BILL AND NATHAN, RECORD LECTURE!!!!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

BILL RECORD LECTURE!!!

TSP cannot be Approximated Unless P=NP

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Notation

In this slide packet G is always a weighted graph with natural number weights

(ロト (個) (E) (E) (E) (E) のへの

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

1. Input G and $k \in \mathbb{N}$.

- 1. Input G and $k \in \mathbb{N}$.
- 2. **Output** YES if there is a Ham Cycle in G of weight $\leq k$, NO otherwise.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

- 1. Input G and $k \in \mathbb{N}$.
- 2. **Output** YES if there is a Ham Cycle in G of weight $\leq k$, NO otherwise.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

This is a **Decision Problem** which has a YES-NO answer.

- 1. Input G and $k \in \mathbb{N}$.
- 2. **Output** YES if there is a Ham Cycle in G of weight $\leq k$, NO otherwise.

This is a **Decision Problem** which has a YES-NO answer.

What we really want is to find the optimal Ham Cycle.

- 1. Input G and $k \in \mathbb{N}$.
- 2. **Output** YES if there is a Ham Cycle in G of weight $\leq k$, NO otherwise.

This is a **Decision Problem** which has a YES-NO answer.

What we really want is to find the optimal Ham Cycle.

Since TSP is NPC, finding the optimal is likely hard.

- 1. Input G and $k \in \mathbb{N}$.
- 2. **Output** YES if there is a Ham Cycle in G of weight $\leq k$, NO otherwise.

This is a **Decision Problem** which has a YES-NO answer.

What we really want is to **find** the optimal Ham Cycle.

Since TSP is NPC, finding the optimal is likely hard.

But what about approximating it? Need to define this carefully.

An α -Approx For TSP

Def OPT(G) is the weight of the lowest weight Ham Cycle of G.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

An α -Approx For TSP

Def OPT(G) is the weight of the lowest weight Ham Cycle of G. Clearly if finding OPT(G) is in P then P = NP.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Def OPT(G) is the weight of the lowest weight Ham Cycle of G. Clearly if finding OPT(G) is in P then P = NP.

Def Let $\alpha > 1$. An α -approx for **TSP** is a poly time algorithm that, on input *G*, returns a cycle that is $\leq \alpha OPT(G)$.

▲ロト ▲園 ト ▲臣 ト ▲臣 ト 三臣 - のへの

1. Metric TSP TSP problem restricted to weighted graphs that are symmetric and satisfy the triangle inequality: $w(x, y) + w(y, z) \ge w(x, z)$. Christofides (1976) and Serdyukov (1978) gives a $\frac{3}{2}$ -approximation to metric TSP.

ション ふゆ アメビア メロア しょうくしゃ

- Metric TSP TSP problem restricted to weighted graphs that are symmetric and satisfy the triangle inequality: w(x, y) + w(y, z) ≥ w(x, z). Christofides (1976) and Serdyukov (1978) gives a ³/₂-approximation to metric TSP.
- Karlan, Klein, Oveis-Gharan (2020) got the first improvement over ³/₂-approx: a (³/₂ − ε)-approx to the metric TSP (ε < 10⁻³⁶).

ション ふゆ アメビア メロア しょうくしゃ

- Metric TSP TSP problem restricted to weighted graphs that are symmetric and satisfy the triangle inequality: w(x, y) + w(y, z) ≥ w(x, z). Christofides (1976) and Serdyukov (1978) gives a ³/₂-approximation to metric TSP.
- Karlan, Klein, Oveis-Gharan (2020) got the first improvement over ³/₂-approx: a (³/₂ − ε)-approx to the metric TSP (ε < 10⁻³⁶).

