BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!
Nondeterministic Finite Automata (NFA)
An Interesting Example of a DFA

In breakout rooms do the following and keep track of how many states.

\[\Sigma^* a \]
\[\Sigma^* a\Sigma \]
\[\Sigma^* a\Sigma^2 \]
\[\Sigma^* a \Sigma^2 \]

The number of states is 8.

The number of states is 8.

More generally:
$\Sigma^* a\Sigma^i$ can be done with 2^{i+1} states.
The number of states is 8.
More generally:
\(\Sigma^* a\Sigma^i \) can be done with \(2^{i+1} \) states.
Prove for \(\Sigma^* a\Sigma^3 \), with a table.
The number of states is 8.

More generally:
\(\Sigma^* a\Sigma^i \) can be done with \(2^{i+1} \) states.

Prove for \(\Sigma^* a\Sigma^3 \), with a table.

Might be on 2\{HW, MIDTERM, FINAL\}.
The number of states is 8.

More generally:
\(\Sigma^* a \Sigma^i \) can be done with \(2^{i+1} \) states.

Prove for \(\Sigma^* a \Sigma^3 \), with a table.

Might be on \(2\{HW, \text{ MIDTERM, FINAL}\} \).

8 possibilities.
The number of states is 8. More generally:
\(\Sigma^* a \Sigma^i \) can be done with \(2^{i+1} \) states.
Prove for \(\Sigma^* a \Sigma^3 \), with a table.
Might be on \(2\{HW, MIDTERM, FINAL\} \).
8 possibilities.
Is there a smaller DFA for \(\Sigma^* a \Sigma^i \)? Fewer than \(2^{i+1} \) states?
The number of states is 8.
More generally:
Σ^* aΣ^i can be done with 2^{i+1} states.
Prove for Σ^* aΣ^3, with a table.
Might be on 2{HW, MIDTERM, FINAL}.
8 possibilities.
Is there a smaller DFA for Σ^* aΣ^i? Fewer than 2^{i+1} states? No.
We may prove this later.
The number of states is 8.

More generally:
\(\Sigma^*a\Sigma^i \) can be done with \(2^{i+1} \) states.

Prove for \(\Sigma^*a\Sigma^3 \), with a table.

Might be on 2\{HW, MIDTERM, FINAL\}.

8 possibilities.

Is there a smaller DFA for \(\Sigma^*a\Sigma^i \)? Fewer than \(2^{i+1} \) states? No.

We may prove this later.

We now use NFA’s informally.
NFA for $\Sigma^* a \Sigma^2$
\[\{w : \#_a \equiv 0 \pmod{3} \lor w : \#_b \equiv 0 \pmod{4}\}\]

The DFA for this requires 12 states. Can we do this with a smaller NFA?
\{ w : \#_a \equiv 0 \pmod{3} \lor w : \#_b \equiv 0 \pmod{4} \}\}

The DFA for this requires 12 states. Can we do this with a smaller NFA? Vote!
The DFA for this requires 12 states. Can we do this with a smaller NFA? Vote!

YES - next slide.
\{ \begin{align*} w : \#_a &\equiv 0 \pmod{3} \lor \ w : \#_b &\equiv 0 \pmod{4} \end{align*} \}
\{ w : \#_a \equiv 0 \pmod{3} \land w : \#_b \equiv 0 \pmod{4} \}

The DFA for this requires 12 states. Can we do this with a smaller NFA?
\{ w : \#_a \equiv 0 \pmod{3} \land w : \#_b \equiv 0 \pmod{4} \} \\

The DFA for this requires 12 states. Can we do this with a smaller NFA? Vote!
\(\{ w : \#_a \equiv 0 \pmod{3} \land w : \#_b \equiv 0 \pmod{4} \} \)

The DFA for this requires 12 states. Can we do this with a smaller NFA? Vote!

NO. Proof similar to that for DFA. Will come back to this after we define NFA rigorously.
\{ w : \#_a \equiv 0 \ (\text{mod} \ 3) \land w : \#_b \equiv 0 \ (\text{mod} \ 4) \}\}

The DFA for this requires 12 states. Can we do this with a smaller NFA? Vote!

