CMSC 456 Final-VERSION B, Fall 2018

1. This is a closed book exam, though ONE sheet of notes is allowed. You CANNOT use a Calculator. If you have a question during the exam, please raise your hand.
2. There are 7 problems which add up to 100 points. The exam is 120 minutes.
3. In order to be eligible for as much partial credit as possible, show all of your work for each problem, write legibly, and clearly indicate your answers. Credit cannot be given for illegible answers.
4. After the last page there is paper for scratch work.
5. Please write out the following statement: "I pledge on my honor that I will not give or receive any unauthorized assistance on this examination."
6. Fill in the following:

NAME:
SIGNATURE :
SID :
SCORES ON PROBLEMS (FOR OUR USE)

Prob 1:
Prob 2:
Prob 3:
Prob 4:
Prob 5:
Prob 6:
Prob 7:
TOTAL

1. (15 points) Zelda wants to do $(3,3)$ information-theoretic secret sharing with polynomials. The players are A_{1}, A_{2}, A_{3}. The secret is 6 .
(a) (8 points) Assume Zelda uses the prime $p=7$, and works over mod 7. Assume Zelda generates $r_{2}=1$ and $r_{1}=3$ as her two random numbers. What share does she give A_{1} ? What share does she give A_{2} ? What share does she give A_{3} ?
(b) (7 points) If A_{4} comes in later then what can Zelda do to extend this to $(3,4)$ secret sharing?

SOLUTION TO PROBLEM ONE

$$
f(x)=r_{2} x^{2}+r_{1} x+s=x^{2}+3 x+6 \quad(\bmod 7)
$$

a)
A_{1} gets $f(1)=10=3$.
A_{2} gets $f(2)=2^{2}+3 \times 2+6=4+6+6 \equiv 4-2 \equiv 2$
A_{3} gets $f(3)=3^{2}+3 \times 3+6=9+9+6 \equiv 2+2-1 \equiv 3$.
b) A_{4} gets
$f(4)=4^{2}+3 \times 4+6 \equiv 16+12+6 \equiv 2-2+6 \equiv 6$.
END OF SOLUTION TO PROBLEM ONE
2. (20 points) For this problem you can assume there are programs to do the following quickly:

- FIND-PRIME-AND-GEN: given n, find a prime p of length n and a generator g for \mathbb{Z}_{p}.
- POWER: given a, b, p find $a^{b}(\bmod p)(p$ need not be a prime $)$.

And of course you CANNOT say something like Do the Pallier Public Key Protocol (that was an example - you won't need to do that.) And NOW finally the problem:
(a) (10 points) Describe the ElGamal Public Key Crypto System.
(b) (10 points) State carefully what the hardness assumption is for ElGamal.

SOLUTION TO PROBLEM TWO

a) ElGamal:
(a) The security parameter is n.
(b) Alice picks prime p of length n and generator g for \mathbb{Z}_{p}. Alice sends (p, g). All arithmetic is $\bmod p$.
(c) Alice picks secret $a \in\{1, \ldots, p-1\}$. She computes and sends g^{a}.
(d) Bob picks secret $b \in\{1, \ldots, p-1\}$. He computes and sends g^{b}.
(e) Alice computes $s=\left(g^{b}\right)^{a}$. Bob computes $s=\left(g^{a}\right)^{b}$. Now they both have the same number s. They both compute s^{-1}.
(f) NOW Bob wants to send message m to Alice. He sends $c=m s$ to Alice.
(g) Alice can decode by computing $s^{-1} m=s^{-1} m s=m$

END OF SOLUTION TO PROBLEM TWO

3. (15 points) Zelda wants to do (t, L) Verifiable Secret Sharing (VSS) with secret s. Here is what she will do:

- Zelda finds a safe prime p where $p \geq s$. All arithmetic is $\bmod p$. She then forms a function f in the usual way and, for all $1 \leq i \leq L$, gives A_{i} the number $f(i)$.
- Zelda find a generator g.
- Zelda makes public the information: $g, g^{f(1)}, \ldots, g^{f(L)}$.
- When t people get together everyone says their $f(i)$ and this can be verified by seeing if $g^{f(i)}$ checks out.

