Turing Machines and
DTIME

Exposition by William Gasarch—U of MD

Computability

The course so far:

Computability

The course so far:

1. We defined regular via DFAs. With this definition we could
prove some languages are regular and some are not.

Computability

The course so far:

1. We defined regular via DFAs. With this definition we could
prove some languages are regular and some are not.

2. We defined CFL via CFGs. With this definition we could prove
some languages are CFL and some are not. (We never proved
that some langs are not CFL, but we could have.)

Computability

The course so far:

1. We defined regular via DFAs. With this definition we could
prove some languages are regular and some are not.

2. We defined CFL via CFGs. With this definition we could prove
some languages are CFL and some are not. (We never proved
that some langs are not CFL, but we could have.)

We want to prove that some languages are compuable and some
are not computable. We need a model of computation, the Turing
Machine. The details of it are complicated, and we mostly won't
be using it, but we need to know that there is a rigorous model.

WARNING: The Next Two Slides are Messy

On the next two slides we will
1. Define a Turing Machine.

2. Define a configuration of a Turing Machine and how it
operates.

WARNING: The Next Two Slides are Messy

On the next two slides we will
1. Define a Turing Machine.

2. Define a configuration of a Turing Machine and how it
operates.

| will use this definition only once in the entire course.

WARNING: The Next Two Slides are Messy

On the next two slides we will
1. Define a Turing Machine.

2. Define a configuration of a Turing Machine and how it
operates.
| will use this definition only once in the entire course.

| will use it to prove the most important therem of the course:
(Cook-Levin)SAT is NP-complete.

WARNING: The Next Two Slides are Messy

On the next two slides we will
1. Define a Turing Machine.

2. Define a configuration of a Turing Machine and how it
operates.

| will use this definition only once in the entire course.

| will use it to prove the most important therem of the course:
(Cook-Levin)SAT is NP-complete.

The definition is not hard, but it is ugly and somewhat arbitrary.

But it is needed to prove the Cook-Levin Theorem.

Turing Machines Def

Def A Turing Machine is a tuple (Q, X, 9, s, h) where
> @ is a finite set of states. It has the state h.
> > is a finite alphabet. It contains the symbol #.
> 0 (Q—{h}) xX = QxXU{R,L}
> s e Q is the start state, h is the halt state.

Note There are many variants of Turing Machines- more tapes,
more heads. All equivalent.

Turing Machines Conventions

We use the following convention:

1. Oninput x € ¥*, x = x1 - - - x5, the machine starts with tape

#xaxa - XnHHHH
that is one way infinite.
2. The head is initially looking at the xj.
3. 4(g,0) = (p,7): state changes g — p, o is replaced with 7.

4. 6(q,0) = (p, L): state changes g — p, head moves Left.
(6(g,0) = (p, R) similar).

5. TM is in state h: DONE. Left most square has a 1 (0) then
M ACCEPTS (REJECTS) x.

Note We can code TMs into numbers. We say Run M, (y) which
means run the TM coded by x on input y.

How Powerful are Turing Machines?

1. There is a JAVA program for function f iff there is a TM that
computes f.

2. Everything computable can be done by a TM.

Other Models of Computation: Computability

There are many different models of Computation.
1. Turing Machines and variants.
2. Lambda-Calculus
3. Generalized Grammars
4. Others

Other Models of Computation: Computability

There are many different models of Computation.
1. Turing Machines and variants.
2. Lambda-Calculus
3. Generalized Grammars
4. Others
They ended up all being equivalent.

Other Models of Computation: Computability

There are many different models of Computation.
1. Turing Machines and variants.
2. Lambda-Calculus
3. Generalized Grammars
4. Others
They ended up all being equivalent.

This is what makes computability theory work! We will almost
never look at the details of a Turing Machine. To show a function
is computable we just write psuedocode to compute it.

