BILL AND NATHAN, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!
NPC SAT-type Problems

Exposition by William Gasarch—U of MD
NPC Problems on Boolean Formulas

Exposition by William Gasarch—U of MD
Bounding

(1) Literals Per Clause
(2) Occurrences of a Var

Exposition by William Gasarch—U of MD
Two Types of SAT

1. **kSAT-b**: Clauses have $\leq k$ literals, each var occurs $\leq b$ times.

2. **EU-kSAT-b**: Clauses have k literals, each var occurs $\leq b$ times.

Caveat Do not allow x and $\neg x$ in the same clause.
Two Types of SAT

1. \textbf{kSAT-}b: Clauses have $\leq k$ literals, each var occurs $\leq b$ times.

2. \textbf{EU-}k\textbf{SAT-}b: Clauses have k literals, each var occurs $\leq b$ times.

\textbf{Caveat} Do not allow x and $\neg x$ in same clause.
Two Types of SAT

1. **kSAT-\(b\):** Clauses have \(\leq k\) literals, each var occurs \(\leq b\) times.

2. **EU-kSAT-\(b\):** Clauses have \(k\) literals, each var occurs \(\leq b\) times.

Caveat Do not allow \(x\) and \(\neg x\) in same clause.

Caveat Do not allow \(x\) and \(\neg x\) in same clause.
Two Types of SAT

1. **kSAT-b**: Clauses have $\leq k$ literals, each var occurs $\leq b$ times.

2. **EU-kSAT-b**: Clauses have k literals, each var occurs $\leq b$ times.

Caveat Do not allow x and $\neg x$ in same clause.

Caveat Do not allow x and x in same clause.

Occur $(x \lor y) \land (\neg x \lor z)$: x occurs TWICE.
Two Types of SAT

1. **$k\text{SAT-}b$**: Clauses have $\leq k$ literals, each var occurs $\leq b$ times.
2. **EU-$k\text{SAT-}b$**: Clauses have k literals, each var occurs $\leq b$ times.

Caveat Do not allow x and $\neg x$ in same clause.
Caveat Do not allow x and x in same clause.
Occur $(x \lor y) \land (\neg x \lor z)$: x occurs TWICE.

SAT means no bound on number of literals-per-clause.
We will look at all four of these for various values of k, b.
1. 1SAT:

No Bound on b
No Bound on b

1. 1SAT: P,
 \[\phi \in 1\text{SAT} \text{ iff there is no } x \text{ such that both } x \text{ and } \neg x \text{ occur.} \]

2. 2SAT:

3. 3SAT: NPC by Cook.
 The $k=1$ and $k=2$ cases are of course still in P if you bound b.
 Hence we look at $k=3$ and bound on b.
No Bound on b

1. **1SAT:** P,
 \[\phi \in 1\text{SAT} \text{ iff there is no } x \text{ such that both } x \text{ and } \neg x \text{ occur.} \]

2. **2SAT:** P. Known result. Sketch: Convert every clause \[L_1 \lor L_2 \] into \[(\neg L_1 \rightarrow L_2) \land (\neg L_2 \rightarrow L_1) \]. Make a directed graph with literals as vertices and the \(\rightarrow \) as edges. \(\phi \in 2\text{SAT} \text{ iff there is no path from an } x \text{ to a } \neg x. \)

3. **3SAT:** NPC by Cook.

The \(k = 1 \) and \(k = 2 \) cases are of course still in P if you bound \(b \).
1. **1SAT**: P,
 \(\phi \in \text{1SAT} \) iff there is no \(x \) such that both \(x \) and \(\neg x \) occur.

2. **2SAT**: P. Known result. Sketch: Convert every clause \(L_1 \lor L_2 \) into \((\neg L_1 \rightarrow L_2) \land (\neg L_2 \rightarrow L_1)\). Make a directed graph with literals as vertices and the \(\rightarrow \) as edges. \(\phi \in \text{2SAT} \) iff there is no path from an \(x \) to a \(\neg x \).

3. **3SAT**: NPC by Cook.

 The \(k = 1 \) and \(k = 2 \) cases are of course still in \(P \) if you bound \(b \). Hence we look at \(k = 3 \) and bound on \(b \).
$k = 3$ and $b = 1, 2$

3SAT-1:
$k = 3$ and $b = 1, 2$

3SAT-1: P. Always satisfiable, just set all literals that appear to T. EU version would still be in P.
$k = 3$ and $b = 1, 2$

3SAT-1: P. Always satisfiable, just set all literals that appear to T. EU version would still be in P.

3SAT, all vars occur ≤ 2. P

1) Input ϕ in 3CNF, all vars occurs ≤ 2.
3SAT, all vars occur ≤ 2. P

1) Input ϕ in 3CNF, all vars occurs ≤ 2.
2) If a literal is only pos, set T, if only neg, set F. If clause has 1 literal, set true.
These operations may solve problem.
3SAT, all vars occur ≤ 2. P

1) Input ϕ in 3CNF, all vars occurs ≤ 2.
2) If a literal is only pos, set T, if only neg, set F. If clause has 1 literal, set true.
These operations may solve problem.
3) Every clause has 2 or 3 literals, every literal occurs as pos and neg. We show SAT.
3SAT, all vars occur \(\leq 2 \). P

1) Input \(\phi \) in 3CNF, all vars occurs \(\leq 2 \).
2) If a literal is only pos, set T, if only neg, set F. If clause has 1 literal, set true.
 These operations may solve problem.
3) Every clause has 2 or 3 literals, every literal occurs as pos and neg. We show SAT.
4) A clause with all NEG literals we call a NEG-clause.
1) Input ϕ in 3CNF, all vars occurs ≤ 2.
2) If a literal is only pos, set T, if only neg, set F. If clause has 1 literal, set true.
 These operations may solve problem.
3) Every clause has 2 or 3 literals, every literal occurs as pos and neg. We show SAT.
4) A clause with all NEG literals we call a NEG-clause.
 If no NEG-clauses then SAT easily.
3SAT, all vars occur ≤ 2. P

1) Input ϕ in 3CNF, all vars occurs ≤ 2.
2) If a literal is only pos, set T, if only neg, set F. If clause has 1 literal, set true.
These operations may solve problem.
3) Every clause has 2 or 3 literals, every literal occurs as pos and neg. We show SAT.
4) A clause with all NEG literals we call a NEG-clause.
If no NEG-clauses then SAT easily.
IF there is a NEG-clause then set a var in it to F.
3SAT, all vars occur ≤ 2.