ション ふゆ アメビア メロア しょうくしゃ

3. Euclidean TSP TSP problem when the graph is a set of points in the plane and the weights are the Euclidean distances.

- Metric TSP TSP problem restricted to weighted graphs that are symmetric and satisfy the triangle inequality: w(x, y) + w(y, z) ≥ w(x, z). Christofides (1976) and Serdyukov (1978) gives a ³/₂-approximation to metric TSP.
- Karlan, Klein, Oveis-Gharan (2020) got the first improvement over ³/₂-approx: a (³/₂ − ε)-approx to the metric TSP (ε < 10⁻³⁶).
- Euclidean TSP TSP problem when the graph is a set of points in the plane and the weights are the Euclidean distances. Arora (1998) and Mitchell (1999) showed that, for all *ε*, there is an (1 + *ε*)-approximation in time O(n(log n)^{O(1/ε)}).

- Metric TSP TSP problem restricted to weighted graphs that are symmetric and satisfy the triangle inequality: w(x, y) + w(y, z) ≥ w(x, z). Christofides (1976) and Serdyukov (1978) gives a ³/₂-approximation to metric TSP.
- Karlan, Klein, Oveis-Gharan (2020) got the first improvement over ³/₂-approx: a (³/₂ − ϵ)-approx to the metric TSP (ϵ < 10⁻³⁶).
- Euclidean TSP TSP problem when the graph is a set of points in the plane and the weights are the Euclidean distances. Arora (1998) and Mitchell (1999) showed that, for all *ε*, there is an (1 + *ε*)-approximation in time O(n(log n)^{O(1/ε)}).
- 4. Arora and Mitchell actually have an algorithm that works on *n* points in \mathbb{R}^d that runs in time $O(n(\log n)^{O(\sqrt{d}/\epsilon)^{d-1}})$.

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

1. Metric TSP has a constant-approx.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. Metric TSP has a constant-approx.
- 2. Euclidean TSP has better and better constant-approx.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. Metric TSP has a constant-approx.
- 2. Euclidean TSP has better and better constant-approx.
- 3. What about General TSP? No restriction on the weights.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

- 1. Metric TSP has a constant-approx.
- 2. Euclidean TSP has better and better constant-approx.
- 3. What about **General TSP?** No restriction on the weights.

We show that, for all $\alpha,$ TSP does not have an $\alpha\text{-approx.}$ (unless P=NP).

TSP Does Not have an α -**Approx**

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Assume TSP has an α -approx via Program M. $\alpha > 1$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Assume TSP has an α -approx via Program M. $\alpha > 1$. 1) Input G, an unweighted Graph on n vertices.

Assume TSP has an α -approx via Program M. $\alpha > 1$.

1) Input G, an unweighted Graph on n vertices.

2) Let G' be the weighed graph where every edge in G has weight

1 and every non-edge has weight B where we determine B later.

Assume TSP has an α -approx via Program M. $\alpha > 1$.

- 1) Input G, an unweighted Graph on n vertices.
- 2) Let G' be the weighed graph where every edge in G has weight

1 and every non-edge has weight B where we determine B later. Comment

ション ふゆ アメビア メロア しょうくしゃ

If G has a HAMC then $OPT(G') \leq n$.

Assume TSP has an α -approx via Program M. $\alpha > 1$.

- 1) Input G, an unweighted Graph on n vertices.
- 2) Let G' be the weighed graph where every edge in G has weight

ション ふゆ アメビア メロア しょうくしゃ

1 and every non-edge has weight B where we determine B later.

Comment

- If G has a HAMC then $OPT(G') \leq n$.
- If G has no HAMC then $OPT(G') \ge B$.

Assume TSP has an α -approx via Program M. $\alpha > 1$.

- 1) Input G, an unweighted Graph on n vertices.
- 2) Let G' be the weighed graph where every edge in G has weight

ション ふゆ アメビア メロア しょうくしゃ

1 and every non-edge has weight B where we determine B later.

Comment

- If G has a HAMC then $OPT(G') \leq n$.
- If G has no HAMC then $OPT(G') \ge B$.
- 3) Run the α -approx on G'.

Assume TSP has an α -approx via Program M. $\alpha > 1$.

