HW 5 CMSC 456. DUE Oct 15
 SOLUTIONS
 NOTE- THE HW IS FOUR PAGES LONG

1. (0 points) READ the syllabus- Content and Policy. What is your name? Write it clearly. What is the day and time of the first midterm? Read slides on Dr. Mazurek's lecture.
2. (25 points) Write a simple program which does the following:
(a) INPUT: A key K, a nonce N, and a text string M
(b) OUTPUT: Ciphertext corresponding to M encrypted under AES256GCM (i.e. the AES algorithm with key length 256 in GCM mode) with K as the key and N as the IV.

Do this two ways and WRITE IN ENGLISH the contrast of experience: Include your code, an input of your choice, and the corresponding output. You have TWO choices:
I) Do both in PYTHON:
(a) Crytography library on the hw website, and
(b) PyCrypto on the hw website
II) Do both in C (which would be harder)
(a) C via OpenSSL on the hw website, and
(b) libsodium on the hw website

SOLUTION TO PROBLEM TWO

Omitted
THERE ARE MORE PAGES!!!!!!!!!!!!!!!!!
3. (20 points) Let $N=p q$ where p, q are primes. Let $m \in\{2, \ldots, N-1\}$.
(a) (4 points) Exactly how many multiplications do you need to compute $m^{2^{16}+1}$ using repeated squaring.
(b) (4 points) Exactly how many multiplications do you need to compute $m^{2^{16}-1}$ using repeated squaring.
(c) (0 points, this is just here for information) If you did the last two problems right then $m^{2^{16}+1}$ took MUCH LESS mults then $m^{2^{16}-1}$. This is one reason why $e=2^{16}+1$ is so popular in RSA.
(d) (4 points) $2^{16}+1$ is prime. Is $2^{32}+1$ prime? If not then give its factors. (HINT- look up Fermat Primes on the web)
(e) (4 points) Why is choosing e to be prime a good thing to do?
(f) (4 points) I had said in class that we do not want to pick e too low. Roughly how big does N have to be before picking $e=2^{16}+1$ is a bad thing to do. How does this N compare to the number of protons in the universe? (Look up Eddington's Number on the web)

SOLUTION TO PROBLEM TWO

a) All computations are $\bmod p$.

We compute:

$$
m^{2}
$$

$$
\left(m^{2}\right)^{2}=m^{2^{2}}
$$

$$
\left(m^{4}\right)^{2}=m^{2^{3}}
$$

$$
\left(m^{8}\right)^{2}=m^{2^{4}}
$$

So to get to $m^{2^{i}}$ takes i multiplications.
Hence $m^{2^{16}}$ takes 16 mults.
So $m^{2^{16}+1}=m^{2^{16}} \cdot m$ takes 17 mults.
b) Note that $2^{16}-1=2^{0}+2^{1}+\cdots+2^{15}$.

We first compute, by repeated squaring, $m^{2^{i}}$ for $1 \leq i \leq 15$. That takes 15 mults.
But then we have to do

$$
m^{2^{0}} \times m^{2^{1}} \times \cdots \times m^{2^{15}}
$$

which takes another 14 mults. Hence the total is 29 .
d) $2^{2^{5}}+1=641 \times 6700417$
e) We need e to be rel prime to R. If e is prime then it is AUTOMATICALLY rel prime to R.
f) If Bob sends $m=2$ then this is a problem if $m^{e}<N$. So we have a problem if
$2^{65537}<N$, so $N \sim 2^{65537}$. The number of particles in the universe is approx 2^{256} which is Much smaller.

THERE ARE MORE PAGES!!!!!!!!!!!!!!!!!
4. (25 points) (HINT - look up the Chinese Remainder Theorem.) Give an algorithm (psuedocode but more descriptive) for the following:
Input: $N_{1}, \ldots, N_{L}, x_{1}, \ldots, x_{L}$ where N_{1}, \ldots, N_{L} are rel prime.
Output: An x such that

$$
\begin{aligned}
& x \equiv x_{1}\left(\bmod N_{1}\right) \\
& x \equiv x_{2}\left(\bmod N_{2}\right) \\
& \vdots \\
& x \equiv x_{L}\left(\bmod N_{L}\right) \\
& \text { AND } 0 \leq x<N_{1} \cdots N_{L} .
\end{aligned}
$$

You can assume you have a program that finds inverses of numbers in mods if they exist.

