Chosen Plaintext Attacks (CPA)
New Attacks! Chosen Plaintext Attacks (often CPA) is when Eve can choose to see some messages encoded. Formally she has Black Box for ENC_k.

We will:

1. Define Chosen Plaintext Attack for perfect security.
2. Define Chosen Plaintext Attack for computational security.
Perfect CPA-Security via a Game

\(\Pi = (\text{GEN}, \text{ENC}, \text{DEC}) \) be an enc sch, message space \(\mathcal{M} \).

Game: Alice and Eve are the players. Alice has full access to \(\Pi \). Eve has access to \(\text{ENC}_k \).

1. Alice \(k \leftarrow \mathcal{K} \). Eve does NOT know \(k \).

2. Eve picks \(m_0, m_1 \in \mathcal{M} \) Eve has black box for \(\text{ENC}_k \).

3. Alice picks \(m \in \{m_0, m_1\}, \ c \leftarrow \text{ENC}_k(m) \)

4. Alice sends \(c \) to Eve.

5. Eve outputs \(m_0 \) or \(m_1 \), hoping that her output is \(\text{DEC}_k(c) \).

6. Eve wins if she is right.

Note: \(\text{ENC}_k \) is randomized, so Eve can’t just compute \(\text{ENC}_k(m_0) \) and \(\text{ENC}_k(m_1) \) and see which one is \(c \).

Does Eve has a strategy that wins over half the time?
Perfect CPA-Security

- Π is secure against chosen-plaintext attacks (CPA-secure) if for all Eve.

\[\Pr[\text{Eve Wins}] \leq \frac{1}{2} \]
Eve always wins if ENC_k is Deterministic

1. Eve picks m_0, m_1. Finds $c_0 = ENC_k(m_0), c_1 = ENC_k(m_1)$.
2. Alice sends Eve $c = ENC_k(m_b)$. Eve has to determine b.
3. If $c = c_0$ then Eve sets $b' = 0$, if $c = c_1$ then Eve sets $b' = 1$.

Upshot: ALL deterministic schemes are CPA-insecure.
Π = (GEN, ENC, DEC) be an enc sch, message space \mathcal{M}.
n is a security parameter.

Game: Alice and Eve are the players. Alice has full access to Π. Eve has access to ENC_k.

1. Alice $k \leftarrow \mathcal{K} \cap \{0, 1\}^n$. Eve does NOT know k.
2. Eve picks $m_0, m_1 \in \mathcal{M}, |m_0| = |m_1|$
3. Alice picks $m \in \{m_0, m_1\}, c \leftarrow ENC_k(m)$
4. Alice sends c to Eve.
5. Eve outputs m_0 or m_1, hoping that her output is $DEC_k(c)$.
6. Eve wins if she is right.

Does Eve has a strategy that wins over half the time?
Π is **CPA-Secure** if for all **Polynomial Prob Time** Eves, there is a neg function $\epsilon(n)$ such that

$$\Pr[\text{Eve Wins}] \leq \frac{1}{2} + \epsilon(n)$$
Randomized Encryption

1. Any Deterministic Encryption will NOT be CPA-secure.
2. Hence we have to use Randomized Encryption.
3. The issue is not an artifact of our definition: Even being able to tell if two messages are the same is a leak.
Deterministic Encryption (for contrast)

n is a security parameter. A Deterministic Private-Key Encryption Scheme has message space \mathcal{M}, Key space $\mathcal{K} = \{0, 1\}^n$, and algorithms $(\text{GEN}, \text{ENC}, \text{DEC})$:

1. GEN generates keys $k \in \mathcal{K}$.
2. ENC_k encrypts messages, DEC_k decrypts messages.
3. $(\forall k \in \mathcal{K})(\forall m \in \mathcal{M}), \text{DEC}_k(\text{ENC}_k(m)) = m$
Keyed functions

1. Let $F : \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}^n$ be an efficient, deterministic algorithm.

2. Define $F_k(x) = F(k, x)$.

3. The first input is called the key.

4. Choosing a uniform $k \in \{0, 1\}^n$ is equivalent to choosing the function $F_k : \{0, 1\}^n \to \{0, 1\}^n$.

Note: In literature and the textbook Keyed functions k, x can be diff sizes, but we never do.
Keyed functions

1. Let $F : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^n$ be an efficient, deterministic algorithm

2. Define $F_k(x) = F(k, x)$

3. The first input is called the key

4. Choosing a uniform $k \in \{0, 1\}^n$ is equivalent to choosing the function $F_k : \{0, 1\}^n \rightarrow \{0, 1\}^n$

Note: In literature and the textbook Keyed functions k, x can be diff sizes, but we never do. They are wrong, we are right.
Randomized Encryption

A Randomized Private-Key Encryption Scheme has message space \(\mathcal{M} \), Key space \(\mathcal{K} = \{0, 1\}^n \), algorithms (GEN, ENC, DEC).