NO. Proof similar to that for DFA. Will come back to this after we define NFA rigorously.

Or might be on HW-MID-FINAL.
\{a^n \mid n \not\equiv 0 \pmod{15}\}

Note A DFA for this requires 15 states. Can a smaller NFA recognize it? VOTE.
\{a^n : n \not\equiv 0 \pmod{15}\}

Note A DFA for this requires 15 states. Can a smaller NFA recognize it? VOTE.

YES - next slide
\{a^n : n \not\equiv 0 \pmod{15}\}
Prove that the NFA in the last slide works.

Need

\[(n \not\equiv 0 \pmod{3} \lor n \not\equiv 0 \pmod{5}) \implies n \not\equiv 0 \pmod{15}\]

Take the contrapositive

\[n \equiv 0 \pmod{15} \implies (n \equiv 0 \pmod{3} \land n \equiv 0 \pmod{5})\]
\{a^n : n \equiv 0 \pmod{15}\}

Note A DFA for this *requires* 15 states. Can a smaller NFA recognize it? VOTE.
\{a^n : n \equiv 0 \pmod{15}\}

Note A DFA for this requires 15 states. Can a smaller NFA recognize it? VOTE. NO. Proof similar to that for DFA. Will come back to this after we define NFA rigorously.
\{a^n : n \equiv 0 \pmod{15}\}

Note A DFA for this **requires** 15 states. Can a smaller NFA recognize it? VOTE.

NO. Proof similar to that for DFA. Will come back to this after we define NFA rigorously.

Or might be on HW-MID-FINAL.
1. An NFA is a DFA that can guess.
2. NFAs do not really exist.
3. Good for \cup since can guess which one.
4. An NFA accepts iff SOME guess accepts.
Def An NFA is a tuple \((Q, \Sigma, \Delta, s, F)\) where:

1. \(Q\) is a finite set of states.
2. \(\Sigma\) is a finite alphabet.
3. \(\Delta : Q \times (\Sigma \cup \{e\}) \rightarrow 2^Q\) is the transition function.
4. \(s \in S\) is the start state.
5. \(F \in Q\) is the set of final states.
NFA Formally

Def An NFA is a tuple \((Q, \Sigma, \Delta, s, F)\) where:

1. \(Q\) is a finite set of states.
2. \(\Sigma\) is a finite alphabet.
3. \(\Delta : Q \times (\Sigma \cup \{e\}) \to 2^Q\) is the transition function.
4. \(s \in S\) is the start state.
5. \(F \in Q\) is the set of final states.

Def If \(M\) is an NFA and \(x \in \Sigma^*\) then \(M(x)\) accepts if when you run \(M\) on \(x\) some sequence of guesses end up in a final state.
NFA Formally

Def An **NFA** is a tuple \((Q, \Sigma, \Delta, s, F)\) where:

1. \(Q\) is a finite set of **states**.
2. \(\Sigma\) is a finite **alphabet**.
3. \(\Delta : Q \times (\Sigma \cup \{e\}) \to 2^Q\) is the **transition function**.
4. \(s \in S\) is the **start state**.
5. \(F \in Q\) is the set of **final states**.

Def If \(M\) is an NFA and \(x \in \Sigma^*\) then \(M(x)\) **accepts** if when you run \(M\) on \(x\) some sequence of guesses end up in a **final state**.

Note When you run \(M(x)\) and choose a path one of three things can happen: (1) ends in a final state, (2) ends in a non-final state, (3) cannot process.
NFA Formally

Def An NFA is a tuple \((Q, \Sigma, \Delta, s, F)\) where:

1. \(Q\) is a finite set of **states**.
2. \(\Sigma\) is a finite **alphabet**.
3. \(\Delta : Q \times (\Sigma \cup \{e\}) \rightarrow 2^Q\) is the **transition function**.
4. \(s \in S\) is the **start state**.
5. \(F \in Q\) is the set of **final states**.