1) Input ϕ in 3CNF, all vars occurs ≤ 2.
2) If a literal is only pos, set T, if only neg, set F. If clause has 1 literal, set true.
 These operations may solve problem.
3) Every clause has 2 or 3 literals, every literal occurs as pos and neg. We show SAT.
4) A clause with all NEG literals we call a NEG-clause.
 If no NEG-clauses then SAT easily.
 IF there is a NEG-clause then set a var in it to F.
 (Numb NEG-clauses) + (Numb of clauses) DECREASES.
3SAT, all vars occur \(\leq 2 \). P

1) Input \(\phi \) in 3CNF, all vars occurs \(\leq 2 \).

2) If a literal is only pos, set T, if only neg, set F. If clause has 1 literal, set true.
 These operations may solve problem.

3) Every clause has 2 or 3 literals, every literal occurs as pos and neg. We show SAT.

4) A clause with all NEG literals we call a NEG-clause.
 If no NEG-clauses then SAT easily.
 IF there is a NEG-clause then set a var in it to F.
 (Numb NEG-clauses) + (Numb of clauses) DECREASES.
 Eventually satisfy all clauses.
3SAT, all vars occur \(\leq 2 \). P

1) Input \(\phi \) in 3CNF, all vars occurs \(\leq 2 \).
2) If a literal is only pos, set T, if only neg, set F. If clause has 1 literal, set true.
 These operations may solve problem.
3) Every clause has 2 or 3 literals, every literal occurs as pos and neg. We show SAT.
4) A clause with all NEG literals we call a NEG-clause.
 If no NEG-clauses then SAT easily.
 IF there is a NEG-clause then set a var in it to F.
 \((\text{Numb NEG-clauses}) + (\text{Numb of clauses})\) DECREASES.
 Eventually satisfy all clauses.

Moral This was a clever trick! To prove \(P \neq NP \) would need to show that no clever trick will get SAT into P. Hard!
3SAT, all vars occur ≤ 3

3SAT-3: There are ≤ 3 clauses per literal and every var occurs ≤ 3 times.
3SAT, all vars occur ≤ 3

3SAT-3: There are ≤ 3 clauses per literal and every var occurs ≤ 3 times.
In P? NPC? Breakout Rooms!
3SAT, all vars occur ≤ 3. NPC

We will prove this NPC. Erika- how will we do it?
3SAT, all vars occur ≤ 3. NPC

We will prove this NPC. Erika- how will we do it? By a Reduction
1) Input ϕ in 3CNF. Want ϕ' 3CNF with all vars occurring ≤ 3
times such that $\phi \in \text{SAT}$ iff $\phi' \in \text{SAT}$.
We will prove this NPC. Erika- how will we do it? By a Reduction
1) Input ϕ in 3CNF. Want ϕ' 3CNF with all vars occurring ≤ 3 times such that $\phi \in$ SAT iff $\phi' \in$ SAT.
2) If a var occurs ≤ 3 times then leave it alone.
3SAT, all vars occur ≤ 3. NPC

We will prove this NPC. Erika- how will we do it? By a Reduction

1) Input ϕ in 3CNF. Want ϕ' 3CNF with all vars occurring ≤ 3 times such that $\phi \in \text{SAT}$ iff $\phi' \in \text{SAT}$.

2) If a var occurs ≤ 3 times then leave it alone.

3) If a var occurs $m \geq 4$ times then
We will prove this \textbf{NPC}. Erika- how will we do it? By a Reduction

1) Input ϕ in 3CNF. Want ϕ' 3CNF with all vars occurring ≤ 3 times such that $\phi \in \text{SAT}$ iff $\phi' \in \text{SAT}$.

2) If a var occurs ≤ 3 times then leave it alone.

3) If a var occurs $m \geq 4$ times then

a) Add new vars x_1, \ldots, x_m. Replace ith occurrence of x with x_i.

\textit{Moral}

Going from $b \leq 2$ to $b \leq 3$ matters!
3SAT, all vars occur ≤ 3. NPC

We will prove this NPC. Erika- how will we do it? By a Reduction
1) Input ϕ in 3CNF. Want ϕ' 3CNF with all vars occurring ≤ 3
times such that $\phi \in SAT$ iff $\phi' \in SAT$.
2) If a var occurs ≤ 3 times then leave it alone.
3) If a var occurs $m \geq 4$ times then
 a) Add new vars x_1, \ldots, x_m. Replace ith occurrence of x with x_i.
 b) Add the clauses $x_1 \rightarrow x_2$, $x_2 \rightarrow x_3$, \ldots, $x_{m-1} \rightarrow x_m$, $x_m \rightarrow x_1$.
 (Formally $x_1 \rightarrow x_2$ is $(\neg x_1 \lor x_2$.)

Clearly $\phi \in 3CNF$ and all variables occur ≤ 3 times.
Clearly $\phi \in SAT$ iff $\phi' \in SAT$.
Moral Going from $b \leq 2$ to $b \leq 3$ matters!
3SAT, all vars occur ≤ 3. NPC

We will prove this NPC. Erika- how will we do it? By a Reduction

1) Input ϕ in 3CNF. Want ϕ' 3CNF with all vars occurring ≤ 3 times such that $\phi \in$ SAT iff $\phi' \in$ SAT.
2) If a var occurs ≤ 3 times then leave it alone.
3) If a var occurs $m \geq 4$ times then
 a) Add new vars x_1, \ldots, x_m. Replace ith occurrence of x with x_i.
 b) Add the clauses $x_1 \rightarrow x_2$, $x_2 \rightarrow x_3$, \ldots, $x_{m-1} \rightarrow x_m$, $x_m \rightarrow x_1$.
 (Formally $x_1 \rightarrow x_2$ is $(\neg x_1 \lor x_2$.)

