we get rid of the *e*-transitions.

Notation $\Delta(q, e^i \sigma e^j)$ means that we take state q, feed in e i times, then feed in σ , then feed in e j times. Do all possible transitions so this will be a set of states.

$$\Delta_1(q,\sigma) = \bigcup_{0 \le i,j \le n} \Delta(q,e^i\sigma e^j).$$

NFA $(Q, \Sigma, \Delta_1, s, F)$ accepts same lang as $(Q, \Sigma, \Delta, s, F)$. We will work with an NFA that has NO *e*-transitions. We are nowhere near done. Next slide.

Thm If *L* is accepted by an NFA on *n* states then *L* is accepted by a DFA on $\leq 2^n$ states.

Pf L is accepted by NFA $M = (Q, \Sigma, \Delta, s, F)$ where $\Delta : Q \times \Sigma \to 2^Q$.

Thm If *L* is accepted by an NFA on *n* states then *L* is accepted by a DFA on $\leq 2^n$ states.

Pf L is accepted by NFA $M = (Q, \Sigma, \Delta, s, F)$ where

 $\Delta: Q \times \Sigma \to 2^Q$.

We define a DFA that recognizes the same language as M.

Thm If *L* is accepted by an NFA on *n* states then *L* is accepted by a DFA on $\leq 2^n$ states.

Pf L is accepted by NFA $M=(Q,\Sigma,\Delta,s,F)$ where

 $\Delta: Q \times \Sigma \rightarrow 2^Q$.

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the **set** of states that the NFA could have been in.

Thm If *L* is accepted by an NFA on *n* states then *L* is accepted by a DFA on $\leq 2^n$ states.

Pf L is accepted by NFA $M = (Q, \Sigma, \Delta, s, F)$ where

 $\Delta: Q \times \Sigma \to 2^Q$.

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the **set** of states that the NFA could have been in.

DFA $(2^Q, \Sigma, \delta, \{s\}, F')$. Need to define δ and F'.

Thm If *L* is accepted by an NFA on *n* states then *L* is accepted by a DFA on $\leq 2^n$ states.

Pf L is accepted by NFA $M = (Q, \Sigma, \Delta, s, F)$ where

 $\Delta: Q \times \Sigma \rightarrow 2^Q$.

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the **set** of states that the NFA could have been in.

DFA $(2^Q, \Sigma, \delta, \{s\}, F')$. Need to define δ and F'. $\delta: 2^Q \times \Sigma \to 2^Q$.

Thm If *L* is accepted by an NFA on *n* states then *L* is accepted by a DFA on $\leq 2^n$ states.

Pf L is accepted by NFA $M = (Q, \Sigma, \Delta, s, F)$ where

 $\Delta: \textit{Q} \times \Sigma \rightarrow 2^{\textit{Q}}.$

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the **set** of states that the NFA could have been in.

DFA $(2^Q, \Sigma, \delta, \{s\}, F')$. Need to define δ and F'. $\delta: 2^Q \times \Sigma \to 2^Q$.

$$\delta(A,\sigma) = \bigcup_{q \in A} \Delta(q,\sigma).$$

Thm If *L* is accepted by an NFA on *n* states then *L* is accepted by a DFA on $\leq 2^n$ states.

Pf L is accepted by NFA $M = (Q, \Sigma, \Delta, s, F)$ where

 $\Delta: \textit{Q} \times \Sigma \rightarrow 2^{\textit{Q}}.$

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the **set** of states that the NFA could have been in.

DFA $(2^Q, \Sigma, \delta, \{s\}, F')$. Need to define δ and F'. $\delta: 2^Q \times \Sigma \to 2^Q$.

$$\delta(A,\sigma) = \bigcup_{q \in A} \Delta(q,\sigma).$$

$$F' = \{A : A \cap F \neq \emptyset\}.$$

Thm If *L* is accepted by an NFA on *n* states then *L* is accepted by a DFA on $\leq 2^n$ states.

Pf L is accepted by NFA $M = (Q, \Sigma, \Delta, s, F)$ where

 $\Delta: Q \times \Sigma \to 2^Q$.

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the **set** of states that the NFA could have been in.

DFA $(2^Q, \Sigma, \delta, \{s\}, F')$. Need to define δ and F'. $\delta : 2^Q \times \Sigma \to 2^Q$.

$$\delta(A,\sigma) = \bigcup_{q \in A} \Delta(q,\sigma).$$

$$F' = \{A : A \cap F \neq \emptyset\}.$$

If NFA accepts on some path then in the DFA you will be in a state which is a set-of-states, which includes a final state from the NFA.

Thm If *L* is accepted by an NFA on *n* states then *L* is accepted by a DFA on $\leq 2^n$ states.

Pf L is accepted by NFA $M = (Q, \Sigma, \Delta, s, F)$ where

 $\Delta: Q \times \Sigma \rightarrow 2^Q$.

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the **set** of states that the NFA could have been in.

DFA $(2^Q, \Sigma, \delta, \{s\}, F')$. Need to define δ and F'. $\delta : 2^Q \times \Sigma \to 2^Q$.

$$\delta(A,\sigma) = \bigcup_{q \in A} \Delta(q,\sigma).$$

$$F' = \{A : A \cap F \neq \emptyset\}.$$

If NFA accepts on some path then in the DFA you will be in a state which is a set-of-states, which includes a final state from the NFA. If the DFA accepts then there was some say for the NFA to accept.

BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!