Other Models of Computation: Complexity

1. There is a JAVA program for function f iff there is a TM that
computes f.

2. Everything computable can be done by a TM.

Other Models of Computation

There are many different models of Computation.
1. Turing Machines and variants.
2. Lambda-Calculus
3. Generalized Grammars
4. Others

Other Models of Computation

There are many different models of Computation.
1. Turing Machines and variants.
2. Lambda-Calculus
3. Generalized Grammars
4. Others
They ended up all being equivalent WITHIN POLY TIME.

Other Models of Computation

There are many different models of Computation.
1. Turing Machines and variants.
2. Lambda-Calculus
3. Generalized Grammars
4. Others
They ended up all being equivalent WITHIN POLY TIME.

This is what makes complexity theory work! We will almost never
look at the details of a Turing Machine. To show a function is
computable in Poly Time we just write psuedocode and show that
it halts within time poly in the length of the input.

We will need this later in the course when we study P and NP.

Decidable Sets

Def A set A is DECIDABLE if there is a Turing Machine M such
that

x€EA—-Mx)=Y

x¢A— Mx)=N

Time Classes

Def Let T(n) be a computable function (think increasing). A is in
DTIME(T(n)) if there is a TM M that decides A and also, for all
x, M(x) halts in time < O(T(|x])).

Time Classes

Def Let T(n) be a computable function (think increasing). A is in
DTIME(T(n)) if there is a TM M that decides A and also, for all
x, M(x) halts in time < O(T(|x])).

What do you think of this definition? Discuss.

Time Classes

Def Let T(n) be a computable function (think increasing). A is in
DTIME(T(n)) if there is a TM M that decides A and also, for all
x, M(x) halts in time < O(T(|x])).

What do you think of this definition? Discuss.

Its Terrible!

Time Classes

Def Let T(n) be a computable function (think increasing). A is in
DTIME(T(n)) if there is a TM M that decides A and also, for all
x, M(x) halts in time < O(T(|x])).

What do you think of this definition? Discuss.

Its Terrible!

The definition depends on the details of the type of Turing
Machine. 1-tape? 2-tapes? This should not be what we care
about.

Time Classes

Def Let T(n) be a computable function (think increasing). A is in
DTIME(T(n)) if there is a TM M that decides A and also, for all
x, M(x) halts in time < O(T(|x])).

What do you think of this definition? Discuss.

Its Terrible!

The definition depends on the details of the type of Turing
Machine. 1-tape? 2-tapes? This should not be what we care
about.

So what to do?

» Prove theorems about DTIME(T (n)) where the model does
not matter. (Time hierarchy theorem)).

» Define time classes that are model-independent (P, NP stuff)

Concrete Time Hierarchy
Thm

Exposition by William Gasarch—U of MD

Concrete Time Hierarchy Thm

Def Let A C {0,1}*. A € DTIME(n?) is there is a Java Program
J such that the following hold.

1. If x € A then J(x) outputs YES.
2. If x ¢ A then J(x) outputs NO.
3. The number of steps J(x) takes is < |x|3.

Concrete Time Hierarchy Thm

Def Let A C {0,1}*. A € DTIME(n?) is there is a Java Program
J such that the following hold.

1. If x € A then J(x) outputs YES.
2. If x ¢ A then J(x) outputs NO.
3. The number of steps J(x) takes is < |x|3.

We will prove the following:

Concrete Time Hierarchy Thm

Def Let A C {0,1}*. A € DTIME(n?) is there is a Java Program
J such that the following hold.

1. If x € A then J(x) outputs YES.
2. If x ¢ A then J(x) outputs NO.
3. The number of steps J(x) takes is < |x|3.

We will prove the following:
Thm There exists a set of strings A such that

Concrete Time Hierarchy Thm

Def Let A C {0,1}*. A € DTIME(n?) is there is a Java Program
J such that the following hold.

1. If x € A then J(x) outputs YES.
2. If x ¢ A then J(x) outputs NO.
3. The number of steps J(x) takes is < |x|3.

We will prove the following:
Thm There exists a set of strings A such that
1. There is a Java Program J that, on input x, will output YES
if x € A, and will output NO if x ¢ A.

Concrete Time Hierarchy Thm

Def Let A C {0,1}*. A € DTIME(n?) is there is a Java Program
J such that the following hold.