Clearly $\phi \in$ 3CNF and all variables occur ≤ 3 times.
We will prove this NPC. Erika- how will we do it? By a Reduction
1) Input ϕ in 3CNF. Want ϕ' 3CNF with all vars occurring ≤ 3
times such that $\phi \in \text{SAT}$ iff $\phi' \in \text{SAT}$.
2) If a var occurs ≤ 3 times then leave it alone.
3) If a var occurs $m \geq 4$ times then
 a) Add new vars x_1, \ldots, x_m. Replace ith occurrence of x with x_i.
 b) Add the clauses $x_1 \rightarrow x_2$, $x_2 \rightarrow x_3$, \ldots, $x_{m-1} \rightarrow x_m$, $x_m \rightarrow x_1$.
 (Formally $x_1 \rightarrow x_2$ is $(\neg x_1 \lor x_2$.)
Clearly $\phi \in 3\text{CNF}$ and all variables occur ≤ 3 times.
Clearly $\phi \in \text{SAT}$ iff $\phi' \in \text{SAT}$.
3SAT, all vars occur \(\leq 3 \). NPC

We will prove this NPC. Erika- how will we do it? By a Reduction

1) Input \(\phi \) in 3CNF. Want \(\phi' \) 3CNF with all vars occurring \(\leq 3 \) times such that \(\phi \in \text{SAT} \) iff \(\phi' \in \text{SAT} \).

2) If a var occurs \(\leq 3 \) times then leave it alone.

3) If a var occurs \(m \geq 4 \) times then
 a) Add new vars \(x_1, \ldots, x_m \). Replace \(i^{\text{th}} \) occurrence of \(x \) with \(x_i \).
 b) Add the clauses \(x_1 \rightarrow x_2, x_2 \rightarrow x_3, \ldots, x_{m-1} \rightarrow x_m, x_m \rightarrow x_1 \).
 (Formally \(x_1 \rightarrow x_2 \) is \((\neg x_1 \lor x_2) \).)

Clearly \(\phi \in 3\text{CNF} \) and all variables occur \(\leq 3 \) times.

Clearly \(\phi \in \text{SAT} \) iff \(\phi' \in \text{SAT} \)

Moral Going from \(b \leq 2 \) to \(b \leq 3 \) matters!
EU-3SAT-3: Every clause has exactly 3 literals. Every variable occurs \(\leq 3 \) times. P? NPC?
EU-3SAT-3?: Every clause has exactly 3 literals. Every variable occurs \(\leq 3 \) times. P? NPC?
Go to breakout rooms to work on this.
EU-3SAT-3 is in P

EU-3SAT-3 with $b \leq 3$ is in P.
EU-3SAT-3 is in P

EU-3SAT-3 with $b \leq 3$ is in P.
This needs a known Theorem and its Corollary.
For this slide $G = (A, B, E)$ is a bipartite graph.
A **Matching of A into B** is a set of disjoint edges so that every element of A is an endpoint of some edge. View as an injection of A into B.
$X \subseteq A$. $E(X) = \{ y \in Y : (\exists x \in X)[(x, y) \in E] \}$.

Hall’s Matching Theorem
If, for all $X \subseteq A$, $|E(X)| \geq |X|$ then there exists a matching from A to B.

Corollary
If there exists k such that (1) for every $x \in A$, $\deg(x) \geq k$, and (2) for every $y \in B$, $\deg(y) \leq k$, then there is a matching from A to B.
We will use these on the next slide.
EU-3SAT-3 is in P

EU-3SAT-3 with $b \leq 3$ is in P.
This needs a known Theorem and its Corollary.
For this slide $G = (A, B, E)$ is a bipartite graph.
A **Matching of A into B** is a set of disjoint edges so that every element of A is an endpoint of some edge. View as an injection of A into B.
$X \subseteq A$. $E(X) = \{y \in Y : (\exists x \in X)[(x, y) \in E]\}$.

Hall’s Matching Theorem If, for all $X \subseteq A$, $|E(X)| \geq |X|$ then there exists a matching from A to B.
EU-3SAT-3 is in \(P \)

EU-3SAT-3 with \(b \leq 3 \) is in \(P \).
This needs a known Theorem and its Corollary.
For this slide \(G = (A, B, E) \) is a bipartite graph.
A **Matching of \(A \) into \(B \)** is a set of disjoint edges so that every element of \(A \) is an endpoint of some edge. View as an injection of \(A \) into \(B \).
\(X \subseteq A. \ E(X) = \{y \in Y : (\exists x \in X)[(x, y) \in E]\}\).

Hall’s Matching Theorem If, for all \(X \subseteq A, |E(X)| \geq |X| \) then there exists a matching from \(A \) to \(B \).

Corollary If there exists \(k \) such that (1) for every \(x \in A, \ \deg(x) \geq k \), and (2) for every \(y \in B, \deg(y) \leq k \), then there is a matching from \(A \) to \(B \).
EU-3SAT-3 is in P

EU-3SAT-3 with $b \leq 3$ is in P.
This needs a known Theorem and its Corollary.
For this slide $G = (A, B, E)$ is a bipartite graph.
A **Matching of A into B** is a set of disjoint edges so that every element of A is an endpoint of some edge. View as an injection of A into B.

$X \subseteq A$. $E(X) = \{y \in Y : (\exists x \in X)[(x, y) \in E]\}$.

Hall’s Matching Theorem If, for all $X \subseteq A$, $|E(X)| \geq |X|$ then there exists a matching from A to B.

Corollary If there exists k such that (1) for every $x \in A$, $\deg(x) \geq k$, and (2) for every $y \in B$, $\deg(y) \leq k$, then there is a matching from A to B.

We will use these on the next slide.
Every EU-3CNF-3 fml is Satisfiable

Let ϕ be EU-3CNF-3. $\phi = C_1 \lor \cdots \lor C_m$.

