Open Problems Column Edited by William Gasarch

This Issues Column! This issue's Open Problem Column is by Lance Fortnow and William Gasarch and is *The CFG Complexity of Singleton Sets.*

Request for Columns! I invite any reader who has knowledge of some area to contact me and arrange to write a column about open problems in that area. That area can be (1) broad or narrow or anywhere inbetween, and (2) really important or really unimportant or anywhere inbetween.

The Context-Free Complexity of Singleton Sets

Lance Fortnow^{*}

Illinois Institute of Technology lfortnow@iit.edu William Gasarch[†] University of Maryland at College Park

gasarch@umd.edu

March 26, 2024

1 Introduction

For a string w, how hard is it to recognize w. For Turing machines, this relates to Kolmogorov complexity, where we know most w require a program of length nearly |w| to find w. However there is no computational process that will find an infinite set of such w.

In this paper, we look at similar questions but using context-free grammars as our computational device.

First, some preliminaries.

Notation 1.1

- 1. Let $w \in \{0, 1\}^*$. Then $L_w = \{w\}$.
- 2. DFA means Deterministic Finite Automata.
- 3. NFA means Nondeterministic Finite Automata.
- 4. The *size* of a DFA or NFA is the number of states.
- 5. CFG means Context Free Grammar. We will assume that all CFG's are in Chomsky Normal Form (which we define later).
- 6. The *size* of a CFG is the number of rules.

The following is easy to show.

^{*}College of Computing, Ill. Inst. of Tech., IL 60616

[†]Dept. of Comp. Sci., Univ.of Maryland, MD 20742

Theorem 1.2 Let $w \in \{0, 1\}^*$. Let n = |w|.

- 1. There is a DFA for L_w of size n + 1.
- 2. Any DFA for L_w requires size $\geq n+1$.
- 3. There is an NFA for L_w of size n.
- 4. Any NFA for L_w requires size $\geq n$.
- 5. There is a regular expression for L_w of size n.
- 6. Any regular expression for L_w has size $\geq n$.

What about the sizes of CFG's for L_w ? In order to make the question about size of CFG's interesting we restrict to CFG's in Chomsky Normal Form.

Def 1.3 A CFG is in *Chomsky Normal Form* if every rule is in one of the following forms:

- 1. $A \to BC$ where A, B, C are all nonterminals.
- 2. $A \to \sigma$ where A is a nonterminal and $\sigma \in \Sigma$.
- 3. $S \rightarrow e$ where S is the start symbol and e is the empty string.

Henceforth all CFG's are assumed to be in Chomsky Normal Form. The following are easy to show.

Theorem 1.4

- 1. Let $w = 0^n$. There is a CFG of size $O(\log n)$ for L_w .
- 2. Assume n is divisible by d. Let $w = 0^{n/d} 1^{n/d} 0^{n/d} \cdots 0^{n/d} 1^{n/d}$. There is a CFG of size $O(\log n)$ for L_w (independent of d).
- 3. (Informal Statement) Let s_1, \ldots, s_k be your favorite sequence of natural numbers. Assume k is even (for k odd a similar theorem holds). Let $n = s_1 + \cdots + s_k$. Let $w = 0^{s_1} 1^{s_2} \cdots 0^{s_k} 1^{s_k}$. There is a CFG of size $O(\sum_i \log s_i) \leq O(k \log n)$ for L_w .

The following questions arise:

- Is there a string w such that any CFG for L_w is large (for some definition of large). (Spoiler Alert: Yes.)
- Is there a *natural string* w such that any CFG for L_w is large (for some definitions of natural and large). Theorem ?? can be considered a failed attempt at getting a natural string w such that L_w requires a large CFG.

We will need the following easy lemma.

Lemma 1.5 Let w be a string of length n. There exists a CFG G of size $\leq n + |\Sigma| - 1$ such that $L(G) = L_w$. Note that for a fixed alphabet the CFG is of size n + O(1)—not O(n).