Now the questions:
(a) (5 points) Why does Zelda use a safe prime?
(b) (10 points) Is there any reasonable hardness assumption HA such that HA implies NO information about the secret leaks? IF YES then state the assumption. If NO then show how some information could leak. (NOTE- the length of the secret is known and is not considered information that leaks.)

SOLUTION TO PROBLEM THREE

All arithmetic is $\bmod p$.
a) Zelda uses a safe prime so that its easy to find a generator
b) NO there is NO reasonable hardness assumption to prevent leaking. If there exists $i<j$ such that $f(i)=f(j)$ then everyone KNOWS this since $g^{f(1)}, \ldots, g^{f(L)}$ are all public. Hence a group of $t-1$ that includes A_{i} but not A_{j} would know $t-1$ points PLUS $f(j)$, so they can find the secret.
NOTE ADDED AFTER GRADING IT: Many students thought that Discrete Log being hard. But the above scenario shows that no - the scheme is just plain insecure.

Also- some students said things like: If the players are all powerful then no scheme is info-theoretic secure. That is correct. However, here we are asking about making the players NOT all powerful. Note that in class we DID give a VSS scheme with a hardness assumption, so it is possible. The confusion here was with the phrase 'no information about the secret leaks' - that means that GIVEN that the players satisfy a hardness condition, they can't learn any info, which was the case for the VSS scheme we did in class.
END OF SOLUTION TO PROBLEM THREE
4. (20 points) Describe an encryption system that uses the alphabet $\{0, \ldots, 6\}$ and has perfect security. You DO NOT need to prove it has perfect security.

SOLUTION TO PROBLEM FOUR

We give two solutions.

SOLUTION ONE:

A variant of the 1-time pad. Alice and Bob agree on a RANDOM strings in $\{0,1,2,3,4,5,6\}^{N}$ for a LARGE N. Say the string is $b_{0} b_{1} \cdots b_{L}$.
$E N C\left(m_{0}, m_{1}, \ldots, m_{L}\right)=\left(m_{0}+b_{0} \quad(\bmod 7), \ldots, m_{L}+b_{L} \quad(\bmod 7)\right)$

$$
D E C\left(c_{0}, c_{1}, \ldots, c_{L}\right)=\left(c_{0}-b_{0} \quad(\bmod 7), \ldots, c_{L}-b_{L} \quad(\bmod 7)\right)
$$

SOLUTION TWO:

Code 0 as 000
Code 1 as 001
Code 2 as 010
Code 3 as 011
Code 4 as 100
Code 5 as 101
Code 6 as 110
NOW do the normal 1-time pad. Even though 111 cannot be coded, the ones left are still equally likely. That is, if Eve sees Alice send Bob 010 she knew ahead of time it didn't code to 111 and still knows that, but what it does code to she has no information about.

END OF SOLUTION TO PROBLEM FOUR
5. (15 points) In this problem we develop a technique to help factor numbers
(a) (2 points) Find a factor of the following number that is not 1 or the number itself.

$$
1023^{4}-512^{4}
$$

(HINT: DO NOT calculate this number in your effort to factor it.)
(b) We want to factor N. We find natural numbers $x, y \geq 1$ such that

$$
x^{4}-y^{4}=N
$$

i. (8 points) Show how this might help us factor N.
ii. (5 points) If such an x, y exist, do they always help to find a factor? Either give an x, y such that $x^{4}-y^{4}=N$ but this does NOT help to factor N, or show that given x, y so $x^{4}-y^{4}=N$ you can always find a factor.

