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Computability

The course so far:

1. We defined regular via DFAs. With this definition we could
prove some languages are regular and some are not.

2. We defined CFL via CFGs. With this definition we could prove
some languages are CFL and some are not. (We never proved
that some langs are not CFL, but we could have.)

We want to prove that some languages are compuable and some
are not computable. We need a model of computation, the Turing
Machine. The details of it are complicated, and we mostly won’t
be using it, but we need to know that there is a rigorous model.
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WARNING: The Next Two Slides are Messy

On the next two slides we will

1. Define a Turing Machine.

2. Define a configuration of a Turing Machine and how it
operates.

I will use this definition only once in the entire course.
I will use it to prove the most important therem of the course:

(Cook-Levin)SAT is NP-complete.
The definition is not hard, but it is ugly and somewhat arbitrary.
But it is needed to prove the Cook-Levin Theorem.
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Turing Machines Def

Def A Turing Machine is a tuple (Q,Σ, δ, s, h) where

I Q is a finite set of states. It has the state h.

I Σ is a finite alphabet. It contains the symbol #.

I δ : (Q − {h})× Σ→ Q × Σ ∪ {R, L}
I s ∈ Q is the start state, h is the halt state.

Note There are many variants of Turing Machines- more tapes,
more heads. All equivalent.



Turing Machines Conventions

We use the following convention:

1. On input x ∈ Σ∗, x = x1 · · · xn, the machine starts with tape

#x1x2 · · · xn#### · · ·

that is one way infinite.

2. The head is initially looking at the xn.

3. δ(q, σ) = (p, τ): state changes q → p, σ is replaced with τ .

4. δ(q, σ) = (p, L): state changes q → p, head moves Left.
(δ(q, σ) = (p,R) similar).

5. TM is in state h: DONE. Left most square has a 1 (0) then
M ACCEPTS (REJECTS) x .

Note We can code TMs into numbers. We say Run Mx(y) which
means run the TM coded by x on input y .



How Powerful are Turing Machines?

1. There is a JAVA program for function f iff there is a TM that
computes f .

2. Everything computable can be done by a TM.



Other Models of Computation: Computability

There are many different models of Computation.

1. Turing Machines and variants.

2. Lambda-Calculus

3. Generalized Grammars

4. Others

They ended up all being equivalent.

This is what makes computability theory work! We will almost
never look at the details of a Turing Machine. To show a function
is computable we just write psuedocode to compute it.
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Other Models of Computation: Complexity

1. There is a JAVA program for function f iff there is a TM that
computes f .

2. Everything computable can be done by a TM.



Other Models of Computation

There are many different models of Computation.

1. Turing Machines and variants.

2. Lambda-Calculus

3. Generalized Grammars

4. Others

They ended up all being equivalent WITHIN POLY TIME.

This is what makes complexity theory work! We will almost never
look at the details of a Turing Machine. To show a function is
computable in Poly Time we just write psuedocode and show that
it halts within time poly in the length of the input.

We will need this later in the course when we study P and NP.
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Decidable Sets

Def A set A is DECIDABLE if there is a Turing Machine M such
that

x ∈ A→ M(x) = Y

x /∈ A→ M(x) = N



Time Classes

Def Let T (n) be a computable function (think increasing). A is in
DTIME(T (n)) if there is a TM M that decides A and also, for all
x , M(x) halts in time ≤ O(T (|x |)).

What do you think of this definition? Discuss.

Its Terrible!
The definition depends on the details of the type of Turing
Machine. 1-tape? 2-tapes? This should not be what we care
about.

So what to do?

I Prove theorems about DTIME(T (n)) where the model does
not matter. (Time hierarchy theorem)).

I Define time classes that are model-independent (P, NP stuff)
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Concrete Time Hierarchy
Thm
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Concrete Time Hierarchy Thm

Def Let A ⊆ {0, 1}∗. A ∈ DTIME(n3) is there is a Java Program
J such that the following hold.

1. If x ∈ A then J(x) outputs YES.

2. If x /∈ A then J(x) outputs NO.

3. The number of steps J(x) takes is ≤ |x |3.

We will prove the following:
Thm There exists a set of strings A such that

1. There is a Java Program J that, on input x , will output YES
if x ∈ A, and will output NO if x /∈ A.

2. A /∈ DTIME(n3).
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ASCII Table



Coding Symbols Into 7-bit Strings

The ASCII table maps symbols into decimal numbers between 0
and 127. We include leading 0’s.

I Space maps to 032.

I !, ”, #, $, %, &, ’, (, ), *, +, ‘,’ -, ., / map to 033,. . .,047.

I 0,. . . ,9 code to 048,. . ., 057.

I :, ;, <, =, >, ?, code to 058 to 064.

I A,. . . ,Z code to 065,. . .,090.

I a,. . . ,z code to 097,. . .,122.

I I won’t bother with the rest. See table.
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Mapping Java Program to N

Let J be a Java Program. It is a sequence of symbols.

Each symbol maps to 3-digits. Concatenate them.

x = x + 12
x maps to 120.
= maps to 061
+ maps to 043
1 maps to 049
2 maps to 050

So this piece of code maps to 120,061,120,043,049,050
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Mapping N to Java Programs

We assume that, given a sequence of symbols, can tell if it’s a
Java Program.

