
BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!



Regex: Closure
Properties



Terminology: Regular Languages

Def We will say regex when we mean a lang generated by a regex.
For example we might say:

regex is closed under Guido
if Guido was some operation on sets.

We prove closure properties (or say NO, not going to prove it) of
regex.

We already know all of these closure properties since we did
closure proofs with DFA’s and NFA’s; however, we are curious
which ones can be proven easily with regex’s.



Terminology: Regular Languages

Def We will say regex when we mean a lang generated by a regex.
For example we might say:

regex is closed under Guido
if Guido was some operation on sets.

We prove closure properties (or say NO, not going to prove it) of
regex.

We already know all of these closure properties since we did
closure proofs with DFA’s and NFA’s; however, we are curious
which ones can be proven easily with regex’s.



Terminology: Regular Languages

Def We will say regex when we mean a lang generated by a regex.
For example we might say:

regex is closed under Guido
if Guido was some operation on sets.

We prove closure properties (or say NO, not going to prove it) of
regex.

We already know all of these closure properties since we did
closure proofs with DFA’s and NFA’s; however, we are curious
which ones can be proven easily with regex’s.



Regex Closed Under Complementation

How do you complement a regular language (not a joke)?

While not a joke, there is no easy way to go from regex α to regex
β such that L(β) = L(α).

Here is how you can do it: Given regex α of length n.

Create NFA N such that L(N) = L(α). ∼ n states.

Convert N to a DFA M such that L(N) = L(M). ∼ 2n states.

Swap the final and nonfinal states of M to get M ′. ∼ 2n states.

Convert M ′ to regex α. ∼ 22
n

states.

Are there α where you get ∼ 22
n

blowup? I think so but the
literature is unclear on this point.



Regex Closed Under Complementation

How do you complement a regular language (not a joke)?

While not a joke, there is no easy way to go from regex α to regex
β such that L(β) = L(α).

Here is how you can do it: Given regex α of length n.

Create NFA N such that L(N) = L(α). ∼ n states.

Convert N to a DFA M such that L(N) = L(M). ∼ 2n states.

Swap the final and nonfinal states of M to get M ′. ∼ 2n states.

Convert M ′ to regex α. ∼ 22
n

states.

Are there α where you get ∼ 22
n

blowup? I think so but the
literature is unclear on this point.



Regex Closed Under Complementation

How do you complement a regular language (not a joke)?

While not a joke, there is no easy way to go from regex α to regex
β such that L(β) = L(α).

Here is how you can do it:

Given regex α of length n.

Create NFA N such that L(N) = L(α). ∼ n states.

Convert N to a DFA M such that L(N) = L(M). ∼ 2n states.

Swap the final and nonfinal states of M to get M ′. ∼ 2n states.

Convert M ′ to regex α. ∼ 22
n

states.

Are there α where you get ∼ 22
n

blowup? I think so but the
literature is unclear on this point.



Regex Closed Under Complementation

How do you complement a regular language (not a joke)?

While not a joke, there is no easy way to go from regex α to regex
β such that L(β) = L(α).

Here is how you can do it: Given regex α of length n.

Create NFA N such that L(N) = L(α). ∼ n states.

Convert N to a DFA M such that L(N) = L(M). ∼ 2n states.

Swap the final and nonfinal states of M to get M ′. ∼ 2n states.

Convert M ′ to regex α. ∼ 22
n

states.

Are there α where you get ∼ 22
n

blowup? I think so but the
literature is unclear on this point.



Regex Closed Under Complementation

How do you complement a regular language (not a joke)?

While not a joke, there is no easy way to go from regex α to regex
β such that L(β) = L(α).

Here is how you can do it: Given regex α of length n.

Create NFA N such that L(N) = L(α). ∼ n states.

Convert N to a DFA M such that L(N) = L(M). ∼ 2n states.

Swap the final and nonfinal states of M to get M ′. ∼ 2n states.

Convert M ′ to regex α. ∼ 22
n

states.

Are there α where you get ∼ 22
n

blowup? I think so but the
literature is unclear on this point.



