HW 5 CMSC 456. DUE Oct 15 SOLUTIONS NOTE- THE HW IS FOUR PAGES LONG

- 1. (0 points) READ the syllabus- Content and Policy. What is your name? Write it clearly. What is the day and time of the first midterm? Read slides on Dr. Mazurek's lecture.
- 2. (25 points) Write a simple program which does the following:
 - (a) INPUT: A key K, a nonce N, and a text string M
 - (b) OUTPUT: Ciphertext corresponding to M encrypted under AES256-GCM (i.e. the AES algorithm with key length 256 in GCM mode) with K as the key and N as the IV.

Do this two ways and WRITE IN ENGLISH the contrast of experience: Include your code, an input of your choice, and the corresponding output. You have TWO choices:

I) Do both in PYTHON:

- (a) Crytography library on the hw website, and
- (b) PyCrypto on the hw website
- II) Do both in C (which would be harder)
 - (a) C via OpenSSL on the hw website, and
- (b) libsodium on the hw website

SOLUTION TO PROBLEM TWO

Omitted

- 3. (20 points) Let N = pq where p, q are primes. Let $m \in \{2, \dots, N-1\}$.
 - (a) (4 points) Exactly how many multiplications do you need to compute $m^{2^{16}+1}$ using repeated squaring.
 - (b) (4 points) Exactly how many multiplications do you need to compute $m^{2^{16}-1}$ using repeated squaring.
 - (c) (0 points, this is just here for information) If you did the last two problems right then $m^{2^{16}+1}$ took MUCH LESS mults then $m^{2^{16}-1}$. This is one reason why $e = 2^{16} + 1$ is so popular in RSA.
 - (d) (4 points) $2^{16} + 1$ is prime. Is $2^{32} + 1$ prime? If not then give its factors. (HINT- look up Fermat Primes on the web)
 - (e) (4 points) Why is choosing e to be prime a good thing to do?
 - (f) (4 points) I had said in class that we do not want to pick e too low. Roughly how big does N have to be before picking $e = 2^{16} + 1$ is a bad thing to do. How does this N compare to the number of protons in the universe? (Look up Eddington's Number on the web)

SOLUTION TO PROBLEM TWO

a) All computations are mod p.

We compute:

$$m^{2}$$

 $(m^{2})^{2} = m^{2^{2}}$
 $(m^{4})^{2} = m^{2^{3}}$
 $(m^{8})^{2} = m^{2^{4}}$

So to get to m^{2^i} takes *i* multiplications.

Hence $m^{2^{16}}$ takes 16 mults.

So $m^{2^{16}+1} = m^{2^{16}} \cdot m$ takes 17 mults.

b) Note that $2^{16} - 1 = 2^0 + 2^1 + \dots + 2^{15}$.

We first compute, by repeated squaring, m^{2^i} for $1 \le i \le 15$. That takes 15 mults.

But then we have to do

$$m^{2^0} \times m^{2^1} \times \dots \times m^{2^{15}}$$

which takes another 14 mults. Hence the total is 29.

d) $2^{2^5} + 1 = 641 \times 6700417$

e) We need e to be rel prime to R. If e is prime then it is AUTOMAT-ICALLY rel prime to R.

f) If Bob sends m = 2 then this is a problem if $m^e < N$. So we have a problem if

 $2^{65537} < N,$ so $N \sim 2^{65537}.$ The number of particles in the universe is approx 2^{256} which is Much smaller.

4. (25 points) (HINT — look up the Chinese Remainder Theorem.) Give an algorithm (psuedocode but more descriptive) for the following:

Input: $N_1, \ldots, N_L, x_1, \ldots, x_L$ where N_1, \ldots, N_L are rel prime.

Output: An x such that

 $x \equiv x_1 \pmod{N_1}$ $x \equiv x_2 \pmod{N_2}$ \vdots $x \equiv x_L \pmod{N_L}$ AND $0 \le x < N_1 \cdots N_L$.

You can assume you have a program that finds inverses of numbers in mods if they exist.

Note that since all of the N_i are rel prime, for all *i* there exists a number which you can denote M_i^{-1} which is the inverse of $M_i \mod N_i$, where $M_i = N_1 N_2 \dots N_{i-1} N_{i+1} \dots N_L$.

SOLUTION TO PROBLEM FOUR

- (a) Input $(N_1, ..., N_L, x_1, ..., x_L)$
- (b) Let $M_i = N_1 N_2 \cdots N_{i-1} N_{i+1} \cdots N_L$.
- (c) For all $1 \le i \le L$ find M_i^{-1} which is the inverse of $M_i \mod N_i$
- (d) Output

$$x = x_1 M_1^{-1} M_1 + \dots + x_L M_L^{-1} M_L \pmod{N_1 \cdots N_L}$$

We prove that this works. Look at $x \mod N_i$. All of the terms except the M_i term drop out. The M_i term is

$$x_i M_i^{-1} M_i \equiv x_i \pmod{N_i}$$

- 5. (30 points) (Read the slides on low-exponent attacks on RSA.) Before getting to the specs of the psuedocode you are to write, here is the setting.
 - Zelda will do RSA with L people A_1, \ldots, A_L .
 - Zelda is using RSA as follows: For person A_i she uses (e, N_i) .
 - The N_i are all relatively prime.
 - $N_1 < \cdots < N_L$.
 - The parameter e we think of it as being small but the algorithm should run even if e is not small. It may report back NO could not crack.
 - We assume that Zelda sent the same message to everyone. The message is m. So she send A_i the number $m^e \mod N_i$.
 - You are Eve. You already have a program that will do the Chinese Remainder Theorem. That is, you have a program that will, on input $x_1, \ldots, x_L, N_1, \ldots, N_L$ where the N_i 's are rel prime, output x such that, for all $1 \le i \le L$, $x \equiv x_i \pmod{N_i}$.

NOW YOUR ASSIGNMENT:

Write pseudocode for a program such that

- (a) **Input:** $e, N_1 < \ldots < N_L$ and c_1, \ldots, c_L . The N_i are all rel prime. There is an m such that, for all $1 \le i \le L$, $c_i = m^e \pmod{N_i}$.
- (b) **Output:** Either find m as in the example in class OR say that you can't find m Prove that if $e \leq L$ then your algorithm does find m.

SOLUTION TO PROBLEM FIVE

- (a) Input: e, N_1, \ldots, N_L and c_1, \ldots, c_L . The N_i are rel prime. There is an m such that, for all $1 \le i \le L$, $c_i = m_i^e \pmod{N_i}$.
- (b) Find (using CRT) x such that

 $x \equiv m^e \pmod{N_1}$ $x \equiv m^e \pmod{N_2}$ \vdots

 $x \equiv m^e \pmod{N_L}$ AND $0 \leq x < N_1 \cdots N_L.$ (NOTE- x is an eth power mod N_1, N_2, \ldots, N_L . Hence x is an eth power mod $N_1 N_2 \cdots N_L.$

(c) Try to take the normal eth root of x. If you succeed (and get an integer result), that is your m.

By the nature of x

$$x \equiv m^e \pmod{N_1 \cdots N_L}.$$

We are curious if the m^e calculation used wrap-around.

We know that

$$\label{eq:main_state} \begin{split} m &< N_1. \\ m^2 &< N_1 N_2. \\ \text{etc.} \end{split}$$

 $m^L < N_1 N_2 \cdots N_L.$

If $e \leq L$ then we have that $m^e < N_1 \cdots N_L$. Hence the equation did not use wrap around so $x \equiv m^e$ means $x = m^e$.