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P and EXP

Def

1. P = DTIME(nO(1)).

2. EXP = DTIME(2n
O(1)

).

3. PF is the set of functions that are computable in poly time.



NP

Def A is in NP if there exists a set B ∈ P and a polynomial p such
that

A = {x | (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

I If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.
So if I wanted to convince you that x ∈ L, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

I If x /∈ A then there is NO proof that x ∈ A.
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Examples of Sets in NP: SAT

SAT = {φ : (∃~y)[φ(~y) = T ]}

There is a satisfying assignment for boolean formula φ.

1. y is ~y . Note that |y | < |φ|.
2. Formally B = {(φ, ~y) : φ(~y) = T}.

Do we think SAT is in P? No—we will later see its NP-complete.

Note SAT only asks if there exists Satisfying assignment.
It is not asking to find one.
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Examples of Sets in NP: Graph Coloring

3COL = {G : G is 3-colorable }

One can 3-color the vertices of G such that no edge connects two
nodes of the same color.

1. y is the 3-coloring . |y | < |B|.
2. B = {(G , ρ) : ρ is a 3-coloring of G}

Do we think 3COL is in P? No—we will later see its NP-complete.

Note 3COL only asks if there exists a 3-coloring.
It is not asking to find one.
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Examples of Sets in NP: Graph Coloring

CLIQ = {(G , k) : G has a clique of size k}

A clique is a set of vertices that are all pairwise connected.

1. y is the set of k vertices. |y | < |G |.
2. B = {(G ,A) : A is a set of k vertices that form a Clique}

Do we think CLIQ ∈ P? No—we will later see its NP-complete.

Note CLIQ only asks if there exists a k-cliq.
It is not asking to find one or find the size of the largest clique.
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Finding the Size of the Largest Clique

NCLIQ(G ) is the size of largest clique. It’s a function, not a set.

We show CLIQ ∈ P implies NCLIQ ∈ PF.

We know 1 ≤ NCLIQ(G ) ≤ n.

By asking CLIQ we do binary search to find k such that
(G , k) ∈ CLIQ and (G , k + 1) /∈ CLIQ.
Hence NCLIQ(G ) = k .

This algorithm took log n queries to CLIQ.
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FCLIQ(G ) returns largest clique. It’s a function, not a set.

We show CLIQ ∈ P implies FCLIQ ∈ PF.

Algorithm that will, given (G , k), return a clique of size k OR say
NO there isn’t one.
HELPFCLIQ:

1. Input (G , k)

2. Reduce the problem as follows: Let v be a vertex. Let
G ′ = G − {v}. Test (G ′, k) ∈ CLIQ.
I If YES then find HELPFCLIQ(G ′, k) since we don’t need v .
I If NO then find A = HELPFCLIQ(G ′, k − 1) and return

A ∪ {v} since we know we NEED v .
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Finishing Up CLIQ and FCLIQ

FCLIQ:

1. Input G

2. Find k = NCLIQ(G ).

3. Call HELPFCLIQ(G , k).



Other Set–Function Issues

In the problems we will look at, the SET version (e.g., CLIQ) can
always be used to find the FUNCTION version (e.g., FCLIQ).

We will not discuss this anymore in class, though it may be on
some HWs.



Examples of Sets in NP: HAM

HAM = {G : G has a Hamiltonian Cycle }

A cycle is Hamiltonian (HAM) if it visits every vertex once.

1. y is the cycle itself.

2. B = {(G ,C ) : C is a HAM cycle of G}

Do we think HAM is in P? NO—it is NP-complete

Note HAM only asks if there exists a HAM cycle.
It is not asking to find one.
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EUL = {G : G has an Eulerian Cycle }

A cycle is Eulerian (EUL) if it visits every edge once.

1. y is the cycle itself.

2. B = {(G ,C ) : C is an EUL cycle of G}

Do we think EUL is in P?
YES—known that G has an Euler Cycle iff every degree is even.