Form a bipartite graph:

1. Clauses on the left, variables on the right.
2. Edge from C to x if either x or $\neg x$ is in C.

Every clause has degree 3.
Every **EU-3CNF-3** fml is Satisfiable

Let ϕ be **EU-3CNF-3**. $\phi = C_1 \lor \cdots \lor C_m$.

Form a bipartite graph:

1. Clauses on the left, variables on the right.
2. Edge from C to x if either x or $\neg x$ is in C.

Every clause has degree 3. Every variable has degree ≤ 3.

By Corollary there is a matching of C’s to V’s. This gives a satisfying assignment.
Every EU-3CNF-3 fml is Satisfiable

Let ϕ be EU-3CNF-3. $\phi = C_1 \lor \cdots \lor C_m$.

Form a bipartite graph:

1. Clauses on the left, variables on the right.
2. Edge from C to x if either x or $\neg x$ is in C.

Every clause has degree 3. Every variable has degree ≤ 3.

By Corollary there is a matching of C’s to V’s. This gives a satisfying assignment.

Moral The algorithm used a THEOREM in math that perhaps you did not know. To prove $P \neq NP$ would need to say this can’t happen. Hard!
A Variant of SAT

Exposition by William Gasarch—U of MD
1-in-3-SAT

Def 1-in-3-SAT (1-in-3-SAT) is the problem of, given a formula $D_1 \land \cdots \land D_m$ find an assignment that satisfies *exactly* one literal-per-clause. We will show that 1-in-3-SAT is NPC.
1-in-3-SAT

Def 1-in-3-SAT (1-in-3-SAT) is the problem of, given a formula $D_1 \land \cdots \land D_m$ find an assignment that satisfies exactly one literal-per-clause. We will show that 1-in-3-SAT is NPC.

Is this a Natural Question? VOTE, though this is an opinion question.
Def 1-in-3-SAT is the problem of, given a formula $D_1 \land \cdots \land D_m$ find an assignment that satisfies exactly one literal-per-clause. We will show that 1-in-3-SAT is NPC.

Is this a Natural Question? VOTE, though this is an opinion question.

My Opinion The problem is not natural.
Def **1-in-3-SAT** (1-in-3-SAT) is the problem of, given a formula $D_1 \land \cdots \land D_m$ find an assignment that satisfies *exactly* one literal-per-clause. We will show that 1-in-3-SAT is NPC.

Is this a Natural Question? VOTE, though this is an opinion question.

My Opinion The problem is *not* natural.

So why are we studying it Discuss.
Def 1-in-3-SAT (1-in-3-SAT) is the problem of, given a formula $D_1 \land \cdots \land D_m$ find an assignment that satisfies exactly one literal-per-clause. We will show that 1-in-3-SAT is NPC.

Is this a Natural Question? VOTE, though this is an opinion question.

My Opinion The problem is not natural.

So why are we studying it Discuss.

Its a means to an end We will show natural problems NPC by using reductions from 1-in-3-SAT. We will do a reduction from a variant of 1-in-3-SAT.
1-in-3-SAT is NPC

Given $\phi = C_1 \land \cdots \land C_m$ in 3CNF create the ϕ' as follows:
1-in-3-SAT is NPC

Given $\phi = C_1 \land \cdots \land C_m$ in 3CNF create the ϕ' as follows:
Replace clause $(L_1 \lor L_2 \lor L_3)$ with

$$(\neg L_1 \lor a \lor b) \land (b \lor L_2 \lor c) \land (c \lor d \lor \neg L_3).$$

where a, b, c, d are new variables.
Given $\phi = C_1 \land \cdots \land C_m$ in 3CNF create the ϕ' as follows:
Replace clause $(L_1 \lor L_2 \lor L_3)$ with

$$(\neg L_1 \lor a \lor b) \land (b \lor L_2 \lor c) \land (c \lor d \lor \neg L_3).$$

where a, b, c, d are new variables.
Leave it to the reader to prove

$$\phi \in 3SAT \text{ iff } \phi' \in 1\text{-in-}3\text{-SAT}.$$
Mono 1-in-3-SAT

Mono 1-in-3-SAT (mono-1-in-3-SAT): Given a formula $E_1 \land \cdots \land E_p$ where all vars occur positively, is there an assignment that satisfies exactly one literal-per-clause.
Mono 1-in-3-SAT

Mono 1-in-3-SAT (mono-1-in-3-SAT): Given a formula $E_1 \land \cdots \land E_p$ where all vars occur positively, is there an assignment that satisfies exactly one literal-per-clause.

Thm 1-in-3-SAT \leq mono-1-in-3-SAT

Given 3CNF form $\phi(x_1, \ldots, x_n) = C_1 \lor \cdots \lor C_k$ want ϕ' such that $\phi \in 1$-in-3-SAT iff $\phi' \in$ mono-1-in-3-SAT.
Mono 1-in-3-SAT

Mono 1-in-3-SAT (mono-1-in-3-SAT): Given a formula \(E_1 \land \cdots \land E_p \) where all vars occur positively, is there an assignment that satisfies **exactly** one literal-per-clause.

Thm 1-in-3-SAT \(\leq \) mono-1-in-3-SAT

Given 3CNF form \(\phi(x_1, \ldots, x_n) = C_1 \lor \cdots \lor C_k \) want \(\phi' \) such that \(\phi \in \text{1-in-3-SAT} \) iff \(\phi' \in \text{mono-1-in-3-SAT} \).

1) New Vars \(t, f \) and new clause \(E = (t \lor f \lor f) \). Any 1-in-3-SAT assignment of \(\phi \) will set \(t \) to \(T \) and \(f \) to \(F \).
Mono 1-in-3-SAT

Mono 1-in-3-SAT (mono-1-in-3-SAT): Given a formula $E_1 \land \cdots \land E_p$ where all vars occur positively, is there an assignment that satisfies **exactly** one literal-per-clause.

