A Sane Proof that $COL_4 \leq COL_3$

William Gasarch-U of MD

COL_k and Reductions

- 1. $COL_k = \{G \mid G \text{ is } k\text{-colorable }\}$
- 2. COL_2 ∈ P
- 3. COL_3 is NP-complete (Stockmeyer)
- **4**. EASY to prove that $COL_3 \leq COL_4$:
- 1. Input G = (V, E).
- 2. Output $G' = (V \cup \{v_{\text{new}}\}, E \cup \{(v, v_{\text{new}}) \mid v \in V\})$
- 3. Intuition: Add $v_{\rm new}$ and connect to all vertices.

Bill to Class: I just proved $COL_3 \le COL_4$. Is $COL_4 \le COL_3$? VOTE:

- 1. YES $COL_4 \leq COL_3$.
- 2. NO $COL_4 \not\leq COL_3$.
- 3. UNKNOWN TO SCIENCE!!

Bill to Class: I just proved $COL_3 \le COL_4$. Is $COL_4 \le COL_3$? VOTE:

- 1. YES $COL_4 \leq COL_3$.
- 2. NO $COL_4 \not\leq COL_3$.
- 3. UNKNOWN TO SCIENCE!!

The class results:

YES: 3, NO: 30, UNKNOWN TO SCIENCE: 7

Bill to Class: I just proved $COL_3 \le COL_4$. Is $COL_4 \le COL_3$? VOTE:

- 1. YES $COL_4 \leq COL_3$.
- 2. NO $COL_4 \not\leq COL_3$.
- 3. UNKNOWN TO SCIENCE!!

The class results:

YES: 3, NO: 30, UNKNOWN TO SCIENCE: 7 Class is **WRONG**. Answer is YES:

$$COL_4 \le SAT \le COL_3$$

Bill to Class: I just proved $COL_3 \le COL_4$. Is $COL_4 \le COL_3$? VOTE:

- 1. YES $COL_4 \leq COL_3$.
- 2. NO $COL_4 \not\leq COL_3$.
- 3. UNKNOWN TO SCIENCE!!

The class results:

YES: 3, NO: 30, UNKNOWN TO SCIENCE: 7 Class is **WRONG**. Answer is YES:

$$COL_4 \le SAT \le COL_3$$

Class is **RIGHT**. This reduction is INSANE!

A GADGET

GAD
$$(x_1, ..., x_k, z)$$
 is

GAD (x_1, x_2, y_1)

GAD (y_1, x_3, y_2) , GAD (y_2, x_4, y_3) , ..., GAD $(y_{k-3}, x_{k-1}, y_{k-2})$, GAD (y_{k-2}, x_k, z) .

LEMMA: If $GAD(x_1, x_2, ..., x_k, z)$ is three colored and $x_1, ..., x_k$ get the same color, then z also gets that color.

$COL_4 \le COL_3$ by a simple reduction (Gasarch)

INPUT(G). OUTPUT:

- 1. Vertices T, F, R form a triangle.
- 2. For $1 \le i \le n$ and $1 \le j \le k$ vertex v_{ij} . All of these will be connected by an edge to vertex R. OUT INTENT:
 - \triangleright v_{ij} is colored T means that vertex v_i in G is colored j;
 - \triangleright v_{ij} is colored F means that vertex v_i in G is not colored j.
- 3. For all *i*: At least one of v_{i1}, \ldots, v_{in} is colored T: GAD $(v_{i1}, \ldots, v_{in}, T)$.
- 4. For all i: At most one of v_{i1}, \ldots, v_{in} is colored T: for all $j_1 < j_2 \text{ GAD}(v_{ij_1}, v_{ij_2}, F)$.
- 5. FOR ALL edges (v_i, v_j) in the original graph: $GAD(v_{i1}, v_{j1}, F)$, $GAD(v_{i2}, v_{j2}, F)$,..., $GAD(v_{ik}, v_{jk}, F)$.

Clearly G is k-colorable iff G' is 3-colorable.

Open Question

Our reduction takes a graph on n vertices and e edges and produces a graph on O(n+e) vertices and O(n+e) edges.

Can this be improved?

Can this be improved in a way that is not INSANE.