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The Complexity of Problems: P and NP
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Complexity of Sets

How hard are the following problems:

1. SAT Given a Bool fml, e.g., (x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y)
is there a sat assignment? E.g, x = T y = F z = T?

2. HAM Given a graph G does it have a Ham Cycle?
(A cycle that has every vertex exactly once.)

3. EUL Given a graph G does it have a Euler Cycle?
(A cycle that has every edge exactly once.)

4. CLIQ Given G and k , is there a set of k vertices that all know
each other?

To even ask these questions we need (1) a standard way to
describe sets and a (2) model of computation.
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Conventions

1. All sets are sets of strings. E.g, we can code a graph on n
vertices as an n× n adj matrix, which is a string of length n2.

2. A set A is in DTIME(T (n)) if there is an algorithm that will,
on input x of length n,
I determine if x ∈ A
I terminate in ≤ T (n) steps.

3. To define Algorithm we need a model of computation.
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Turing Machines Def

Def A Turing Machine is a tuple (Q,Σ, δ, s, h) where

We are busy people!

We are not going to bother defining Turing Machines!

Here is all you need to know:

1. Everything computable is computable by a Turing machine.

2. Turing machines compute with discrete steps so one can talk
about how many steps a computation takes.

3. There are many models of computation. They are all equiv up
to poly time. Hence poly time can be defined without
getting into the details of a Turing machine or other models.
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Why Polynomial Time? Reason I

Consider SAT.

1. SAT ∈ EXP, time 2n, by brute force.

2. If I came up with a (1.5)n algorithm that’s just brute force
with some tricks.

3. If I came up with an n1000 algorithm then it’s NOT brute
force. I would have found something very clever. Not
practical, but that cleverness can probably be exploited to get
a practical algorithm.
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Why Polynomial Time? Reason II

A contrast to quadratic time.

1. Quadratic Time. Different models of comp yield diff notions.

2. P. Different models of comp yield same P.

3. Quadratic time not closed under composition: if f (n), g(n)
are quadratic then f (g(n)) is quartic, not quadratic.

4. P is closed under composition: if f (n), g(n) are poly then
f (g(n)) is poly.
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SAT,HAM,EUL,CLIQ All Walk into a Bar

We rewrite these problems.

SAT = {φ : (∃~b)[φ(~b) = T ]}

HAM = {G : (∃v1, . . . , vn)[v1, . . . , vn is a Ham Cycle]}.

EUL = {G : (∃v1, . . . , vm)[v1, . . . , vm is an Eul Cycle]}.

CLIQ = {(G , k) : (∃v1, . . . , vk)[v1, . . . , vk are a Clique]}.

Why is this interesting?
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We Look At CLIQ

CLIQ = {(G , k) : (∃v1, . . . , vk)[v1, . . . , vk are a Clique]}.

If (G , k) ∈ CLIQ then the (v1, . . . , vk) is a witness of this.
Note (v1, . . . , vk) is short: length is poly in the length of (G , k).

Note Verifying a witness is fast:
If (v1, . . . , vk) is a potential witness then verifying that
(v1, . . . , vk) is a witness is fast: time poly in the length of (G , k).

SAT, HAM, EUL are similar.
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NP

Def A is in NP if there exists a set B ∈ P and a polynomial p such
that

A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

I If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.
So if I wanted to convince you that x ∈ A, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

I If x /∈ A then there is NO proof that x ∈ A.

Note SAT, HAM, EUL, CLIQ are all in NP.
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Our Plan for NP

SAT, HAM, EUL, CLIQ are all in NP.

1. This does not mean that any of these problems are easy.

2. This does not mean that any of these problems are hard.

3. SAT, HAM, CLIQ (but NOT EUL) are equivalent and
hence one of the following holds:
I SAT, HAM, CLIQ are all in P.
I None of SAT, HAM, CLIQ are in P.
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Reductions

Def Let X ,Y be sets. A reduction from X to Y is a
polynomial-time computable function f such that

x ∈ X iff f (x) ∈ Y .

We express this by writing X ≤ Y .

Reductions are transitive.
Easy Lemma If X ≤ Y and Y ∈ P then X ∈ P. (We use that if
f (n), g(n) are poly then f (g(n)) is poly.)

Contrapositive If X ≤ Y and X /∈ P then Y /∈ P.
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Def of NP-Complete

Def A set Y is NP-complete if the following hold:

I Y ∈ NP

I If X ∈ NP then X ≤ Y .

Easy Lemma If Y is NP-complete and Y ∈ P then P = NP.

Honesty When I first saw the definition of NP-completeness I
thought (1) there are no NP-complete sets or (2) there are no
natural NP-complete sets.

The condition:
for EVERY X ∈ NP, X ≤ Y ?

seemed very hard to meet.
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Variants of SAT

We define several variants of SAT:

1. SAT is the set of all boolean formulas that are satisfiable.
That is, φ(~x) ∈ SAT if there exists a vector ~b such that
φ(~b) = TRUE .