Note that since all of the N_{i} are rel prime, for all i there exists a number which you can denote M_{i}^{-1} which is the inverse of $M_{i} \bmod N_{i}$, where $M_{i}=N_{1} N_{2} \ldots N_{i-1} N_{i+1} \ldots N_{L}$.

SOLUTION TO PROBLEM FOUR

(a) $\operatorname{Input}\left(N_{1}, \ldots, N_{L}, x_{1}, \ldots, x_{L}\right)$
(b) Let $M_{i}=N_{1} N_{2} \cdots N_{i-1} N_{i+1} \cdots N_{L}$.
(c) For all $1 \leq i \leq L$ find M_{i}^{-1} which is the inverse of $M_{i} \bmod N_{i}$
(d) Output

$$
x=x_{1} M_{1}^{-1} M_{1}+\cdots+x_{L} M_{L}^{-1} M_{L} \quad\left(\bmod N_{1} \cdots N_{L}\right)
$$

We prove that this works. Look at $x \bmod N_{i}$. All of the terms except the M_{i} term drop out. The M_{i} term is

$$
x_{i} M_{i}^{-1} M_{i} \equiv x_{i} \quad\left(\bmod N_{i}\right)
$$

since M_{i}^{-1} is the inverse of $M_{i} \bmod N_{i}$, we have just x_{i}.
THERE ARE MORE PAGES!!!!!!!!!!!!!!!!!
5. (30 points) (Read the slides on low-exponent attacks on RSA.) Before getting to the specs of the psuedocode you are to write, here is the setting.

- Zelda will do RSA with L people A_{1}, \ldots, A_{L}.
- Zelda is using RSA as follows: For person A_{i} she uses $\left(e, N_{i}\right)$.
- The N_{i} are all relatively prime.
- $N_{1}<\cdots<N_{L}$.
- The parameter e - we think of it as being small but the algorithm should run even if e is not small. It may report back NO could not crack.
- We assume that Zelda sent the same message to everyone. The message is m. So she send A_{i} the number $m^{e} \bmod N_{i}$.
- You are Eve. You already have a program that will do the Chinese Remainder Theorem. That is, you have a program that will, on input $x_{1}, \ldots, x_{L}, N_{1}, \ldots, N_{L}$ where the N_{i} 's are rel prime, output x such that, for all $1 \leq i \leq L, x \equiv x_{i}\left(\bmod N_{i}\right)$.

NOW YOUR ASSIGNMENT:

Write pseudocode for a program such that
(a) Input: $e, N_{1}<\ldots<N_{L}$ and c_{1}, \ldots, c_{L}. The N_{i} are all rel prime. There is an m such that, for all $1 \leq i \leq L, c_{i}=m^{e}\left(\bmod N_{i}\right)$.
(b) Output: Either find m as in the example in class OR say that you can't find m Prove that if $e \leq L$ then your algorithm does find m.

SOLUTION TO PROBLEM FIVE

(a) Input: e, N_{1}, \ldots, N_{L} and c_{1}, \ldots, c_{L}. The N_{i} are rel prime. There is an m such that, for all $1 \leq i \leq L, c_{i}=m_{i}^{e}\left(\bmod N_{i}\right)$.
(b) Find (using CRT) x such that
$x \equiv m^{e}\left(\bmod N_{1}\right)$
$x \equiv m^{e}\left(\bmod N_{2}\right)$
\vdots
$x \equiv m^{e}\left(\bmod N_{L}\right)$
AND
$0 \leq x<N_{1} \cdots N_{L}$.
(NOTE- x is an e th power $\bmod N_{1}, N_{2}, \ldots, N_{L}$. Hence x is an e th power $\bmod N_{1} N_{2} \cdots N_{L}$.
(c) Try to take the normal eth root of x. If you succeed (and get an integer result), that is your m.

By the nature of x

$$
x \equiv m^{e} \quad\left(\bmod N_{1} \cdots N_{L}\right)
$$

We are curious if the m^{e} calculation used wrap-around.
We know that
$m<N_{1}$.
$m^{2}<N_{1} N_{2}$.
etc.
$m^{L}<N_{1} N_{2} \cdots N_{L}$.
If $e \leq L$ then we have that $m^{e}<N_{1} \cdots N_{L}$. Hence the equation did not use wrap around so $x \equiv m^{e}$ means $x=m^{e}$.