Note EUL only asks if there exists an EUL cycle.
It is not asking to find one.
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History: HAM and EUL

1736 Euler solves the Konigsberg bridge problem by proving, in
modern terms,
A graph is EUL iff every vertex has even degree

1850? Hamilton poses, in modern terms, the question of
characterizing when graphs are HAM.

Note Mathematicians wanted a characterization of HAM graphs
similar to the characterization of EUL graphs.
They didn’t have the language of algorithms to state what they
wanted more rigorously.

The theory of NP-completeness enabled mathematicians to state
what they wanted rigorously (HAM ∈ P) and also gave the basis
for proving likely it cannot be done (since HAM is NP-Complete).
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Examples of Sets in NP: ShortPath

SP = {(G , v1, v2, c) : there is a path v1 → v2 in G of length ≤ c}

1. y is the path itself.

2. B = {((G , v1, v2, c), p) :
p is a path in G from v1 to v2 with ≤ c edges}

Do we think SP is in P?
YES—Dijkstra’s algorithm computes the shortest path.
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Examples of Sets in NP: 4-square

FOURSQ = {n : n can be written as the sum of 4 squares}

(We allow 0: 2 ∈ FOURSQ since 2 = 12 + 12 + 02 + 02.)

1. The 4 numbs whose sqs add to n is witness. Clearly shorter
than |n|. (Note |n| ∼ lg2(n)).

2. B = {(n;w , x , y , z) : n = w2 + x2 + y2 + z2}
Length of Input n is in binary, so |n| = log2(n).

Do we think FOURSQ is in P?
YES: Thm: (∀n)(∃w , x , y , z)[n = w2 + x2 + y2 + z2].

Note FOURSQ only asks if there exists those four numbers. And
there always do. But FOURSQ does not ask to find them.
A polyalg to find them is known but difficult (paper on course
website).
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YES: Thm: (∀n)(∃w , x , y , z)[n = w2 + x2 + y2 + z2].

Note FOURSQ only asks if there exists those four numbers. And
there always do. But FOURSQ does not ask to find them.
A polyalg to find them is known but difficult (paper on course
website).
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Points About The Examples

1. Being in NP does not mean a problem is hard. We discuss
NP-completeness which probably means a problem is hard.

2. Being in NP does not mean a problem is easy.

3. In problems involving numbers we represent the numbers in
binary. Be careful: usually n is the length of the input, but if
our problem involves numbers and the input is n, then
dlog2(n)e is the length of the input.

4. NP is a set of sets. Hence I have comments like:

Note 3COL only asks if there exists a 3-coloring.
It is not asking to find one.



Points About The Examples

1. Being in NP does not mean a problem is hard. We discuss
NP-completeness which probably means a problem is hard.

2. Being in NP does not mean a problem is easy.

3. In problems involving numbers we represent the numbers in
binary. Be careful: usually n is the length of the input, but if
our problem involves numbers and the input is n, then
dlog2(n)e is the length of the input.

4. NP is a set of sets. Hence I have comments like:

Note 3COL only asks if there exists a 3-coloring.
It is not asking to find one.



Points About The Examples

1. Being in NP does not mean a problem is hard. We discuss
NP-completeness which probably means a problem is hard.

2. Being in NP does not mean a problem is easy.

3. In problems involving numbers we represent the numbers in
binary. Be careful: usually n is the length of the input, but if
our problem involves numbers and the input is n, then
dlog2(n)e is the length of the input.

4. NP is a set of sets. Hence I have comments like:

Note 3COL only asks if there exists a 3-coloring.
It is not asking to find one.



Points About The Examples

1. Being in NP does not mean a problem is hard. We discuss
NP-completeness which probably means a problem is hard.

2. Being in NP does not mean a problem is easy.

3. In problems involving numbers we represent the numbers in
binary. Be careful: usually n is the length of the input, but if
our problem involves numbers and the input is n, then
dlog2(n)e is the length of the input.

4. NP is a set of sets. Hence I have comments like:

Note 3COL only asks if there exists a 3-coloring.
It is not asking to find one.



