Chomsky Normal Form CFG for \(\{0^{1\alpha}1^{2\alpha} \ldots 0^{(k-1)\alpha}1^{k\alpha}\} \)

Exposition by William Gasarch

Let \(\alpha > 0 \) be a constant. Some of the Big-O constants depend on \(\alpha \). All CFG’s are assumed to be in Chomsky Nomral Form.

We leave out floors and ceilings that are needed to make quantitites natural numbers.

Let \(n = 1^{\alpha} + \cdots + k^{\alpha} \sim \frac{k^{\alpha+1}}{\alpha+1} \sim k^{1+\alpha} \). Hence \(k \sim n^{1/(\alpha+1)} \).

We present a CFG in for \(\{0^{1\alpha}1^{2\alpha} \ldots 0^{(k-1)\alpha}1^{k\alpha}\} \)

Our grammar is in several parts

1. For every \(1 \leq j \leq k \) with \(j \) odd we have a CFG \(G_j^0 \) with start symbol \(S_j^0 \) that generates \(0^j \alpha \) that is of size \(O(\log j) \). The size of all of these grammars is \(\sum_{j=1, \text{ odd}}^k O(\log j) = O(k \log k) \).

2. For every \(1 \leq j \leq k \) with \(j \) even we have a CFG \(G_j^1 \) with start symbol \(S_j^1 \) that generates \(1^j \alpha \) that is of size \(O(\log j) \). The size of all of these grammars is \(\sum_{j=1, \text{ even}}^k O(\log j) = O(k \log k) \).

3. We construct a CFG for \(\{0^{1\alpha}1^{2\alpha} \ldots 0^{(k-1)\alpha}1^{k\alpha}\} \).

We want a CFG that generates \(S_1^0 \cdot S_2^1 \cdot \ldots \cdot S_{k-1}^0 \cdot S_k^1 \). This can be done with a CFG of size \(O(k) \). We also put into the grammars all of the grammars mentioned above. Hence the size of the CFG is

\[
O(\log k + k \log k) = O(k \log k) = O(n^{1/(\alpha+1) \log n}).
\]

If \(\alpha = \frac{1}{10} \) then we get \(O(n^{10/11} \log n) \). As \(\alpha \) goes down the size of the CFG goes up but is of the form \(O(n^{1-\epsilon} \log n) \).

So the Kolm way, or your construction, DO yield bigger grammars than can be gotten by a natural language.

QUESTION: Is there a SMALLER CFG for the language above?