Def If \(M\) is an NFA and \(x \in \Sigma^*\) then **\(M(x)\ accepts\)** if when you run \(M\) on \(x\) some sequence of guesses end up in a **final state**.

Note When you run \(M(x)\) and choose a path one of three things can happen: (1) ends in a final state, (2) ends in a non-final state, (3) cannot process.

Def If \(M\) is an NFA then **\(L(M) = \{x : M(x)\ accepts\}\)**.
Is Every NFA-lang a DFA-lang?

1. We have seen several langs where the NFA is smaller than the DFA.
2. We have NOT seen any langs that an NFA can do but a DFA cannot do.

SO, is every NFA-lang also a DFA-lang?

Vote: Yes.
Is Every NFA-lang a DFA-lang?

1. We have seen several langs where the NFA is smaller than the DFA.
Is Every NFA-lang a DFA-lang?

1. We have seen several langs where the NFA is smaller than the DFA.
2. We have NOT seen any langs that an NFA can do but a DFA cannot do.
Is Every NFA-lang a DFA-lang?

1. We have seen several langs where the NFA is smaller than the DFA.

2. We have NOT seen any langs that an NFA can do but a DFA cannot do.

SO, is every NFA-lang also a DFA-lang?
Is Every NFA-lang a DFA-lang?

1. We have seen several langs where the NFA is smaller than the DFA.
2. We have NOT seen any langs that an NFA can do but a DFA cannot do.

SO, is every NFA-lang also a DFA-lang? Vote.
Is Every NFA-lang a DFA-lang?

1. We have seen several langs where the NFA is smaller than the DFA.
2. We have NOT seen any langs that an NFA can do but a DFA cannot do.

SO, is every NFA-lang also a DFA-lang? Vote. Yes.
Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA.

Pf L is accepted by NFA $(Q, \Sigma, \Delta, s, F)$ where

$\Delta : Q \times (\Sigma \cup \{e\}) \rightarrow 2^Q$.

First we get rid of the e-transitions.

Notation $\Delta(q, e^i \sigma e^j)$ means that we take state q, feed in e^i times, then feed in σ, then feed in e^j times. Do all possible transitions so this will be a set of states.

$\Delta_1(q, \sigma) = \bigcup_{0 \leq i, j \leq n} \Delta(q, e^i \sigma e^j)$.
Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA.

Pf L is accepted by NFA $(Q, \Sigma, \Delta, s, F)$ where

\[\Delta : Q \times (\Sigma \cup \{e\}) \rightarrow 2^Q. \]

First we get rid of the e-transitions.

[Notation]

$\Delta(q, e_i \sigma e_j)$ means that we take state q, feed in e_i times, then feed in σ, then feed in e_j times. Do all possible transitions so this will be a set of states.

$\Delta_1(q, \sigma) = \bigcup_{0 \leq i, j \leq n} \Delta(q, e_i \sigma e_j)$.

We will work with an NFA that has NO e-transitions.

We are nowhere near done. Next slide.
Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA.

Pf L is accepted by NFA $(Q, \Sigma, \Delta, s, F)$ where

$$\Delta : Q \times (\Sigma \cup \{e\}) \rightarrow 2^Q.$$

First we get rid of the e-transitions.

Notation $\Delta(q, e^i\sigma e^j)$ means that we take state q, feed in e^i times, then feed in σ, then feed in e^j times. Do all possible transitions so this will be a set of states.

Thm If L is accepted by an NFA then L is accepted by a DFA.

Pf L is accepted by NFA $(Q, \Sigma, \Delta, s, F)$ where $\Delta : Q \times (\Sigma \cup \{e\}) \rightarrow 2^Q$.

First we get rid of the e-transitions.

Notation $\Delta(q, e^i\sigma e^j)$ means that we take state q, feed in e i times, then feed in σ, then feed in e j times. Do all possible transitions so this will be a set of states.

$$\Delta_1(q, \sigma) = \bigcup_{0 \leq i, j \leq n} \Delta(q, e^i\sigma e^j).$$
Thm If \(L \) is accepted by an NFA then \(L \) is accepted by a DFA.

