
BILL AND NATHAN, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!



TSP cannot be
Approximated
Unless P=NP



TSP



Notation

In this slide packet G is always a weighted graph with natural
number weights



TSP

Recall TSP is the following problem

1. Input G and k ∈ N.

2. Output YES if there is a Ham Cycle in G of weight ≤ k , NO
otherwise.

This is a Decision Problem which has a YES-NO answer.

What we really want is to find the optimal Ham Cycle.

Since TSP is NPC, finding the optimal is likely hard.

But what about approximating it? Need to define this carefully.
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An α-Approx For TSP

Def OPT(G ) is the weight of the lowest weight Ham Cycle of G .

Clearly if finding OPT(G ) is in P then P = NP.

Def Let α > 1. An α-approx for TSP is a poly time algorithm
that, on input G , returns a cycle that is ≤ αOPT(G ).
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Approximating TSP

1. Metric TSP TSP problem restricted to weighted graphs that
are symmetric and satisfy the triangle inequality:
w(x , y) + w(y , z) ≥ w(x , z). Christofides (1976) and
Serdyukov (1978) gives a 3

2 -approximation to metric TSP.

2. Karlan, Klein, Oveis-Gharan (2020) got the first improvement
over 3

2 -approx: a (3
2 − ε)-approx to the metric TSP

(ε < 10−36).

3. Euclidean TSP TSP problem when the graph is a set of
points in the plane and the weights are the Euclidean
distances. Arora (1998) and Mitchell (1999) showed that, for
all ε, there is an (1 + ε)-approximation in time
O(n(log n)O(1/ε)).

4. Arora and Mitchell actually have an algorithm that works on n

points in Rd that runs in time O(n(log n)O(
√
d/ε)d−1

).
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Approximating TSP Summary

1. Metric TSP has a constant-approx.

2. Euclidean TSP has better and better constant-approx.

3. What about General TSP? No restriction on the weights.

We show that, for all α, TSP does not have an α-approx. (unless
P = NP).
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TSP Does Not have an
α-Approx



If TSP has an approx then HAMC is in P

Assume TSP has an α-approx via Program M. α > 1.

1) Input G , an unweighted Graph on n vertices.
2) Let G ′ be the weighed graph where every edge in G has weight
1 and every non-edge has weight B where we determine B later.
Comment
If G has a HAMC then OPT(G ′) ≤ n.
If G has no HAMC then OPT(G ′) ≥ B.
3) Run the α-approx on G ′.
Comment
If G has a HAMC then OPT(G ′) ≤ n so M(G ′) ≤ αn.
If G has no HAMC then OPT(G ′) ≥ B so M(G ′) ≥ B.
Need to set B such that αn < B. B = n2 will suffice.
4)
Case 1: If M(G ′) ≤ αn then output YES.
Case 2: If M(G ′) ≥ B then output NO.
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We can Do Better

We showed:
Thm Let α ≥ 1. If there is an α-approx for TSP then P=NP.

If you look at the proof more carefully you can prove this:
Thm Let α(n) be a polynomial. If there is an α(n)-approx for TSP
then P=NP.
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What About Metric
TSP?



Upper and Lower bounds So Far

1. General TSP For all α > 1 there is no α-approx for TSP.

2. Metric TSP There is a (1.5− ε)-approx for Metric TSP.

3. Are there lower bounds for Metric TSP? Yes:
There is no 123

122 -approx for Metric TSP. That is around 1.008.

Open Problem Close that gap between ∼ 1.5 and 1.008.

What did the good money say?
Before recent (32 − ε)-approx the good money said 3

2 is optimal.
I asked Nathan Klein, One of the authors of the 3

2 − ε paper, where
his money is. He replied:

1. There are math reasons to think the answer is 4
3 ∼ 1.33.

2. There is a Neural Net which seems to obtain 5
4 ∼ 1.25.
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