1. If x € A then J(x) outputs YES.
2. If x ¢ A then J(x) outputs NO.
3. The number of steps J(x) takes is < |x|3.

We will prove the following:
Thm There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES
if x € A, and will output NO if x ¢ A.

2. A¢ DTIME(n?).

ASCII Table

Hex Dec Char Hex Dec Char |Hex Dec Char |Hex Dec Char
0x=00 0 NULL null 0x20 32 Space|0x40 64 @ |Ox60 96 °
0x01 1 s0H Start of heading 0x21 33 ! 0xd41 65 A |0x6l 27 a
0x02 2 5Tx Start of text 0=Z2 34 al 0x42 66 B |0x62 9B b
0x03 3 ETX End of text 0x23 35 # 0x43 67 C |0x63 99 c
0x04 4 EOT End of transmission 0=24 36 $ 0Ox44 68 D |Oxed 100 d
0x05 5 ENQ Enquiry 0x25 37 % 0x45 6% E |[0x65 101 e
0x06 6 ACE Acknowledge 0x26 38 & 0xde TO F |0xe6 102 £
0x07 7 BELL Bell 0x27 39 ! 0x47 71 G |0x67 103 g
0x08 2 BS Backspace 0x28 40 { 0x48 72 H |0x68 104 h
0x09 9 TAB Horizontal tab 0=29 41) 0x49 73 I |O0x6% 105 i
0x0R 10 LF New line 0x2n 42 L Ox4n 74 T |[OxéA 106]
0x0B 11 VT Vertical tab 0x2B 43 + Ox4B 75 K |0xeB 107 k
0z0C 12 FF Form Feed 0=2c 44 ’ Oxd4C 76 L |OxéC 108 1
0x0p 13 CR Carriage return 0x2D 45 - 0x4D 77 M |[0x6D 103 m
0x0E 14 50 Shift out 0=2E 46 . 0x4E 78 W |Ox6E 110 n
0x0F 15 &SI Shift in 0x2F 47 £ Ox4F 79 o© |Ox6F 111 o
0x10 16 DLE Data link escape 0x30 48 0 |ox50 80 P |ox70 112 p
0xl11 17 pCl Device control 1 0x31 49 1 0x51 81 © |[0x71 113 g
0x12 18 DC2 Device control 2 0x32 50 2 0x52 82 R |0x72 114 r
0x13 19 DC3 Device control 3 0x33 51 3 0x53 83 &5 |0x73 115 =
0x14 20 DC4 Device control 4 0x34 52 4 0x54 84 T [0x74 116 ¢
0x15 21 WAK Negative ack 0x35 53 5 0x55 85 O 0x75 117 u
0xlé 22 sSYN Synchronous idle 0x36 54 B Ox56 86 Vv |0x76 118 w
0x17 23 ETBE End transmission block | 0x37 55 ki 0x57 87 W |0x77 119 w
0x18 24 CAN Cancel 0x38 56 8 0x58 88 X |Ox7& 120 x
0x19 25 EM End of medium 0x39 57 9 0x59 89 ¥ [|0x79 121 vy
0xlh 26 SUB Substitute 0=3n 58 E 0xS5Aa %0 % JOxTA 122 =
0x1lB 27 FSC Escape 0x3B 59 H 0x5B 91 [0xTB 123 i
0xlC 28 FE& File separator 0x3C &0 < 0x5C 92 \ |ox7C 124 |
0xlD 29 GS Group separator 0=3p 61 - 0x5D 93 1 |ox7p 125 }
0x1E 30 RS Record separator 0x3E &2 S 0x5E 94 * |0x7E 126 -
O0x1lF 31 US Unit separator O0x3F 63 ? 0x5F 95 _ |0x7F 127 DEL

Coding Symbols Into 7-bit Strings

The ASCII table maps symbols into decimal numbers between 0
and 127. We include leading 0's.

Coding Symbols Into 7-bit Strings

The ASCII table maps symbols into decimal numbers between 0
and 127. We include leading 0's.

» Space maps to 032.