We want to map N to Java Programs.
Let ↓ be the program that, on any input, halts and outputs YES.

1. Input(i).

2. If numb of digits 6≡ 0 (mod 3), add 0’s to left until is.

3. i now maps so a sequence of symbols J.

4. If J IS NOT a valid Java Program then map i to ↓.
5. If J IS a valid Java Program then map i to J.
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Let Ji be the Java program that i maps to. So

J1, J2, . . . , . . . is the list of all Java Programs.
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The Sequences of All n3-time Java Programs

We only want to look at programs that take ≤ n3 times.

Let J ′i be the program that does the following:

1. Input(x). |x | = n.

2. Run Ji (x) but keep track of the number of steps.

3. If the program has taken ≥ n3 steps and has not halted yet
then output NO and halt.

J ′1, J
′
2, . . . , . . . is the list of all n3-time Java Programs .

Upshot If A ∈ DTIME(n3) then there exists i such that J ′i
recognizes A.
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The Time Hierarchy Thm

Thm There exists a set of strings A such that

1. There is a Java Program J that, on input x , will output YES
if x ∈ A, and will output NO if x /∈ A.

2. A /∈ DTIME(n3).

Proof Let A be decided by the following program

1. Input(x). If x /∈ 0∗ output NO and stop. Otherwise x = 0n.

2. Run J ′n(0n).

3. If result is YES then output NO and stop.

4. If result is NO then output YES and stop.

1) This is a program decides A by definition.
2) Proof that A /∈ DTIME(n3) on next slide.
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A /∈ DTIME(n3)

1. Input(x). If x /∈ 0∗ output NO and stop. Otherwise x = 0n.

2. Run J ′n(0n).

3. If result is YES then output NO and stop.

4. If result is NO then output YES and stop.

Let A(0n) be YES if 0n ∈ A and NO if 0n /∈ A.

J ′1 cannot recognize A: J ′1(01) and A(01) DIFFER.

J ′2 cannot recognize A: J ′2(02) and A(02) DIFFER.
...
J ′n cannot recognize A: J ′n(0n) and A(0n) DIFFER.

So NO J ′n recognizes A. Hence A /∈ DTIME(n3).
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How Complicated is A? Do I Care?

We have

1. A is decidable.

2. A is NOT in DTIME(n3) for Java.

3. If you prefer Python or C or MATLAB or . . . you can do this
same proof and get A is NOT in DTIME(n3) on those
devices.

4. So how complicated is A?

1. If use 2-tape Turing Machines then A is in DTIME(n3 log n).

2. If use 1-tape Turing Machines then A is in DTIME(n4).

3. I do not care about models of comp on this level.
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Bill and Eric Discuss the Proof

Eric and I had the following conversation before he proofread the
slides.

BILL: Eric, if I told you that there was a set A that was decidable
but could not be decided in O(n3) time, would you care.

ERIC: Yes, unless

BILL: (cutting him off) Great! Then the class will also find it
interesting. Oh, I cut you off, sorry, finish your thought.

ERIC: I would find the result interesting unless the set A was a
contrived set that you constructed for the sole point of being
decidable but not in O(n3) time.

BILL: You nailed it! The set A is not natural. But even though A
is not natural, it is interesting that there is such a set.
ERIC: Only an academic.
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Why is the Time Hierarchy Thm Interesting?

The set A that I constructed is contrived.

Do you find the theorem that there is a decidable A that is not in
DTIME(n3) interesting? (You can replace n3 by any computable
function.)
Vote YES or NO.

Reasons I find it intersting.

1. Good to know that there are sets in EXP that are not in P.

2. The fact that there are unnatural sets in EXP− P has been
used to show that a natural set is in EXP− P.
The set of winnning board positions in CHESS
Is in EXP− P.
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General Time Hierarchy Thm

Thm (The Time Hierarchy Thm) For all computable increasing
T (n) there exists a decidable set A such that A /∈ DTIME(T (n)).
Proof Let M1,M2, . . . , represent all of DTIME(T (n)) (obtain by
listing out all Turing Machines and putting a time bound on them).
Here is our algorithm for A. It will be a subset of 0∗.

1. Input 0i .

2. Run Mi (0i ). If the results is 1 then output 0. If the results is
0 then output 1.

For all i , Mi and A DIFFER on 0i . Hence A is not decided by any
Mi . So A /∈ DTIME(T (n)).
End of Proof



Full Time Hierarchy Thm (I don’t care!)

The Time Hierarchy Thm is usually stated as follows:
Thm (The Time Hierarchy Thm) For all computable increasing
T (n) there exists a decidable set A such that
A ∈ DTIME(T (n) log(T (n))− /∈ DTIME(T (n)).

The proof I did of our Time Hierarchy Thm can be done more
carefully and you will see that A ∈ DTIME(T (n) log(T (n)). But
this involves specifying the model more carefully.
I DO NOT CARE!
But good to know so that you know SOME seperations: P ⊂ EXP.
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P and EXP

Def

1. P = DTIME(nO(1)).

2. EXP = DTIME(2n
O(1)

).