2. CNF-SAT is the set of all boolean formulas in SAT of the
form C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. 3SAT is CNF-SAT where each clause has ≤ 3 literals.
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SAT is NP-Complete

Cook (1971) and Levin (1973) independently showed:
CNF-SAT is NP-complete

Thoughts on this:

1. The proof is not hard, but it involves looking at actual TMs.
SAT was the first NP-complete problem. You could not use
some other problem. 3SAT was the second by an easy
reduction.

2. Once we have 3SAT is NP-complete we will NEVER use
Turing machines again. To show Y NP-complete: (1)
Y ∈ NP, (2) A ≤ Y for a known A that is NPC, often 3SAT.

3. Thousands of problems are NP-complete. If any are in P then
they are all in P.

4. Most Computer Scientists and Mathematicians think P 6= NP.
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History: HAM and EUL

1736 Euler shows the Konigsberg bridge problem is unsolvable by
proving, in modern terms,
A graph is EUL iff every vertex has even degree. So EUL ∈ P.

1850? Hamilton poses, in modern terms, the question of
characterizing when graphs are HAM.

Note Mathematicians wanted a characterization of HAM
graphs similar to the characterization of EUL graphs.
They didn’t have the notion of algorithms to state what they
wanted more rigorously.

The theory of NP-completeness enabled mathematicians to state
what they wanted rigorously (HAM ∈ P) and also gave the basis
for proving likely it cannot be done (since HAM is NP-Complete).
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SAT,HAM,CLIQ Walk into a Bar

1. SAT is NP-complete by Cook-Levin Theorem.

2. CLIQ is NP-complete. We prove that on next few slides.

3. HAM is NP-complete. Just take my word for it.



SAT,HAM,CLIQ Walk into a Bar

1. SAT is NP-complete by Cook-Levin Theorem.

2. CLIQ is NP-complete. We prove that on next few slides.

3. HAM is NP-complete. Just take my word for it.



SAT,HAM,CLIQ Walk into a Bar

1. SAT is NP-complete by Cook-Levin Theorem.

2. CLIQ is NP-complete. We prove that on next few slides.

3. HAM is NP-complete. Just take my word for it.



SAT,HAM,CLIQ Walk into a Bar

1. SAT is NP-complete by Cook-Levin Theorem.

2. CLIQ is NP-complete. We prove that on next few slides.

3. HAM is NP-complete. Just take my word for it.



3SAT ≤ CLIQ

1) Input φ = C1 ∧ · · · ∧ Ck where each Ci is a 3-clause.

2) Graph G with 7k vertices as follows: For each clause we have 7
vertices. Label them with the 7 ways to set the 3 vars to make the
clause satisfiable. For example, for the clause x ∨ y ∨ ¬z , we have
7 vertices: TTT, TTF, TFT, TFF, FTT, FTF, FFF.

There are no edges between vertices associated to the same clause.
We put an edge between vertices associated with different clauses
if the assignments do not conflict. Example:
(x = T , y = T , z = T ) has edge to (w = F , x = T , z = T ) but
not to (w = F , x = F , z = T ).

3) Example on next slide
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(x ∨ y ∨ z) ∧ (w ∨ z) ∧ (x ∨ z)
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So What Do We Know?

1. We do not know that 3SAT /∈ P.

2. We do not know that CLIQ /∈ P.

3. We do know that 3SAT ∈ P IFF CLIQ ∈ P.

4. We believe 3SAT /∈ P, hence we believe CLIQ /∈ P.
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Why Do We Believe P 6= NP?

1. I have done three polls of what theorists think of P vs NP.
88% of the theorists polled think P 6= NP. Some of those
who voted P = NP emailed me privately that it was a protest
vote—They think P 6= NP but they also think people should
be more open minded.

2. The NP-complete problems have been worked on for a long
time (many predating the definition of P and NP) and none
have been shown to be in P.

3. Intuitively coming up with a proof seems harder than
verifying a proof.

4. P 6= NP has great explanatory power. See next slide.
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Approximating Set Cover

Set Cover Given n and S1, . . . ,Sm ⊆ {1, . . . , n} find the least
number of sets Si ’s that cover {1, . . . , n}.

1. Chvatal in 1979 showed that there is a poly time approx
algorithm for Set Cover that will return (ln n)×OPTIMAL.

2. Dinur and Steurer in 2013 showed that, assuming P 6= NP,
for all ε there is no (1− ε) ln n ×OPTIMAL approx alg for
Set Cover.

3. These two proofs have nothing to do with each other yet give
matching upper and lower bounds.

4. There are many other approx problems where P = NP
explains why they cannot be improved.
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End with some Opinions

My opinions

1. 1.1 IF P = NP that might be proven in the next decade.
1.2 IF P 6= NP this will not be proven until the year 2525.

2. P 6= NP. In fact, SAT requires 2Ω(n) time.
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