Proof:

For simplicity, assume $\Sigma = \{0, 1\}$. The proof easily generalizes to larger alphabets. Let $w = w_1 \cdots w_n$. Here is the CFG for L_A . $S \to A_{w_1}R_2$ $R_2 \to A_{w_2}R_3$ $R_3 \to A_{w_3}R_4$: $R_{n-2} \to A_{w_{n-2}}R_{n-1}$ $R_{n-1} \to A_{w_{n-1}}A_n$ $A_0 \to 0$ $A_1 \to 1$ This CFG is of size n + 1.

2 Strings w Such That L_w Has a Large CFG

Notation 2.1 Let $x, y \in \{0, 1\}^*$.

- 1. C(x) is the Kolmogorov complexity of x. (We assume some model of computation but note that if we chose a different one it would only affect C(x) by an additive constant.)
- 2. $C(x \mid y)$ is the conditional Kolmogorov Complexity of x given y. (Same model comments apply here.)

Theorem 2.2 There is a function $w : \mathbb{N} \to \{0,1\}^*$ such that, for all $n \in \mathbb{N}$, the following hold:

- 1. |w(n)| = n.
- 2. There is a CFG for $L_{w(n)}$ of size n + O(1). (This follows from Lemma ??.)
- 3. Any CFG that generates $L_{w(n)}$ has size $\Omega(\frac{n}{\log n})$.

Proof: We define the function w as follows: w(n) is the lexicographically least string of length n such that $C(w(n)) \ge n$. (The lex-least is not needed and is only there for definiteness.) We denote w(n) by w.

Let G be a CFG that generates L_w . Let s be the size (number of rules) of G. If there are s rules, then each nonterminal can be represented with $O(\log(s))$ bits. Hence each rule can be represented with $O(\log(s))$ bits. Therefore the CFG can be represented with $O(s \log s)$ bits.

We use G to create a Turing Machine of size $O(s \log s)$ that, on input the empty string, outputs w:

Try all possible derivations to generate a string. The first time a string is generated, output it and stop.

We have.

$$n \ge \Omega(s \log s)$$

 \mathbf{SO}

$$s \geq \Omega(\frac{n}{\log n})$$

Is the string w natural? We would say no. We explore this more in the next section. We now have two extremes:

- If $w = 0^n$ then L_w can be generated by a CFG of size $O(\log n)$.
- If w is Kolmogorov random then any CFG that generates L_w is of size $\Omega(\frac{n}{\log n})$.

Are there w such that L_w can be generated by a CFG of size intermediary between $O(\log n)$ and O(n)? Yes. We won't dwell on this, but the key is to take a string of the form $w0^{n-f(n)}$ where (1) f is chosen carefully depending on which intermediary function you want, and (1) w is a Kolmogorov random string of length f(n).

3 Is There a Natural example that is probably hard?

The strings w from Theorem ?? seems unnatural. One way to pin this down is to note that the function w is not computable.

Is there a computable w with the same properties?

Yes. Since we can compute the set of strings of length n generated by a given CFL, we can simply search for the first w such that no CFL of size at most $\frac{n}{\log n}$ computes $\{w\}$.

However such a w may not be natural. Below we show that a de Bruijn sequence of length n must have a CFG of size at least $\Omega(\frac{n}{\log n})$.

A de Bruijn sequence of order n is a binary string w such that all n-bit strings occur exactly once as a subsequence of w, where we allow the subsequence to wrap around. There is a simple construction of de Bruijn sequences for any length that is a power of 2. An example of a de Bruijn sequence of order 4 is 0000111101100101.

Fix $n = 2^k$ and let w be a de Bruijn sequence of order k and length n. Suppose you have a CFG that generates $\{w\}$ and a variable A occurs at least twice in the derivation tree for w. All variables A must generate the same string z below them, or you could swap derivations and create a new string. Then |z| < k since any sequence of length at least k can occur at most once in w be definition.

In the derivation tree consider all the variables that generate strings of length less than k but whose parents generate strings of length at least k. There are at least $\frac{n}{\log n}$ such variables and at least $\frac{n}{2\log n}$ parents, all of who much be distinct variables. The CFG has size at least $\frac{n}{2\log n}$ since every variable must occur on the left side of a production rule.

4 Acknowledgments

We would like to thank Vitanyi and Li for commentary.