Coding Symbols Into 7-bit Strings

The ASCII table maps symbols into decimal numbers between 0
and 127. We include leading 0's.

» Space maps to 032.
> L H# S % & (), K+, - .,/ map to 033,...,047.

Coding Symbols Into 7-bit Strings

The ASCII table maps symbols into decimal numbers between 0
and 127. We include leading 0's.

» Space maps to 032.
> L H# S % & (), K+, - .,/ map to 033,...,047.
> 0,...,9 code to 048,. .., 057.

Coding Symbols Into 7-bit Strings

The ASCII table maps symbols into decimal numbers between 0
and 127. We include leading 0's.

» Space maps to 032.

> L H# S % & (), K+, - .,/ map to 033,...,047.
> 0,...,9 code to 048,. .., 057.

> ., . <, =, >, 7, code to 058 to 064.

Coding Symbols Into 7-bit Strings

The ASCII table maps symbols into decimal numbers between 0
and 127. We include leading 0's.

» Space maps to 032.

LY #,9% %, &, ', (), * +, ') - .,/ map to 033,...,047.
0,...,9 code to 048,.. ., 057.

W <, =, >, 7, code to 058 to 064.

>
>
>
> A,...,Z code to 065,...,090.

Coding Symbols Into 7-bit Strings

The ASCII table maps symbols into decimal numbers between 0
and 127. We include leading Q's.

» Space maps to 032.

> L H# S % & (), K+, - .,/ map to 033,...,047.
> 0,...,9 code to 048,. .., 057.

> ., . <, =, >, 7, code to 058 to 064.

> A,...,Z code to 065,...,090.

» a,...,z code to 097,...,122.

Coding Symbols Into 7-bit Strings

The ASCII table maps symbols into decimal numbers between 0
and 127. We include leading Q's.

» Space maps to 032.

> L H# S % & (), K+, - .,/ map to 033,...,047.
> 0,...,9 code to 048,. .., 057.

> ., . <, =, >, 7, code to 058 to 064.

> A,...,Z code to 065,...,090.

» a,...,z code to 097,...,122.

» | won't bother with the rest. See table.

Mapping Java Program to N

Let J be a Java Program. It is a sequence of symbols.

Mapping Java Program to N

Let J be a Java Program. It is a sequence of symbols.

Each symbol maps to 3-digits. Concatenate them.

Mapping Java Program to N

Let J be a Java Program. It is a sequence of symbols.
Each symbol maps to 3-digits. Concatenate them.
x=x+12

Mapping Java Program to N

Let J be a Java Program. It is a sequence of symbols.
Each symbol maps to 3-digits. Concatenate them.

x=x+12
x maps to 120.

Mapping Java Program to N

Let J be a Java Program. It is a sequence of symbols.
Each symbol maps to 3-digits. Concatenate them.

x=x+12
x maps to 120.
= maps to 061

Mapping Java Program to N

Let J be a Java Program. It is a sequence of symbols.
Each symbol maps to 3-digits. Concatenate them.

x=x+12

x maps to 120.
= maps to 061
+ maps to 043

Mapping Java Program to N

Let J be a Java Program. It is a sequence of symbols.
Each symbol maps to 3-digits. Concatenate them.
x=x+12

x maps to 120.

= maps to 061

+ maps to 043

1 maps to 049

Mapping Java Program to N

Let J be a Java Program. It is a sequence of symbols.
Each symbol maps to 3-digits. Concatenate them.

x=x+12

x maps to 120.
= maps to 061
+ maps to 043
1 maps to 049
2 maps to 050

Mapping Java Program to N

Let J be a Java Program. It is a sequence of symbols.
Each symbol maps to 3-digits. Concatenate them.
x=x+12

x maps to 120.

= maps to 061

+ maps to 043

1 maps to 049

2 maps to 050

So this piece of code maps to 120,061,120,043,049,050

Mapping N to Java Programs

We assume that, given a sequence of symbols, can tell if it's a
Java Program.

Mapping N to Java Programs

We assume that, given a sequence of symbols, can tell if it's a
Java Program.

We want to map N to Java Programs.