Pf \(L \) is accepted by NFA \((Q, \Sigma, \Delta, s, F)\) where
\[
\Delta : Q \times (\Sigma \cup \{e\}) \rightarrow 2^Q.
\]
First we get rid of the \(e \)-transitions.

Notation \(\Delta(q, e^i\sigma e^j) \) means that we take state \(q \), feed in \(e \) \(i \) times, then feed in \(\sigma \), then feed in \(e \) \(j \) times. Do all possible transitions so this will be a set of states.

\[
\Delta_1(q, \sigma) = \bigcup_{0 \leq i, j \leq n} \Delta(q, e^i\sigma e^j).
\]

NFA \((Q, \Sigma, \Delta_1, s, F)\) accepts same lang as \((Q, \Sigma, \Delta, s, F)\).
Every NFA-lang a DFA-lang!

Thm If \(L \) is accepted by an NFA then \(L \) is accepted by a DFA.

Pf \(L \) is accepted by NFA \((Q, \Sigma, \Delta, s, F)\) where \(\Delta: Q \times (\Sigma \cup \{e\}) \to 2^Q\).

First we get rid of the \(e\)-transitions.

Notation \(\Delta(q, e^i \sigma e^j)\) means that we take state \(q\), feed in \(e\) \(i\) times, then feed in \(\sigma\), then feed in \(e\) \(j\) times. Do all possible transitions so this will be a set of states.

\[
\Delta_1(q, \sigma) = \bigcup_{0 \leq i, j \leq n} \Delta(q, e^i \sigma e^j).
\]

NFA \((Q, \Sigma, \Delta_1, s, F)\) accepts same lang as \((Q, \Sigma, \Delta, s, F)\).

We will work with an NFA that has NO \(e\)-transitions.
Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA.

Pf L is accepted by NFA $(Q, \Sigma, \Delta, s, F)$ where

$\Delta : Q \times (\Sigma \cup \{e\}) \to 2^Q$.

First we get rid of the e-transitions.

Notation $\Delta(q, e^i \sigma e^j)$ means that we take state q, feed in e^i times, then feed in σ, then feed in e^j times. Do all possible transitions so this will be a set of states.

$$\Delta_1(q, \sigma) = \bigcup_{0 \leq i, j \leq n} \Delta(q, e^i \sigma e^j).$$

NFA $(Q, \Sigma, \Delta_1, s, F)$ accepts same lang as $(Q, \Sigma, \Delta, s, F)$.

We will work with an NFA that has NO e-transitions.

We are nowhere near done. Next slide.
Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA on n states then L is accepted by a DFA on $\leq 2^n$ states.

Pf L is accepted by NFA $M = (Q, \Sigma, \Delta, s, F)$ where

$\Delta : Q \times \Sigma \rightarrow 2^Q$.

Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA on n states then L is accepted by a DFA on $\leq 2^n$ states.

Pf L is accepted by NFA $M = (Q, \Sigma, \Delta, s, F)$ where $\Delta : Q \times \Sigma \rightarrow 2^Q$.

We define a DFA that recognizes the same language as M.

DFA $(2^Q, \Sigma, \delta, \{s\}, F')$.

- **δ** is defined as $\delta(A, \sigma) = \bigcup_{q \in A} \Delta(q, \sigma)$.
- **F'** is defined as $F' = \{A : A \cap F \neq \emptyset\}$.

If NFA accepts on some path then in the DFA you will be in a state which is a set-of-states, which includes a final state from the NFA. If the DFA accepts then there was some way for the NFA to accept.
Every NFA-lang a DFA-lang! (Cont)

Thm If \(L \) is accepted by an NFA on \(n \) states then \(L \) is accepted by a DFA on \(\leq 2^n \) states.

Pf \(L \) is accepted by NFA \(M = (Q, \Sigma, \Delta, s, F) \) where \(\Delta : Q \times \Sigma \rightarrow 2^Q \).

We define a DFA that recognizes the same language as \(M \).