Thm 1-in-3-SAT \leq mono-1-in-3-SAT

Given 3CNF form $\phi(x_1, \ldots, x_n) = C_1 \lor \cdots \lor C_k$ want ϕ' such that $\phi \in$ 1-in-3-SAT iff $\phi' \in$ mono-1-in-3-SAT.

1) New Vars t, f and new clause $E = (t \lor f \lor f)$. Any 1-in-3-SAT assignment of ϕ will set t to T and f to F.

2) For each x_j have new var x'_j and clause $D_j = (f \lor x_j \lor x'_j)$. Any 1-in-3-SAT assignment for ϕ will set x_j, x'_j to opposites.
Mono 1-in-3-SAT

Mono 1-in-3-SAT (**mono-1-in-3-SAT**): Given a formula $E_1 \land \cdots \land E_p$ where all vars occur positively, is there an assignment that satisfies **exactly** one literal-per-clause.

Thm 1-in-3-SAT \leq mono-1-in-3-SAT

Given 3CNF form $\phi(x_1, \ldots, x_n) = C_1 \lor \cdots \lor C_k$ want ϕ' such that $\phi \in 1\text{-in-3-SAT}$ iff $\phi' \in \text{mono-1-in-3-SAT}$.

1) New Vars t, f and new clause $E = (t \lor f \lor f)$. Any 1-in-3-SAT assignment of ϕ will set t to T and f to F.

2) For each x_j have new var x_j' and clause $D_j = (f \lor x_j \lor x_j')$. Any 1-in-3-SAT assignment for ϕ will set x_j, x_j' to opposites.

3) For each C_i let C_i' be obtained by replacing every $\overline{x_j}$ with x_j'.
Mono 1-in-3-SAT

Mono 1-in-3-SAT (mono-1-in-3-SAT): Given a formula $E_1 \land \cdots \land E_p$ where all vars occur positively, is there an assignment that satisfies **exactly** one literal-per-clause.

Thm 1-in-3-SAT \leq mono-1-in-3-SAT

Given 3CNF form $\phi(x_1, \ldots, x_n) = C_1 \lor \cdots \lor C_k$ want ϕ' such that $\phi \in 1$-in-3-SAT iff $\phi' \in$ mono-1-in-3-SAT.

1) New Vars t, f and new clause $E = (t \lor f \lor f)$. Any 1-in-3-SAT assignment of ϕ will set t to T and f to F.

2) For each x_j have new var x_j' and clause $D_j = (f \lor x_j \lor x_j')$. Any 1-in-3-SAT assignment for ϕ will set x_j, x_j' to opposites.

3) For each C_i let C_i' be obtained by replacing every $\overline{x_j}$ with x_j'.

$$\phi' = C'_1 \land \cdots \land C'_k \land D_1 \land \cdots \land D_n \land E.$$

Leave it to the reader to show $\phi \in 1$-in-3-SAT iff $\phi' \in$ mono-1-in-3-SAT.
A Puzzle we Prove Hard Using mono-1-in-3-SAT

Exposition by William Gasarch—U of MD
Why is mono-1-in-3-SAT Important?

We care about the mono-1-in-3-SAT problem!

1) A carry can be at most 1. Hence $M = 1$.

2) Since $M = 1$, $S + M +$ poss carry ≤ 10. Since there is a carry, $S + M +$ poss carry $= 10$ so $O = 0$.

3) Can keep on reasoning like this and we find:

\[
\begin{array}{c}
 9 \quad 5 \quad 6 \quad 7 \\
+ \quad 1 \quad 0 \quad 8 \quad 5 \\
\hline
 1 \quad 0 \quad 6 \quad 5 \quad 2 \\
\end{array}
\]

The Solution to The SEND MORE MONEY Cryptarithms
Why is mono-1-in-3-SAT Important?

We care about the mono-1-in-3-SAT problem! NOT!
Why is mono-1-in-3-SAT Important?

We care about the mono-1-in-3-SAT problem! **NOT!**
We will use it to show that a puzzle we DO care about is NPC.
Why is mono-1-in-3-SAT Important?

We care about the mono-1-in-3-SAT problem! NOT!
We will use it to show that a puzzle we DO care about is NPC

\[
\begin{array}{cccc}
S & E & N & D \\
\hline
+ & M & O & R & E \\
\hline
M & O & N & E & Y \\
\end{array}
\]

The SEND MORE MONEY Cryptarithms
Why is mono-1-in-3-SAT Important?

We care about the mono-1-in-3-SAT problem! NOT!
We will use it to show that a puzzle we DO care about is NPC

\[
\begin{array}{cccccc}
S & E & N & D \\
+ & M & O & R & E \\
\hline
M & O & N & E & Y \\
\end{array}
\]

The SEND MORE MONEY Cryptarithms

1) A carry can be at most 1. Hence \(M = 1 \).
Why is \textit{mono-1-in-3-SAT} Important?

We care about the \textit{mono-1-in-3-SAT} problem! \textbf{NOT!}
We will use it to show that a puzzle we \textbf{DO} care about is \textit{NPC}

\[
\begin{array}{cccc}
S & E & N & D \\
+ & M & O & R \\
\hline
M & O & N & E \\
\end{array}
\]

The SEND MORE MONEY Cryptarithms

1) A carry can be at most 1. Hence \(M = 1 \).
2) Since \(M = 1 \), \(S + M + \text{poss carry} \leq 10 \). Since there is a carry, \(S + M + \text{poss carry} = 10 \) so \(O = 0 \).
Why is mono-1-in-3-SAT Important?

We care about the mono-1-in-3-SAT problem! NOT!
We will use it to show that a puzzle we DO care about is NPC

\[
\begin{array}{cccc}
S & E & N & D \\
+ & M & O & R & E \\
\hline
M & O & N & E & Y \\
\end{array}
\]

The SEND MORE MONEY Cryptarithms
1) A carry can be at most 1. Hence \(M = 1 \).
2) Since \(M = 1 \), \(S + M + \text{poss carry} \leq 10 \). Since there is a carry, \(S + M + \text{poss carry} = 10 \) so \(O = 0 \).
3) Can keep on reasoning like this and we find:
Why is mono-1-in-3-SAT Important?