Regex Closed Under Complementation

How do you complement a regular language (not a joke)?

While not a joke, there is no easy way to go from regex α to regex
β such that L(β) = L(α).

Here is how you can do it: Given regex α of length n.

Create NFA N such that L(N) = L(α). ∼ n states.

Convert N to a DFA M such that L(N) = L(M). ∼ 2n states.

Swap the final and nonfinal states of M to get M ′. ∼ 2n states.

Convert M ′ to regex α. ∼ 22
n

states.

Are there α where you get ∼ 22
n

blowup? I think so but the
literature is unclear on this point.



Regex Closed Under Complementation

How do you complement a regular language (not a joke)?

While not a joke, there is no easy way to go from regex α to regex
β such that L(β) = L(α).

Here is how you can do it: Given regex α of length n.

Create NFA N such that L(N) = L(α). ∼ n states.

Convert N to a DFA M such that L(N) = L(M). ∼ 2n states.

Swap the final and nonfinal states of M to get M ′. ∼ 2n states.

Convert M ′ to regex α. ∼ 22
n

states.

Are there α where you get ∼ 22
n

blowup? I think so but the
literature is unclear on this point.



Regex Closed Under Complementation

How do you complement a regular language (not a joke)?

While not a joke, there is no easy way to go from regex α to regex
β such that L(β) = L(α).

Here is how you can do it: Given regex α of length n.

Create NFA N such that L(N) = L(α). ∼ n states.

Convert N to a DFA M such that L(N) = L(M). ∼ 2n states.

Swap the final and nonfinal states of M to get M ′. ∼ 2n states.

Convert M ′ to regex α. ∼ 22
n

states.

Are there α where you get ∼ 22
n

blowup? I think so but the
literature is unclear on this point.



Regex Closed Under Complementation

How do you complement a regular language (not a joke)?

While not a joke, there is no easy way to go from regex α to regex
β such that L(β) = L(α).

Here is how you can do it: Given regex α of length n.

Create NFA N such that L(N) = L(α). ∼ n states.

Convert N to a DFA M such that L(N) = L(M). ∼ 2n states.

Swap the final and nonfinal states of M to get M ′. ∼ 2n states.

Convert M ′ to regex α. ∼ 22
n

states.

Are there α where you get ∼ 22
n

blowup?

I think so but the
literature is unclear on this point.



Regex Closed Under Complementation

How do you complement a regular language (not a joke)?

While not a joke, there is no easy way to go from regex α to regex
β such that L(β) = L(α).

Here is how you can do it: Given regex α of length n.

Create NFA N such that L(N) = L(α). ∼ n states.

Convert N to a DFA M such that L(N) = L(M). ∼ 2n states.

Swap the final and nonfinal states of M to get M ′. ∼ 2n states.

Convert M ′ to regex α. ∼ 22
n

states.

Are there α where you get ∼ 22
n

blowup? I think so but the
literature is unclear on this point.



Regular Lang Closed Under Union

Easy The regex for L(α) ∪ L(β) is α ∪ β.



Regular Lang Closed Under Intersection

Hard Need to convert to NFA’s and do it there and convert back.

Might be on a HW or Exam.



Regular Lang Closed Under Intersection

Hard Need to convert to NFA’s and do it there and convert back.
Might be on a HW or Exam.



Regex Closed Under Concatenation

Easy The regex for L(α) · L(β) is α · β.



Regular Lang Closed Under ∗?

Easy The regex for L(α)∗ is α∗.



Summary of Closure Properties and Proofs

X means Can’t Prove Easily
n1 + n2 (and similar) is number of states in new machine if Li reg
via ni -state machine.
L1 + L2 (and similar) is length of regex of Li length of αi .

Closure Property DFA NFA Regex

L1 ∪ L2 n1n2 n1 + n2 L1 + L2
L1 ∩ L2 n1n2 n1n2 X
L1 · L2 X n1 + n2 + 1 L1 + L2

L n X X

L∗ X n + 1 L + 1



BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!