- 1) Input G, an unweighted Graph on n vertices.
- 2) Let G' be the weighed graph where every edge in G has weight

ション ふゆ アメビア メロア しょうくしゃ

1 and every non-edge has weight B where we determine B later.

Comment

- If G has a HAMC then $OPT(G') \leq n$.
- If G has no HAMC then $OPT(G') \ge B$.
- 3) Run the α -approx on G'.

Comment

If G has a HAMC then $OPT(G') \le n$ so $M(G') \le \alpha n$.

Assume TSP has an α -approx via Program M. $\alpha > 1$.

- 1) Input G, an unweighted Graph on n vertices.
- 2) Let G' be the weighed graph where every edge in G has weight

ション ふゆ アメビア メロア しょうくしゃ

1 and every non-edge has weight B where we determine B later.

Comment

- If G has a HAMC then $OPT(G') \leq n$.
- If G has no HAMC then $OPT(G') \ge B$.
- 3) Run the α -approx on G'.

Comment

- If G has a HAMC then $OPT(G') \le n$ so $M(G') \le \alpha n$.
- If G has no HAMC then $OPT(G') \ge B$ so $M(G') \ge B$.

Assume TSP has an α -approx via Program M. $\alpha > 1$.

- 1) Input G, an unweighted Graph on n vertices.
- 2) Let G' be the weighed graph where every edge in G has weight

ション ふゆ アメビア メロア しょうくしゃ

1 and every non-edge has weight B where we determine B later.

Comment

- If G has a HAMC then $OPT(G') \leq n$.
- If G has no HAMC then $OPT(G') \ge B$.
- 3) Run the α -approx on G'.

Comment

If G has a HAMC then $OPT(G') \le n$ so $M(G') \le \alpha n$. If G has no HAMC then OPT(G') > B so M(G') > B.

Need to set B such that $\alpha n < B$. $B = n^2$ will suffice.

Assume TSP has an α -approx via Program M. $\alpha > 1$.

- 1) Input G, an unweighted Graph on n vertices.
- 2) Let G' be the weighed graph where every edge in G has weight

1 and every non-edge has weight B where we determine B later.

Comment

- If G has a HAMC then $OPT(G') \leq n$.
- If G has no HAMC then $OPT(G') \ge B$.

3) Run the α -approx on G'.

Comment

If G has a HAMC then $OPT(G') \le n$ so $M(G') \le \alpha n$. If G has no HAMC then $OPT(G') \ge B$ so $M(G') \ge B$. Need to set B such that $\alpha n < B$. $B = n^2$ will suffice. 4) Case 1: If $M(G') \le \alpha n$ then output YES.

Assume TSP has an α -approx via Program M. $\alpha > 1$.

1) Input G, an unweighted Graph on n vertices.

2) Let G' be the weighed graph where every edge in G has weight

1 and every non-edge has weight B where we determine B later.

Comment

If G has a HAMC then $OPT(G') \leq n$.

If G has no HAMC then $OPT(G') \ge B$.

3) Run the α -approx on G'.

Comment

If G has a HAMC then $OPT(G') \le n$ so $M(G') \le \alpha n$. If G has no HAMC then $OPT(G') \ge B$ so $M(G') \ge B$. Need to set B such that $\alpha n < B$. $B = n^2$ will suffice. 4) Case 1: If $M(G') \le \alpha n$ then output YES. Case 2: If $M(G') \ge B$ then output NO.

We can Do Better

We showed: Thm Let $\alpha \ge 1$. If there is an α -approx for TSP then P=NP.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We showed: **Thm** Let $\alpha \ge 1$. If there is an α -approx for TSP then P=NP.

If you look at the proof more carefully you can prove this: Thm Let $\alpha(n)$ be a polynomial. If there is an $\alpha(n)$ -approx for TSP then P=NP.

What About Metric TSP?