Key The DFA will keep track of the set of states that the NFA could have been in.
Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA on n states then L is accepted by a DFA on $\leq 2^n$ states.

Pf L is accepted by NFA $M = (Q, \Sigma, \Delta, s, F)$ where $\Delta : Q \times \Sigma \to 2^Q$.

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the set of states that the NFA could have been in.

DFA $(2^Q, \Sigma, \delta, \{s\}, F')$. Need to define δ and F'.
Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA on n states then L is accepted by a DFA on $\leq 2^n$ states.

Pf L is accepted by NFA $M = (Q, \Sigma, \Delta, s, F)$ where $\Delta : Q \times \Sigma \rightarrow 2^Q$.

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the set of states that the NFA could have been in.

DFA $(2^Q, \Sigma, \delta, \{s\}, F')$. Need to define δ and F'.

$\delta : 2^Q \times \Sigma \rightarrow 2^Q$.
Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA on n states then L is accepted by a DFA on $\leq 2^n$ states.

Pf L is accepted by NFA $M = (Q, \Sigma, \Delta, s, F)$ where $
\Delta : Q \times \Sigma \to 2^Q$.

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the set of states that the NFA could have been in.

DFA $(2^Q, \Sigma, \delta, \{s\}, F')$. Need to define δ and F'.

$\delta : 2^Q \times \Sigma \to 2^Q$.

\[
\delta(A, \sigma) = \bigcup_{q \in A} \Delta(q, \sigma).
\]
Thm If L is accepted by an NFA on n states then L is accepted by a DFA on $\leq 2^n$ states.

Pf L is accepted by NFA $M = (Q, \Sigma, \Delta, s, F)$ where $\Delta : Q \times \Sigma \rightarrow 2^Q$.

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the set of states that the NFA could have been in.

DFA $(2^Q, \Sigma, \delta, \{s\}, F')$. Need to define δ and F'.

$\delta : 2^Q \times \Sigma \rightarrow 2^Q$.

$$
\delta(A, \sigma) = \bigcup_{q \in A} \Delta(q, \sigma).
$$

$F' = \{A : A \cap F \neq \emptyset\}.$
Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA on n states then L is accepted by a DFA on $\leq 2^n$ states.

Pf L is accepted by NFA $M = (Q, \Sigma, \Delta, s, F)$ where $\Delta : Q \times \Sigma \rightarrow 2^Q$.

We define a DFA that recognizes the same language as M.

Key The DFA will keep track of the set of states that the NFA could have been in.

DFA $(2^Q, \Sigma, \delta, \{s\}, F')$. Need to define δ and F'.

$\delta : 2^Q \times \Sigma \rightarrow 2^Q$.

$$\delta(A, \sigma) = \bigcup_{q \in A} \Delta(q, \sigma).$$

$$F' = \{A : A \cap F \neq \emptyset\}.$$ If NFA accepts on some path then in the DFA you will be in a state which is a set-of-states, which includes a final state from the NFA.
Every NFA-lang a DFA-lang! (Cont)

Thm If \(L \) is accepted by an NFA on \(n \) states then \(L \) is accepted by a DFA on \(\leq 2^n \) states.

Pf \(L \) is accepted by NFA \(M = (Q, \Sigma, \Delta, s, F) \) where
\[\Delta : Q \times \Sigma \rightarrow 2^Q. \]

We define a DFA that recognizes the same language as \(M \).

Key The DFA will keep track of the set of states that the NFA could have been in.

DFA \((2^Q, \Sigma, \delta, \{s\}, F')\). Need to define \(\delta \) and \(F' \).
\[\delta : 2^Q \times \Sigma \rightarrow 2^Q. \]

\[\delta(A, \sigma) = \bigcup_{q \in A} \Delta(q, \sigma). \]

\[F' = \{ A : A \cap F \neq \emptyset \}. \]

If NFA accepts on some path then in the DFA you will be in a state which is a set-of-states, which includes a final state from the NFA. If the DFA accepts then there was some say for the NFA to accept.
BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!