SOLUTION TO PROBLEM FIVE

a)
$1023^{4}-512^{4}=\left(1023^{2}-512^{2}\right)\left(1023^{2}+512^{2}\right)=511 \cdot 1535 \cdot\left(1023^{2}-512^{2}\right)$
b)
i.

$$
(x-y)(x+y)\left(x^{2}+y^{2}\right)=N
$$

One of these might be a factor.
ii. There is no such x, y. The only way this would not help is if every factor is 1 or N.

Since $x-y<x+y$ you would need to have
$x-y=1$.
Then $x+y \neq 1$ so $x+y=N$
But then $x^{2}+y^{2}>N$. So such an x, y is ALWAYS helpful. END OF SOLUTION TO PROBLEM FIVE
6. (10 points)
(a) (2 points) Define what it means for a function $F:\{0,1\}^{n} \rightarrow$ $\{0,1,2\}^{n^{2}}$ to be a psuedorandom generator. (This is NOT a typothe domain is $\{0,1\}^{n}$ and the range is $\{0,1,2\}^{n^{2}}$.)
(b) (8 points) Assume n is even. Prove that the following function $F:\{0,1\}^{n} \rightarrow\{0,1,2\}^{n^{2}}$ is NOT a psuedorandom generator.
If $x \in\{0,1\}^{n}$ has MORE 0's than 1's then $F(x)=0^{n^{2}}$. If $x \in\{0,1\}^{n}$ has MORE 1's than 0's then $F(x)=1^{n^{2}}$. If $x \in\{0,1\}^{n}$ has exactly as many 0 's as 1 's then $F(x)=2^{n^{2}}$. (You need to show Eve's strategy but you do not need to show the probability that she wins.)

THERE IS A PROBLEM SEVEN ON THE NEXT PAGE

SOLUTION TO PROBLEM SIX

a) $F:\{0,1\}^{n} \rightarrow\{0,1,2\}^{n^{2}}$ is a psuedorandom generator if there exists a neg function $e(n)$ such that, for all PPT Eve, the prob Eve wins the following game is $\leq \frac{1}{2}+e(n)$
(a) Alice picks a random string $x_{0} \in\{0,1,2\}^{n^{2}}$ and a random string $y \in\{0,1\}^{n}$. She then computes $x_{1}=F(y)$.
(b) Alice gives Eve $\left(z_{0}, z_{1}\right)$ which is $\left\{x_{0}, x_{1}\right\}$ in some order, picked with prob $\frac{1}{2}$.
(c) Eve has to say $i \in\{0,1\}$ as a way to pick z_{0} or z_{1}. i If $z_{i}=x_{1}$ (the psuedorandom string) then Eve wins!
b) Here is Eve's strategy.

If there exists $i \in\{0,1\}$ such that $z_{i} \in\left\{0^{n^{2}}, 1^{n^{2}}, 2^{n^{2}}\right\}$ and $z_{1-i} \notin$ $\left\{0^{n^{2}}, 1^{n^{2}}, 2^{n^{2}}\right\}$ then Eve guesses i. If not then Eve flips a coin to pick 0 or 1 .

The prob that Eve LOSES is the prob that two things happen:
ONE- $x_{0} \in\{0,1,2\}^{n^{2}}$. Prob $\frac{3}{3 n^{2}}=\frac{1}{3^{n^{2}-1}}$.
TWO- Eve picks the wrong one. Prob $\frac{1}{2}$.
So Prob Eve LOSES is $\frac{1}{2 \times 3^{n^{2}-1}}$.
So the prob that Eve wins is $1-\frac{1}{2 \times 3^{n^{2}-1}}$.
NOTE ADDED AFTER WE GRADED IT: Some students seem to want to use Psuedo random FUNCTIONS rather than a Psuedo Random Generator.

END OF SOLUTION TO PROBLEM SIX

7. (5 points) How does Bitcoin prevent replay attacks?

SOLUTION TO PROBLEM SEVEN

Each coin can only be spend once.
Each transactions destroy the input coin and create new ones.
END OF SOLUTION TO PROBLEM SEVEN

Scratch Paper