Mapping N to Java Programs

We assume that, given a sequence of symbols, can tell if it's a
Java Program.

We want to map N to Java Programs.
Let | be the program that, on any input, halts and outputs YES.

Mapping N to Java Programs

We assume that, given a sequence of symbols, can tell if it's a

Java Program.

We want to map N to Java Programs.

Let | be the program that, on any input, halts and outputs YES.
1. Input(7).

Mapping N to Java Programs

We assume that, given a sequence of symbols, can tell if it's a
Java Program.

We want to map N to Java Programs.

Let | be the program that, on any input, halts and outputs YES.
1. Input(7).
2. If numb of digits # 0 (mod 3), add 0's to left until is.

Mapping N to Java Programs

We assume that, given a sequence of symbols, can tell if it's a
Java Program.

We want to map N to Java Programs.

Let | be the program that, on any input, halts and outputs YES.
1. Input(7).
2. If numb of digits # 0 (mod 3), add 0's to left until is.

3. i now maps so a sequence of symbols J.

Mapping N to Java Programs

We assume that, given a sequence of symbols, can tell if it's a
Java Program.

We want to map N to Java Programs.
Let | be the program that, on any input, halts and outputs YES.
1. Input(7).
2. If numb of digits # 0 (mod 3), add 0's to left until is.
3. i now maps so a sequence of symbols J.
4. 1f J IS NOT a valid Java Program then map i/ to |.

Mapping N to Java Programs

We assume that, given a sequence of symbols, can tell if it's a
Java Program.

We want to map N to Java Programs.
Let | be the program that, on any input, halts and outputs YES.

1.

AR

Input(/).

If numb of digits 0 (mod 3), add 0's to left until is.
i now maps so a sequence of symbols J.

If J1S NOT a valid Java Program then map i to |.

If JIS a valid Java Program then map / to J.

The Sequences of All Java Programs

Let J; be the Java program that i maps to. So

The Sequences of All Java Programs

Let J; be the Java program that i maps to. So

N, b, ..., ... is the list of all Java Programs.

The Sequences of All n’-time Java Programs

We only want to look at programs that take < n3 times.

The Sequences of All n’-time Java Programs

We only want to look at programs that take < n3 times.
Let J! be the program that does the following:

The Sequences of All n’-time Java Programs

We only want to look at programs that take < n3 times.
Let J! be the program that does the following:

1. Input(x). |x|] = n.

The Sequences of All n’-time Java Programs

We only want to look at programs that take < n3 times.
Let J! be the program that does the following:

1. Input(x). |x|] = n.
2. Run Ji(x) but keep track of the number of steps.

The Sequences of All n’-time Java Programs

We only want to look at programs that take < n3 times.
Let J! be the program that does the following:

1. Input(x). |x|] = n.
2. Run Ji(x) but keep track of the number of steps.

3. If the program has taken > n3 steps and has not halted yet
then output NO and halt.

The Sequences of All n’-time Java Programs

We only want to look at programs that take < n? times.
Let J! be the program that does the following:

1. Input(x). |x|] = n.
2. Run Ji(x) but keep track of the number of steps.

3. If the program has taken > n3 steps and has not halted yet
then output NO and halt.

Ji, Sy, ..., ... is the list of all n3>-time Java Programs .

Upshot If A € DTIME(n®) then there exists i such that J!
recognizes A.

The Time Hierarchy Thm

Thm There exists a set of strings A such that

The Time Hierarchy Thm

Thm There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES
if x € A, and will output NO if x ¢ A.

The Time Hierarchy Thm

Thm There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES
if x € A, and will output NO if x ¢ A.

2. A ¢ DTIME(n?).

The Time Hierarchy Thm

Thm There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES
if x € A, and will output NO if x ¢ A.

2. A ¢ DTIME(n?).
Proof Let A be decided by the following program

The Time Hierarchy Thm

Thm There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES
if x € A, and will output NO if x ¢ A.

2. A ¢ DTIME(n?).
Proof Let A be decided by the following program
1. Input(x). If x ¢ 0* output NO and stop. Otherwise x = 0".

