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Proving a Lang is Not
Regular
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Assume Lj reg via DFA M with m states.

Run M on a™b™ which is 2m long.

M(e) = qo. (M(x) = g means M ran on x ends in state q.)
M(a) =dqi1-

M(a™) = qm.
There exists 0 </ < j < m such that g; = q; = q.
M(a') = M(&), so

M(a'-a™'b™) = M(a' - a™b™)
But
a'-amih™ = am™b™ € Ly, so M(a' - am~'b™) = q € F.
d-ampm = amt=ipm ¢ [, 50 M(ad-a™ b)) =q ¢ F.
Contradiction.



Picture of What is Going On

CF
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Ly = {w: #,(w) = #,(w)} is Not Regular

Same Proof as L; not reg: Still look at a™b™.

The reason
am+j—ibm ¢ Ll.
was that
#a(am—I—j—ibm) 7& #b(am-i-j—ibm).
So we have

#a(aerjfibm) ##b(aerjfibm) — amejfibm g Lo.
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We Need a General Technique

We proved L1 and Ly not regular in a clunky way. We will prove a
lemma that can be used for those and others.

Pumping Lemma If L is regular then there exists ng and ny such
that the following holds:
For all w € L, |w| > ng there exists x, y, z such that:

1. w=xyz and y # e.
2. |xy| < n.
3. Foralli>0, xy'ze L.

Proof is picture on the next slide.
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How We Use the Pumping Lemma (PL)

We restate it in the way that we use it.

Pumping Lemma If L is reg then for large enough strings w in
L there exists x, y, z such that:

1. w=xyz and y # e.
2. |xy| is short.
3. forall i, xy'z € L.

We then find some i such that xy’z ¢ L for the contradiction.
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REDO: L; = {a"b" : n € N} is Not Regular

Assume Lj reg. by PL for long enough string a"b"” € L; there
exists x, y, z such that:

1. y#e.
2. |xy| is short.

3. Forall i >0, xy'z € L.

Take w long enough so that the xy part only has a's.
x=a™,y=2a™, z=3""™"Mp" Note mp > 1.
Take i = 2 to get

amMamgmgh=—m=mpn c |,

a"tmpt e 4

Contradiction since my > 1.



Ly = {w: #,(w) = #,(w)} is Not Regular

Proof: Same Proof as L; not Reg: Still look at a”b™.
Key Pumping Lemma says for ALL long enough w € L.
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L3 = {w: #,(w) # #,(w)} is Not Regular

Go To Breakout Rooms To Work on it in Groups

Pumping Lemma Does Not Help. When you increase the
number of y's there is no way to control it so carefully to make the
number of a’s EQUAL the number of b's.

So what do to?

If L3 is regular then L3 = Ly is regular. But we know that L is not
regular. DONE!
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Ly = {a” : n € N} is Not Regular
Proof

By Pumping Lemma for long enough PLS L4 there exists x = a™
y = a™, z=2a" such that

am(a™) a™ € Ly
(¥i > 0)[n1 + inp + n3 is a square].

(m+n3) = x2
(n + n3) + np > (x +1)3

(n+ n3) +2n2 > (x+2)°
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Ly = {a” : n € N} is Not Regular (cont)
(n + n3) = x2

(n + n3) + np > (x +1)?
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Ly = {a” : n € N} is Not Regular (cont)

(n1 + n3) = X2

(n+ n3) +nmp > (x + 1)
(n + m3) 4 2m > (x +2)?
(m + n3) +inp > x? + 2ix + i?

(ny + m3) + iny > i?

(n + n3)

+ny >

As i increases the LHS decreases and the RHS goes to infinity, so
this cannot hold for all /.
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GOTO BREAKOUT ROOMS
By Pumping Lemma for long enough aP € Lg there exists x = a™,
y =a™, z=a™ such that a™(a™)'a™ € Ls.

(Vi > 0)[(n1 + n3) + ino is a prime].
Take i =ny +ny+n3 + 1.
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Ls = {a” : p is prime} is Not Regular

GOTO BREAKOUT ROOMS
By Pumping Lemma for long enough aP € Lg there exists x = a™,
y =a™, z=a™ such that a™(a™)'a™ € Ls.

(Vi > 0)[(n1 + n3) + ino is a prime].
Take i =ny +ny+n3 + 1.

(n1+n3)+ (n1+ np+ n3+1)ny is a prime.
(1 + n3) + niny + nany + n3na + ny is a prime.
(m 4+ n2 4+ n3) + niny + nany + n3ny is a prime.

(m + n2+ n3)(1+ n2) is a prime.
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Le = {#a(w) > #p(w)} is Not Regular

We will be brief here.
Take w = b"a"t1, long enough so the y-part is in the b's.
Pump the y to get more b’s than a's.
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L; = {a"b™ : n > m} is Not Regular

BREAKOUT ROOMS

Problematic Can take w long and pump a's, but that won't get
out of the language.

So what to do? Revise Pumping Lemma

Pumping Lemma had a bound on |xy|.
Can also bound |yz| by same proof.

Do that and then you can get y to be all b's, pump b's, and get
out of the language.
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BREAKOUT ROOMS

Problematic Neither pumping on the left or on the right works.
So what to do? Let's go back to the pumping lemma with a
carefully chosen string.
w=a"bh"lc".
x=aM, y=am, z=a""mmpr-lcn

For all i > 0, Xin € Lg.
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Lg = {a™b™c™ : m,n, > m} is Not Regular (Cont)

Xy’Z — an1+m2+(nfn17n2)bnflcn

For all i xy'z = amtimt(n—m=—m)pn-1cn c o
Key We are used to thinking of i large. But we can also take
i = 0, cut out that part of the word. We take i = 0 to get

XyOZ — g bnflcn

Since np > 1, we have that #,(xy°z) < n < n—1 = #,(xy°2).
Hence xy°z ¢ Lg.



| = 0 Case as a Picture

°