We care about the mono-1-in-3-SAT problem! NOT!
We will use it to show that a puzzle we DO care about is NPC

\[
\begin{array}{cccc}
S & E & N & D \\
+ & M & O & R & E \\
\hline
M & O & N & E & Y \\
\end{array}
\]

The SEND MORE MONEY Cryptarithms
1) A carry can be at most 1. Hence \(M = 1 \).
2) Since \(M = 1 \), \(S + M + \) poss carry \(\leq 10 \). Since there is a carry, \(S + M + \) poss carry = 10 so \(O = 0 \).
3) Can keep on reasoning like this and we find:

\[
\begin{array}{cccc}
9 & 5 & 6 & 7 \\
+ & 1 & 0 & 8 & 5 \\
\hline
1 & 0 & 6 & 5 & 2 \\
\end{array}
\]

The Solution to The SEND MORE MONEY Cryptarithms
How Did We Solve SEND + MORE = MONEY?

We initially did some reasoning to cut down the number of poss.
How Did We Solve SEND + MORE = MONEY?

We initially did some reasoning to cut down the number of poss.
But past a certain point we had to try all possibilities.
How Did We Solve SEND+MORE=MONEY?

We initially did some reasoning to cut down the number of poss. But past a certain point we had to try all possibilities. Is the general problem NPC?
How Did We Solve SEND + MORE = MONEY?

We initially did some reasoning to cut down the number of poss. But past a certain point we had to try all possibilities.

Is the general problem NPC? Spoiler Alert:
How Did We Solve $\text{SEND} + \text{MORE} = \text{MONEY}$?

We initially did some reasoning to cut down the number of possibilities. But past a certain point we had to try all possibilities. Is the general problem NPC? Spoiler Alert: Yes
Definition of Cryptarithms Problem

We want to show that Cryptarithms is NPC. We need a definition.
We want to show that Cryptarithms is NPC. We need a definition.

CRYPTARITHM

Input $B, m \in \mathbb{N}$. Σ is alphabet of B letters.
x_0, \ldots, x_{m-1}. Each $x_i \in \Sigma$.
y_0, \ldots, y_{m-1}. Each $y_i \in \Sigma$.
z_0, \ldots, z_m. Each $z_i \in \Sigma$. The symbol z_m is optional.
Definition of Cryptarithmetic Problem

We want to show that Cryptarithmetic is NPC. We need a definition.

CRYPTARITHM

Input $B, m \in \mathbb{N}$. Σ is alphabet of B letters.

x_0, \ldots, x_{m-1}. Each $x_i \in \Sigma$.

y_0, \ldots, y_{m-1}. Each $y_i \in \Sigma$.

z_0, \ldots, z_m. Each $z_i \in \Sigma$. The symbol z_m is optional.

Question Does there exist an injection $\Sigma \rightarrow \{0, \ldots, B - 1\}$ so that the arithmetic below is correct in base B?

\[
\begin{array}{cccc}
 x_{m-1} & \cdots & x_0 \\
 + & y_{m-1} & \cdots & y_0 \\
 \hline
 z_m & z_{m-1} & \cdots & z_0
\end{array}
\]
We Show CRYPTARITHM is NPC

Thm CRYPTARITHM is NPC.
We Show CRYPTARITHM is NPC

Thm CRYPTARITHM is NPC. Erika- How will we prove this?
We Show CRYPTARITHM is NPC

Thm CRYPTARITHM is NPC. Erika- How will we prove this? We show mono-1-in-3-SAT \(\leq \) CRYPTARITHM. We show an algorithm that will:
We Show CRYPTARITHM is NPC

Thm CRYPTARITHM is NPC. Erika- How will we prove this?
We show mono-1-in-3-SAT \leq CRYPTARITHM. We show an algorithm that will:

Input $\phi(x_1, \ldots, x_n) = C_1 \land \cdots \land C_m$ where all vars occur positive.
We Show \textsf{CRYPTARITHM} is NPC

\textbf{Thm} CRYPTARITHM is NPC. Erika- How will we prove this? We show \textsf{mono-1-in-3-SAT} \leq CRYPTARITHM. We show an algorithm that will:

\textbf{Input} $\phi(x_1, \ldots, x_n) = C_1 \land \cdots \land C_m$ where all vars occur positive.

\textbf{Output} An instance J of CRYPTARITHM such that TFAE
Thm CRYPTARITHM is NPC. Erika- How will we prove this? We show mono-1-in-3-SAT ≤ CRYPTARITHM. We show an algorithm that will:

Input $\phi(x_1, \ldots, x_n) = C_1 \land \cdots \land C_m$ where all vars occur positive.

Output An instance J of CRYPTARITHM such that TFAE

1. Exists assignment that satisfies exactly one var per clause.
2. Exists solution to CRYPTARITHM J.

We Show CRYPTARITHM is NPC

Thm CRYPTARITHM is NPC. Erika- How will we prove this?
We show mono-1-in-3-SAT ≤ CRYPTARITHM. We show an algorithm that will:

Input \(\phi(x_1, \ldots, x_n) = C_1 \land \cdots \land C_m \) where all vars occur positive.