The Time Hierarchy Thm

Thm There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES
if x € A, and will output NO if x ¢ A.

2. A ¢ DTIME(n?).

Proof Let A be decided by the following program
1. Input(x). If x ¢ 0* output NO and stop. Otherwise x = 0".
2. Run J,(0™).

The Time Hierarchy Thm

Thm There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES
if x € A, and will output NO if x ¢ A.

2. A ¢ DTIME(n?).
Proof Let A be decided by the following program
1. Input(x). If x ¢ 0* output NO and stop. Otherwise x = 0".
2. Run J,(0™).
3. If result is YES then output NO and stop.

The Time Hierarchy Thm

Thm There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES

if x € A, and will output NO if x ¢ A.

2. A ¢ DTIME(n?).
Proof Let A be decided by the following program

1.

Input(x). If x ¢ 0* output NO and stop. Otherwise x = 0".

2. Run J,(0™).
3.
4. If result is NO then output YES and stop.

If result is YES then output NO and stop.

The Time Hierarchy Thm

Thm There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES
if x € A, and will output NO if x ¢ A.

2. A ¢ DTIME(n?).
Proof Let A be decided by the following program
1. Input(x). If x ¢ 0* output NO and stop. Otherwise x = 0".
2. Run J,(0™).
3. If result is YES then output NO and stop.
4. If result is NO then output YES and stop.
1) This is a program decides A by definition.

The Time Hierarchy Thm

Thm There exists a set of strings A such that

1. There is a Java Program J that, on input x, will output YES
if x € A, and will output NO if x ¢ A.

2. A ¢ DTIME(n?).
Proof Let A be decided by the following program
1. Input(x). If x ¢ 0* output NO and stop. Otherwise x = 0".
2. Run J,(0™).
3. If result is YES then output NO and stop.
4. If result is NO then output YES and stop.

1) This is a program decides A by definition.
2) Proof that A ¢ DTIME(n®) on next slide.

A ¢ DTIME(n?)

Input(x). If x ¢ 0* output NO and stop. Otherwise x = 0".
Run J/,(0™).
If result is YES then output NO and stop.
4. If result is NO then output YES and stop.
Let A(0") be YES if 0" € A and NO if 0" ¢ A.

W o=

A ¢ DTIME(n?)

Input(x). If x ¢ 0* output NO and stop. Otherwise x = 0".
Run J/,(0™).
If result is YES then output NO and stop.
4. If result is NO then output YES and stop.
Let A(0") be YES if 0" € A and NO if 0" ¢ A.
Ji cannot recognize A: J;(0') and A(0') DIFFER.

W o=

A ¢ DTIME(n?)

Input(x). If x ¢ 0* output NO and stop. Otherwise x = 0".
Run J/,(0™).
If result is YES then output NO and stop.
4. If result is NO then output YES and stop.
Let A(0") be YES if 0" € A and NO if 0" ¢ A.
Ji cannot recognize A: J;(0') and A(0') DIFFER.
J} cannot recognize A: J5(0%) and A(0?) DIFFER.

W o=

J), cannot recognize A: J/(0") and A(0") DIFFER.

A ¢ DTIME(n?)

Input(x). If x ¢ 0* output NO and stop. Otherwise x = 0".
Run J/,(0™).
If result is YES then output NO and stop.
4. If result is NO then output YES and stop.
Let A(0") be YES if 0" € A and NO if 0" ¢ A.
Ji cannot recognize A: J;(0') and A(0') DIFFER.
J} cannot recognize A: J5(0%) and A(0?) DIFFER.

W o=

J), cannot recognize A: J/(0") and A(0") DIFFER.
So NO J/, recognizes A. Hence A ¢ DTIME(n?).

How Complicated is A? Do | Care?

We have

How Complicated is A? Do | Care?

We have
1. Ais decidable.

How Complicated is A? Do | Care?

We have
1. Ais decidable.
2. Ais NOT in DTIME(n®) for Java.

How Complicated is A? Do | Care?

We have
1. Ais decidable.
2. Ais NOT in DTIME(n?) for Java.