Points About The Examples

1. Being in NP does not mean a problem is hard. We discuss
NP-completeness which probably means a problem is hard.

2. Being in NP does not mean a problem is easy.

3. In problems involving numbers we represent the numbers in
binary. Be careful: usually n is the length of the input, but if
our problem involves numbers and the input is n, then
dlog2(n)e is the length of the input.

4. NP is a set of sets. Hence I have comments like:

Note 3COL only asks if there exists a 3-coloring.

It is not asking to find one.



Points About The Examples

1. Being in NP does not mean a problem is hard. We discuss
NP-completeness which probably means a problem is hard.

2. Being in NP does not mean a problem is easy.

3. In problems involving numbers we represent the numbers in
binary. Be careful: usually n is the length of the input, but if
our problem involves numbers and the input is n, then
dlog2(n)e is the length of the input.

4. NP is a set of sets. Hence I have comments like:

Note 3COL only asks if there exists a 3-coloring.
It is not asking to find one.



Reductions

Def Let X ,Y be languages. A reduction from X to Y is a
polynomial-time computable function f such that

x ∈ X iff f (x) ∈ Y .

We express this by writing X ≤ Y .

Reductions are transitive.
Easy Lemma (on Final?) If X ≤ Y and Y ∈ P then X ∈ P.

Contrapositive If X ≤ Y and X /∈ P then Y /∈ P.
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Def of NP-Complete

Def A language Y is NP-complete

I Y ∈ NP

I If X ∈ NP then X ≤ Y .

Easy Lemma If Y is NP-complete and Y ∈ P then P = NP.

Honesty When I first saw the definition of NP-completeness I
thought (1) there are no NP-complete sets or (2) there are no
natural NP-complete sets.

The condition:
for EVERY X ∈ NP, X ≤ Y ?

seemed very hard to meet.
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An Unnatural NP-complete set

Thm Define language Y via:

Y =

{
〈M, x , 1t〉 | M is a non-deterministic T.M.

which accepts x within t steps

}
.

Then Y is NP-complete.

Not that interesting since Y is not a natural set.



An Unnatural NP-complete set

Thm Define language Y via:

Y =

{
〈M, x , 1t〉 | M is a non-deterministic T.M.

which accepts x within t steps

}
.

Then Y is NP-complete.

Not that interesting since Y is not a natural set.



An Unnatural NP-complete set

Thm Define language Y via:

Y =

{
〈M, x , 1t〉 | M is a non-deterministic T.M.

which accepts x within t steps

}
.

Then Y is NP-complete.

Not that interesting since Y is not a natural set.



An Unnatural NP-complete set

Thm Define language Y via:

Y =

{
〈M, x , 1t〉 | M is a non-deterministic T.M.

which accepts x within t steps

}
.

Then Y is NP-complete.

Not that interesting since Y is not a natural set.



Variants of SAT

We define several variants of SAT:

1. SAT is the set of all boolean formulas that are satisfiable.
That is, φ(~x) ∈ SAT if there exists a vector ~b such that
φ(~b) = TRUE .

2. CNFSAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. k-SAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.

4. DNFSAT is the set of all boolean formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all boolean formulas in SAT of the
form C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.
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SAT is NP-Complete

In 1971 Stephen Cook and Leonid Levin Independently showed:
CNF-SAT is NP-complete

Thoughts on this:

1. The proof is not hard, but it involves looking at actual TMs.
We will prove it next lecture. SAT was the first NP-complete
problem. You could not use some other problem.

2. Once we have SAT is NP-complete we will NEVER use TMs
again. To show Y NP-complete: (1) Y ∈ NP, (2) SAT ≤ Y .

3. Thousands of problems are NP-complete. If any are in P then
they are all in P.
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What Do Theorists Think of P vs NP?

I have done three polls of what theorists think of P vs NP and
other issues.
First I’ll poll you, then I’ll show you what the polls said.
Poll of 452 students: Do you think P vs NP?

P 6=NP P=NP Ind DK other

2002 61 (61%) 9 (9%) 4 (4%) 22 (22%) 7 (7%) )
2012 126 (83%) 12 (9%) 5 (3%) 1 (0.66%) 8 (5.1%)
2019 109 (88%) 15 (12%) 0 0 0
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