Output An instance \(J \) of CRYPTARITHM such that TFAE

1. Exists assignment that satisfies exactly one var per clause.
2. Exists solution to CRYPTARITHM \(J \).

We do the reduction in three parts, so three more slides!
We call the parts **gadgets**.
0 and 1

We have 0, 1 ∈ Σ that will live up their name.
0 and 1

We have $0, 1 \in \Sigma$ that will live up their name.
We have $p, q \in \Sigma$ that will help 0 maps to 0, 1 maps to 1.
0 and 1

We have $0, 1 \in \Sigma$ that will live up their name. We have $p, q \in \Sigma$ that will help 0 maps to 0, 1 maps to 1. We then make this part of J:
0 and 1

We have $0, 1 \in \Sigma$ that will live up their name. We have $p, q \in \Sigma$ that will help 0 maps to 0, 1 maps to 1. We then make this part of J:

$$
\begin{array}{c}
0 \ p \ 0 \\
0 \ p \ 0 \\
0 \ p \ 0 \\
1 \ q \ 0
\end{array}
$$
We have $0, 1 \in \Sigma$ that will live up their name. We have $p, q \in \Sigma$ that will help 0 maps to 0, 1 maps to 1. We then make this part of J:

$$
\begin{array}{c}
0 \ p \ 0 \\
0 \ p \ 0 \\
\hline
1 \ q \ 0
\end{array}
$$

We leave it to the reader to show that this ensures 0 maps to 0 and 1 maps to 1.
Vars $\equiv 0, 1 \pmod{4}$

For every variable v we have a symbol $v \in \Sigma$. Our intent is
For every variable v we have a symbol $v \in \Sigma$. Our intent is
If v is true then $v \equiv 1 \pmod{4}$.
For every variable \(v \) we have a symbol \(v \in \Sigma \). Our intent is
If \(v \) is true then \(v \equiv 1 \pmod 4 \).
If \(v \) is false then \(v \equiv 0 \pmod 4 \).
Vars ≡ 0, 1 (mod 4)

For every variable \(v \) we have a symbol \(v \in \Sigma \). Our intent is
If \(v \) is true then \(v \equiv 1 \) (mod 4).
If \(v \) is false then \(v \equiv 0 \) (mod 4).
The following gadget ensures that \(v \equiv 0, 1 \) (mod 4).

\[
\begin{array}{cccccc}
0 & b & c & 0 & a & 0 \\
0 & b & c & 0 & a & 0 \\
0 & v & d & 0 & b & 0
\end{array}
\]
For every variable v we have a symbol $v \in \Sigma$. Our intent is
If v is true then $v \equiv 1 \pmod{4}$.
If v is false then $v \equiv 0 \pmod{4}$.
The following gadget ensures that $v \equiv 0, 1 \pmod{4}$.

\[
\begin{array}{cccccc}
0 & b & c & 0 & a & 0 \\
0 & b & c & 0 & a & 0 \\
0 & v & d & 0 & b & 0 \\
\end{array}
\]

Since $a + a = b$ with no carry, $b \equiv 0 \pmod{2}$.
For every variable v we have a symbol $v \in \Sigma$. Our intent is
If v is true then $v \equiv 1 \pmod{4}$.
If v is false then $v \equiv 0 \pmod{4}$.
The following gadget ensures that $v \equiv 0, 1 \pmod{4}$.

\[
\begin{array}{cccccc}
0 & b & c & 0 & a & 0 \\
0 & b & c & 0 & a & 0 \\
\hline
0 & v & d & 0 & b & 0 \\
\end{array}
\]

Since $a + a = b$ with no carry, $b \equiv 0 \pmod{2}$.
Since $c + c = d$ the carry is $C \in \{0, 1\}$.
For every variable v we have a symbol $v \in \Sigma$. Our intent is
If v is true then $v \equiv 1 \pmod{4}$.
If v is false then $v \equiv 0 \pmod{4}$.
The following gadget ensures that $v \equiv 0, 1 \pmod{4}$.

\[
\begin{array}{cccccc}
0 & b & c & 0 & a & 0 \\
0 & b & c & 0 & a & 0 \\
0 & v & d & 0 & b & 0 \\
\end{array}
\]

Since $a + a = b$ with no carry, $b \equiv 0 \pmod{2}$.
Since $c + c = d$ the carry is $C \in \{0, 1\}$.
Since $b + b = v$, $v = 2b + C$, so $v \equiv 0, 1 \pmod{4}$.

Note: Do this for all vars v, using a different a, b, c for each one.
For every variable v we have a symbol $v \in \Sigma$. Our intent is
If v is true then $v \equiv 1 \pmod{4}$.
If v is false then $v \equiv 0 \pmod{4}$.
The following gadget ensures that $v \equiv 0, 1 \pmod{4}$.

\[
\begin{array}{cccccc}
0 & b & c & 0 & a & 0 \\
0 & b & c & 0 & a & 0 \\
0 & v & d & 0 & b & 0 \\
\end{array}
\]

Since $a + a = b$ with no carry, $b \equiv 0 \pmod{2}$.
Since $c + c = d$ the carry is $C \in \{0, 1\}$.
Since $b + b = v$, $v = 2b + C$, so $v \equiv 0, 1 \pmod{4}$.

Note Do this for all vars v, using a different a, b, c for each one.
Clauses Need to have Exactly One Var True

Clause is $(x \lor y \lor z)$.

Gadget is:

\begin{align*}
0 & \quad 0 & x & 0 & 1 & 0 & b \\
0 & \quad 0 & y & 0 & 1 & 0 & c \\
0 & \quad 0 & d & 0 & 1 & 0 & d
\end{align*}

\begin{align*}
+ & = b \\
+ & = c \\
= & = d + 1
\end{align*}

Note For each clause use a different a, b, c, I.

So if J has a solution then ϕ has a 1-in-3 assignment.

Need if ϕ has a 1-in-3 assignment then J has sol. Left to reader.
Clauses Need to have Exactly One Var True

Clause is \((x \lor y \lor z)\). Gadget is:

\[
\begin{array}{cccccccccc}
0 & l & 0 & x & 0 & 1 & 0 & b & 0 & a & 0 \\
0 & z & 0 & y & 0 & c & 0 & b & 0 & a & 0 \\
0 & d & 0 & l & 0 & d & 0 & c & 0 & b & 0 \\
\end{array}
\]
Clauses Need to have Exactly One Var True

Clause is \((x \lor y \lor z)\). Gadget is:

\[
\begin{array}{ccccccccccc}
0 & l & 0 & x & 0 & 1 & 0 & b & 0 & a & 0 \\
0 & z & 0 & y & 0 & c & 0 & b & 0 & a & 0 \\
0 & d & 0 & l & 0 & d & 0 & c & 0 & b & 0 \\
\end{array}
\]

\(a + a = b\), so \(b \equiv 0 \pmod{2}\).