3. If you prefer Python or C or MATLAB or ... you can do this
same proof and get A is NOT in DTIME(n?) on those
devices.

How Complicated is A? Do | Care?

We have
1. Ais decidable.
2. Ais NOT in DTIME(n?) for Java.

3. If you prefer Python or C or MATLAB or ... you can do this
same proof and get A is NOT in DTIME(n?) on those
devices.

4. So how complicated is A?

How Complicated is A? Do | Care?

We have
1. Ais decidable.
2. Ais NOT in DTIME(n?) for Java.

3. If you prefer Python or C or MATLAB or ... you can do this
same proof and get A is NOT in DTIME(n?) on those

devices.

4. So how complicated is A?

1. If use 2-tape Turing Machines then A is in DTIME(n® log n).

How Complicated is A? Do | Care?

We have
1. Ais decidable.
2. Ais NOT in DTIME(n?) for Java.

3. If you prefer Python or C or MATLAB or ... you can do this
same proof and get A is NOT in DTIME(n?) on those
devices.

4. So how complicated is A?

1. If use 2-tape Turing Machines then A is in DTIME(n® log n).
2. If use 1-tape Turing Machines then A is in DTIME(n*).

How Complicated is A? Do | Care?

We have
. Ais decidable.
2. Ais NOT in DTIME(n?) for Java.

3. If you prefer Python or C or MATLAB or ... you can do this
same proof and get A is NOT in DTIME(n?) on those
devices.

[

4. So how complicated is A?

1. If use 2-tape Turing Machines then A is in DTIME(n® log n).
2. If use 1-tape Turing Machines then A is in DTIME(n*).
3

. | do not care about models of comp on this level.

Bill and Eric Discuss the Proof

Eric and | had the following conversation before he proofread the
slides.

Bill and Eric Discuss the Proof

Eric and | had the following conversation before he proofread the
slides.

BILL: Eric, if | told you that there was a set A that was decidable
but could not be decided in O(n®) time, would you care.

Bill and Eric Discuss the Proof

Eric and | had the following conversation before he proofread the
slides.

BILL: Eric, if | told you that there was a set A that was decidable
but could not be decided in O(n®) time, would you care.

ERIC: Yes, unless

Bill and Eric Discuss the Proof

Eric and | had the following conversation before he proofread the
slides.

BILL: Eric, if | told you that there was a set A that was decidable
but could not be decided in O(n®) time, would you care.

ERIC: Yes, unless

BILL: (cutting him off) Great! Then the class will also find it
interesting. Oh, | cut you off, sorry, finish your thought.

Bill and Eric Discuss the Proof

Eric and | had the following conversation before he proofread the
slides.

BILL: Eric, if | told you that there was a set A that was decidable
but could not be decided in O(n®) time, would you care.

ERIC: Yes, unless
BILL: (cutting him off) Great! Then the class will also find it
interesting. Oh, | cut you off, sorry, finish your thought.

ERIC: | would find the result interesting unless the set A was a
contrived set that you constructed for the sole point of being
decidable but not in O(n%) time.

Bill and Eric Discuss the Proof

Eric and | had the following conversation before he proofread the
slides.

BILL: Eric, if | told you that there was a set A that was decidable
but could not be decided in O(n®) time, would you care.

ERIC: Yes, unless

BILL: (cutting him off) Great! Then the class will also find it
interesting. Oh, | cut you off, sorry, finish your thought.

ERIC: | would find the result interesting unless the set A was a
contrived set that you constructed for the sole point of being
decidable but not in O(n%) time.

BILL: You nailed it! The set A is not natural. But even though A
is not natural, it is interesting that there is such a set.

Bill and Eric Discuss the Proof

Eric and | had the following conversation before he proofread the
slides.

BILL: Eric, if | told you that there was a set A that was decidable
but could not be decided in O(n®) time, would you care.

ERIC: Yes, unless

BILL: (cutting him off) Great! Then the class will also find it
interesting. Oh, | cut you off, sorry, finish your thought.

ERIC: | would find the result interesting unless the set A was a
contrived set that you constructed for the sole point of being
decidable but not in O(n%) time.