1. GEN generates keys \(k \in \mathcal{K} \) (Think: picking an \(F_k \) rand.)
2. \(ENC_k \): on input \(m \) it picks a rand \(r \in \{0, 1\}^n \) and outputs \((r, m \oplus F_k(r)) \).
3. \(DEC_k(r, c) = c \oplus F_k(r) \).

Note:

1. \(ENC_k(m) \) is not a function- it can return many different pairs.
2. Easy to see that Encrypt-Decrypt works.
3. Rand Shift is *not* an example, but is the same spirit.
4. General definition that encompasses Rand Shift: Can replace \(\oplus \) with any invertible operation.
Pseudorandom functions
Pseudorandom functions

- Informally, a pseudorandom function “looks like” a random (i.e. uniform) function.
- Can define formally via a Game. We won’t. Might be HW or Exam Question.
- From now on PRF means Pseudorandom function.
- Will actually get Pseudorandom Permutations for real world use.
Constructing a CPA-Secure Encryption

Theorem: If F_k is a PRF then the following encryption scheme is CPA-secure.

1. **GEN** generates keys $k \in \mathcal{K}$ (Think: picking an F_k rand.)
2. **ENC**$_k$: on input m it picks a rand $r \in \{0, 1\}^n$ and outputs $(r, m \oplus F_k(r))$.
3. **DEC**$_k(r, c) = c \oplus F_k(r)$.

Proof Sketch: If not CPA-secure then F_k is not a PRF.
A Real World (probably) PRF: Substitution-Permutation Networks (SPNs)
Recall...

- Want keyed permutation

\[F : \{0, 1\}^n \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell \]

\(n \) = key length, \(\ell \) = block length

- Want \(F_k \) (for uniform, unknown key \(k \)) to be indistinguishable from a uniform permutation over \(\{0, 1\}^\ell \)
Substitution-Permutation Networks (SPNs)
Substitution-Permutation Networks (SPNs)

For r-rounds:
Key will be $k = k_1 \cdots k_r$ and k_i’s will be used along with public S-box to create perms.

- $f_{k_i}(x) = S_i(k_i \oplus x)$, where S_i is a public permutation
- S_i are called “S-boxes” (substitution boxes)
- XORing the key is called “key mixing”
- Note that SPN is invertible (given the key)
S-Boxes are HARD to Create

Building them so that an SPN is a PRF is a major challenge.

Titles of Papers that tried:

The Design of S-Boxes by Simulated Annealing

A New Chaotic Substitution Box Design for Block ciphers

Perfect Nonlinear S-Boxes
S-Boxes are HARD to Create

Building them so that an SPN is a PRF is a major challenge.

Titles of Papers that tried:

The Design of S-Boxes by Simulated Annealing

A New Chaotic Substitution Box Design for Block ciphers

Perfect Nonlinear S-Boxes

If you type in *S-Boxes* into Google Scholar how many papers do you find?
S-Boxes are HARD to Create

Building them so that an SPN is a PRF is a major challenge.

Titles of Papers that tried:

The Design of S-Boxes by Simulated Annealing

A New Chaotic Substitution Box Design for Block ciphers

Perfect Nonlinear S-Boxes

If you type in **S-Boxes** into Google Scholar how many papers to you find?

20,000. Given repeats and conference-Journal repeats, there are approx 10,000 papers on S-boxes.
Substitution-Permutation Networks (SPNs)

1) There are attacks on 1-round and 2-round SPN’s
2) Can extend attacks to r rounds but time complexity goes up.
3) These attacks are better than naive but still too slow.
4) SPN considered secure if r is large enough.
5) AES, a widely used SPN, uses 8-bit S-boxes and at least 9 rounds (and other things) and is thought to be secure.
Substitution-Permutation Networks (SPNs)

1) There are attacks on 1-round and 2-round SPN’s
2) Can extend attacks to \(r \) rounds but time complexity goes up.
3) These attacks are better than naive but still too slow.
4) SPN considered secure if \(r \) is large enough.
5) AES, a widely used SPN, uses 8-bit S-boxes and at least 9 rounds (and other things) and is thought to be secure. For now.
6) Takeway: AES is a real world SPN that is really used and is believed to be a PRF.
Feistel networks
In SPN Network S-boxes Invertible
SPN: PROS and CONS

PRO: With enough rounds secure.

CON: Hard to come up with invertible S-boxes.

