Chomsky Normal Form CFG for $\{0^{1^{\alpha}}1^{2^{\alpha}}\cdots 0^{(k-1)^{\alpha}}1^{k^{\alpha}}\}$ Exposition by William Gasarch

Let $\alpha > 0$ be a constant. Some of the Big-O constants depend on α . All CFG's are assumed to be in Chomsky Nomral Form.

We leave out floors and ceilings that are needed to make quantitites natural numbers.

Let $n = 1^{\alpha} + \dots + k^{\alpha} \sim \frac{k^{\alpha+1}}{\alpha+1} \sim k^{1+\alpha}$. Hence $k \sim n^{1/(\alpha+1)}$. We present a CFG in for

$$\{0^{1^{\alpha}}1^{2^{\alpha}}\cdots 0^{(k-1)^{\alpha}}1^{k^{\alpha}}\}$$

Our grammar is in several parts

- 1. For every $1 \leq j \leq k$ with j odd we have a CFG G_j^0 with start symbol S_j^0 that generates $0^{j^{\alpha}}$ that is of size $O(\log j)$. The size of all of these grammars is $\sum_{j=1, j \text{ odd}}^k O(\log j) = O(k \log k)$.
- 2. For every $1 \leq j \leq k$ with j even we have a CFG G_j^1 with start symbol S_j^1 that generates $1^{j^{\alpha}}$ that is of size $O(\log j)$. The size of all of these grammars is $\sum_{j=1, j}^{k} p \exp O(\log j) = O(k \log k)$.
- 3. We construct a CFG for $\{0^{1^{\alpha}}1^{2^{\alpha}}\cdots 0^{(k-1)^{\alpha}}1^{k^{\alpha}}\}$.

We want a CFG that generates $S_1^0 S_2^1 \cdots S_{k-1}^0 S_k^1$. This can be done with a CFG of size O(k). We also put into the grammars all of the grammars mentioned aove. Hence the size of the CFG is

$$O(\log k + k \log k) = O(k \log k) = O(n^{1/(\alpha+1)} \log n).$$

If $\alpha = \frac{1}{10}$ then we get $O(n^{10/11} \log n)$. As α goes down the size of the CFG goes up but is of the form $O(n^{1-\epsilon} \log n)$.

So the Kolm way, or your construction, DO yield bigger grammars then can be gotten by a natural language.

QUESTION: Is there a SMALLER CFG for the language above?