BILL: You nailed it! The set A is not natural. But even though A
is not natural, it is interesting that there is such a set.
ERIC: Only an academic.

Why is the Time Hierarchy Thm Interesting?

The set A that | constructed is contrived.

Why is the Time Hierarchy Thm Interesting?

The set A that | constructed is contrived.

Do you find the theorem that there is a decidable A that is not in
DTIME(n3?) interesting? (You can replace n® by any computable
function.)

Vote YES or NO.

Why is the Time Hierarchy Thm Interesting?

The set A that | constructed is contrived.

Do you find the theorem that there is a decidable A that is not in
DTIME(n3?) interesting? (You can replace n® by any computable
function.)

Vote YES or NO.

Reasons | find it intersting.

Why is the Time Hierarchy Thm Interesting?

The set A that | constructed is contrived.

Do you find the theorem that there is a decidable A that is not in
DTIME(n3?) interesting? (You can replace n® by any computable
function.)

Vote YES or NO.

Reasons | find it intersting.

1. Good to know that there are sets in EXP that are not in P.

Why is the Time Hierarchy Thm Interesting?

The set A that | constructed is contrived.

Do you find the theorem that there is a decidable A that is not in
DTIME(n3?) interesting? (You can replace n® by any computable
function.)

Vote YES or NO.

Reasons | find it intersting.
1. Good to know that there are sets in EXP that are not in P.

2. The fact that there are unnatural sets in EXP — P has been
used to show that a natural set is in EXP — P.

Why is the Time Hierarchy Thm Interesting?

The set A that | constructed is contrived.

Do you find the theorem that there is a decidable A that is not in
DTIME(n3?) interesting? (You can replace n® by any computable
function.)

Vote YES or NO.

Reasons | find it intersting.
1. Good to know that there are sets in EXP that are not in P.

2. The fact that there are unnatural sets in EXP — P has been
used to show that a natural set is in EXP — P.
The set of winnning board positions in CHESS
Is in EXP — P.

General Time Hierarchy Thm

Thm (The Time Hierarchy Thm) For all computable increasing
T(n) there exists a decidable set A such that A ¢ DTIME(T(n)).
Proof Let My, Ma, ..., represent all of DTIME(T (n)) (obtain by
listing out all Turing Machines and putting a time bound on them).
Here is our algorithm for A. It will be a subset of 0*.

1. Input 0.
2. Run M;(0%). If the results is 1 then output 0. If the results is
0 then output 1.
For all i, M; and A DIFFER on 0'. Hence A is not decided by any
M;. So A ¢ DTIME(T (n)).
End of Proof

Full Time Hierarchy Thm (I don’t care!)

The Time Hierarchy Thm is usually stated as follows:

Thm (The Time Hierarchy Thm) For all computable increasing
T(n) there exists a decidable set A such that

A € DTIME(T(n)log(T(n))— ¢ DTIME(T (n)).

Full Time Hierarchy Thm (I don’t care!)

The Time Hierarchy Thm is usually stated as follows:

Thm (The Time Hierarchy Thm) For all computable increasing
T(n) there exists a decidable set A such that

A € DTIME(T(n)log(T(n))— ¢ DTIME(T (n)).

The proof | did of our Time Hierarchy Thm can be done more
carefully and you will see that A € DTIME(T (n)log(T(n)). But
this involves specifying the model more carefully.

I DO NOT CARE!

Full Time Hierarchy Thm (I don’t care!)

The Time Hierarchy Thm is usually stated as follows:

Thm (The Time Hierarchy Thm) For all computable increasing
T(n) there exists a decidable set A such that

A € DTIME(T(n)log(T(n))— ¢ DTIME(T (n)).

The proof | did of our Time Hierarchy Thm can be done more
carefully and you will see that A € DTIME(T (n)log(T(n)). But
this involves specifying the model more carefully.

I DO NOT CARE!

But good to know so that you know SOME seperations: P C EXP.

P and EXP

Def
1. P = DTIME(n°M).
2. EXP = DTIME(2"°").