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

<ロト < 回 ト < 臣 ト < 臣 ト 三 の < で</p>

1. General TSP For all $\alpha > 1$ there is no α -approx for TSP.

1. General TSP For all $\alpha > 1$ there is no α -approx for TSP.

2. Metric TSP There is a $(1.5 - \epsilon)$ -approx for Metric TSP.

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

- 1. General TSP For all $\alpha > 1$ there is no α -approx for TSP.
- 2. Metric TSP There is a (1.5ϵ) -approx for Metric TSP.

3. Are there lower bounds for Metric TSP?

- 1. General TSP For all $\alpha > 1$ there is no α -approx for TSP.
- 2. Metric TSP There is a (1.5ϵ) -approx for Metric TSP.
- Are there lower bounds for Metric TSP? Yes: There is no 123/122-approx for Metric TSP. That is around 1.008.

ション ふゆ アメビア メロア しょうくしゃ

- 1. General TSP For all $\alpha > 1$ there is no α -approx for TSP.
- 2. Metric TSP There is a (1.5ϵ) -approx for Metric TSP.
- Are there lower bounds for Metric TSP? Yes: There is no 123/122-approx for Metric TSP. That is around 1.008.

ション ふゆ アメビア メロア しょうくしゃ

Open Problem Close that gap between ~ 1.5 and 1.008.

- 1. General TSP For all $\alpha > 1$ there is no α -approx for TSP.
- 2. Metric TSP There is a (1.5ϵ) -approx for Metric TSP.
- Are there lower bounds for Metric TSP? Yes: There is no 123/122-approx for Metric TSP. That is around 1.008.

Open Problem Close that gap between ~ 1.5 and 1.008.

What did the good money say?

Before recent $(\frac{3}{2} - \epsilon)$ -approx the good money said $\frac{3}{2}$ is optimal.

- 1. General TSP For all $\alpha > 1$ there is no α -approx for TSP.
- 2. Metric **TSP** There is a (1.5ϵ) -approx for Metric TSP.
- Are there lower bounds for Metric TSP? Yes: There is no ¹²³/₁₂₂-approx for Metric TSP. That is around 1.008.

Open Problem Close that gap between ~ 1.5 and 1.008.

What did the good money say?

Before recent $(\frac{3}{2} - \epsilon)$ -approx the good money said $\frac{3}{2}$ is optimal. I asked Nathan Klein, One of the authors of the $\frac{3}{2} - \epsilon$ paper, where his money is. He replied:

- 1. General TSP For all $\alpha > 1$ there is no α -approx for TSP.
- 2. Metric **TSP** There is a (1.5ϵ) -approx for Metric TSP.
- Are there lower bounds for Metric TSP? Yes: There is no 123/122-approx for Metric TSP. That is around 1.008.

Open Problem Close that gap between ~ 1.5 and 1.008.

What did the good money say?

Before recent $(\frac{3}{2} - \epsilon)$ -approx the good money said $\frac{3}{2}$ is optimal. I asked Nathan Klein, One of the authors of the $\frac{3}{2} - \epsilon$ paper, where his money is. He replied:

1. There are math reasons to think the answer is $\frac{4}{3} \sim 1.33$.

- 1. General TSP For all $\alpha > 1$ there is no α -approx for TSP.
- 2. Metric **TSP** There is a (1.5ϵ) -approx for Metric TSP.
- Are there lower bounds for Metric TSP? Yes: There is no ¹²³/₁₂₂-approx for Metric TSP. That is around 1.008.

Open Problem Close that gap between ~ 1.5 and 1.008.

What did the good money say?

Before recent $(\frac{3}{2} - \epsilon)$ -approx the good money said $\frac{3}{2}$ is optimal. I asked Nathan Klein, One of the authors of the $\frac{3}{2} - \epsilon$ paper, where his money is. He replied:

- 1. There are math reasons to think the answer is $\frac{4}{3} \sim 1.33$.
- 2. There is a Neural Net which seems to obtain $\frac{5}{4} \sim 1.25$.