Clauses Need to have Exactly One Var True

Clause is \((x \lor y \lor z)\). Gadget is:

\[
\begin{array}{cccccccc}
0 & 1 & 0 & x & 0 & 1 & 0 & b & 0 & a & 0 \\
0 & z & 0 & y & 0 & c & 0 & b & 0 & a & 0 \\
0 & d & 0 & l & 0 & d & 0 & c & 0 & b & 0 \\
\end{array}
\]

\[a + a = b, \text{ so } b \equiv 0 \pmod{2}.\]

\[b + b = c, \text{ so } c \equiv 0 \pmod{4}.\]
Clauses Need to have Exactly One Var True

Clause is \((x \lor y \lor z)\). Gadget is:

\[
\begin{array}{cccccccccc}
0 & l & 0 & x & 0 & 1 & 0 & b & 0 & a & 0 \\
0 & z & 0 & y & 0 & c & 0 & b & 0 & a & 0 \\
0 & d & 0 & l & 0 & d & 0 & c & 0 & b & 0 \\
\end{array}
\]

\(a + a = b,\) so \(b \equiv 0 \pmod{2}\).

\(b + b = c,\) so \(c \equiv 0 \pmod{4}\).

\(d = c + 1\) so \(d \equiv 1 \pmod{4}\).
Clauses Need to have Exactly One Var True

Clause is \((x \lor y \lor z)\). Gadget is:

\[
\begin{array}{cccccccccc}
0 & l & 0 & x & 0 & 1 & 0 & b & 0 & a & 0 \\
0 & z & 0 & y & 0 & c & 0 & b & 0 & a & 0 \\
0 & d & 0 & l & 0 & d & 0 & c & 0 & b & 0 \\
\end{array}
\]

\(a + a = b\), so \(b \equiv 0 \pmod{2}\).
\(b + b = c\), so \(c \equiv 0 \pmod{4}\).
\(d = c + 1\) so \(d \equiv 1 \pmod{4}\).
\(x + y = l\) so \(x + y \equiv l \pmod{4}\).
Clauses Need to have Exactly One Var True

Clause is \((x \lor y \lor z)\). Gadget is:

\[
\begin{array}{cccccccc}
0 & l & 0 & x & 0 & 1 & 0 & b & 0 & a & 0 \\
0 & z & 0 & y & 0 & c & 0 & b & 0 & a & 0 \\
0 & d & 0 & l & 0 & d & 0 & c & 0 & b & 0 \\
\end{array}
\]

\(a + a = b\), so \(b \equiv 0 \pmod{2}\).
\(b + b = c\), so \(c \equiv 0 \pmod{4}\).
\(d = c + 1\) so \(d \equiv 1 \pmod{4}\).
\(x + y = l\) so \(x + y \equiv l \pmod{4}\).
\(l + z = d\) so \(x + y + z \equiv 1 \pmod{4}\).
Clauses Need to have Exactly One Var True

Clause is \((x \lor y \lor z)\). Gadget is:

\[
\begin{array}{cccccccc}
0 & l & 0 & x & 0 & 1 & 0 & b & 0 & a & 0 \\
0 & z & 0 & y & 0 & c & 0 & b & 0 & a & 0 \\
0 & d & 0 & l & 0 & d & 0 & c & 0 & b & 0 \\
\end{array}
\]

\(a + a = b\), so \(b \equiv 0 \pmod{2}\).

\(b + b = c\), so \(c \equiv 0 \pmod{4}\).

\(d = c + 1\) so \(d \equiv 1 \pmod{4}\).

\(x + y = l\) so \(x + y \equiv l \pmod{4}\).

\(l + z = d\) so \(x + y + z \equiv 1 \pmod{4}\).

Note For each clause use a different \(a, b, c, l\).
Clauses Need to have Exactly One Var True

Clause is \((x \lor y \lor z)\). Gadget is:

<table>
<thead>
<tr>
<th></th>
<th>l</th>
<th></th>
<th>x</th>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>b</th>
<th>0</th>
<th>a</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>z</td>
<td></td>
<td>y</td>
<td></td>
<td>0</td>
<td>c</td>
<td>0</td>
<td>b</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>d</td>
<td></td>
<td>l</td>
<td></td>
<td>0</td>
<td>d</td>
<td>0</td>
<td>c</td>
<td>0</td>
<td>b</td>
</tr>
</tbody>
</table>

\(a + a = b\), so \(b \equiv 0 \pmod{2}\).

\(b + b = c\), so \(c \equiv 0 \pmod{4}\).

\(d = c + 1\) so \(d \equiv 1 \pmod{4}\).

\(x + y = l\) so \(x + y \equiv l \pmod{4}\).

\(l + z = d\) so \(x + y + z \equiv 1 \pmod{4}\).

Note For each clause use a different \(a, b, c, l\).

So if \(J\) has a solution then \(\phi\) has a 1-in-3 assignment.
Clauses Need to have Exactly One Var True

Clause is \((x \lor y \lor z)\). Gadget is:

\[
\begin{array}{cccccccc}
0 & l & 0 & x & 0 & 1 & 0 & b & 0 & a & 0 \\
0 & z & 0 & y & 0 & c & 0 & b & 0 & a & 0 \\
0 & d & 0 & l & 0 & d & 0 & c & 0 & b & 0
\end{array}
\]

\(a + a = b\), so \(b \equiv 0 \pmod{2}\).
\(b + b = c\), so \(c \equiv 0 \pmod{4}\).
\(d = c + 1\) so \(d \equiv 1 \pmod{4}\).
\(x + y = l\) so \(x + y \equiv l \pmod{4}\).
\(l + z = d\) so \(x + y + z \equiv 1 \pmod{4}\).

Note For each clause use a different \(a, b, c, l\).

So if \(J\) has a solution then \(\phi\) has a 1-in-3 assignment.
Need if \(\phi\) has a 1-in-3 assignment then \(J\) has sol. Left to reader.