Feistel Networks will not need invertible components but will be secure.
Feistel networks

1) Message length is ℓ. Just like SPN.
2) Key $k = k_1 \cdots k_r$ of length n. r rounds. Just like SPN.
3) $|k_i| = n/r$. Need NOT be ℓ. Unlike SPN.
4) Use key k_i in ith round. Just like SPN.
5) Instead of S-boxes we have public functions \hat{f}_i. Need not be invertible! Unlike SPN. We derive $f_i(R) = \hat{f}_i(k_i, R)$ from them.

For 1-round:
Input: L_0R_0, $|L_0| = |R_0| = \ell/2$.
Output: L_1R_1 where $L_1 = R_0$, $R_1 = L_0 \oplus f_1(R_0)$
Invertible! The nature of $f_1(R)$ does not matter.
1) Input(L_1R_1)
2) $R_0 = L_1$.
3) Can compute $f_1(R_0)$ and hence $L_0 = R_1 \oplus f_1(R_0)$.
Feistel Network

Encryption

Plaintext

$\begin{array}{c|c}
L_0 & R_0 \\
\end{array}$

$\begin{array}{c}
K_0 \\
\end{array}$

$\begin{array}{c}
F \\
\end{array}$

$\begin{array}{c}
K_1 \\
\end{array}$

$\begin{array}{c}
F \\
\end{array}$

\ldots

$\begin{array}{c}
K_{n-1} \\
\end{array}$

$\begin{array}{c}
F \\
\end{array}$

$\begin{array}{c}
K_n \\
\end{array}$

$\begin{array}{c}
F \\
\end{array}$

$\begin{array}{c|c}
R_{n+1} & L_{n+1} \\
\end{array}$

Ciphertext

Decryption

Ciphertext

$\begin{array}{c|c}
R_{n+1} & L_{n+1} \\
\end{array}$

$\begin{array}{c}
K_n \\
\end{array}$

$\begin{array}{c}
F \\
\end{array}$

$\begin{array}{c}
K_{n-1} \\
\end{array}$

$\begin{array}{c}
F \\
\end{array}$

\ldots

$\begin{array}{c}
K_1 \\
\end{array}$

$\begin{array}{c}
F \\
\end{array}$

$\begin{array}{c}
K_0 \\
\end{array}$

$\begin{array}{c}
F \\
\end{array}$

$\begin{array}{c|c}
L_0 & R_0 \\
\end{array}$

Plaintext
1) Message length is ℓ. Just like SPN.
2) Key $k = k_1 \cdots k_r$ of length n. r rounds. Just like SPN.
3) $|k_i| = n/r$. Need NOT be ℓ. Unlike SPN.
4) Use key k_i in ith round. Just like SPN.
5) Public functions \hat{f}_i. Need not be invertible! Unlike SPN.

$f_i(R) = \hat{f}_i(k_i, R)$ from

Input: L_0R_0, $|L_0| = |R_0| = \ell/2$.

Output or Round 1: L_1R_1 where $L_1 = R_0$, $R_1 = L_0 \oplus f_1(R_0)$

Output or Round 2: L_2R_2 where $L_2 = R_1$, $R_2 = L_1 \oplus f_2(R_1)$

: : :

Output or Round r: L_rR_r where $L_r = R_{r-1}$, $R_r = L_{r-1} \oplus f_r(R_{r-1})$
Data Encryption Standard (DES)

- Standardized in 1977
- 56-bit keys, 64-bit block length
- 16-round Feistel network
 - Same round function in all rounds (but different sub-keys)
 - Basically an SPN design! But easier to build.
DES mangler function is \hat{f}_i.
PRO: DES is extremely well-designed
Security of DES

PRO: DES is extremely well-designed

PRO: Known attacks brute force or need lots of Plaintext.
Security of DES

PRO: DES is extremely well-designed

PRO: Known attacks brute force or need *lots of* Plaintext.

BIG CON: Parameters are too small! Brute-force search is feasible
56-bit key length

- A concern as soon as DES was released.
- Released in 1975, but that was then, this is now.

- Brute-force search over 2^{56} keys is possible
 - 1997: 1000s of computers, 96 days
 - 1998: distributed.net, 41 days
 - 1999: Deep Crack ($250,000), 56 hours
 - 2018: 48 FPGAs, 1 day
 - 2019: Will do as Classroom demo when teach this course in Fall of 2019.
Increasing key length?

- DES has a key that is too short

- How to fix?
 - Design new cipher. HARD!
 - Tweak DES so that it takes a larger key. Since this is Hardware not Software this is HARD!
 - Build a new cipher using DES as a black box. EASY?
Double encryption

- Let $F : \{0, 1\}^n \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$
 - (i.e. $n=56$, $\ell=64$ for DES)

- Define $F^2 : \{0, 1\}^{2n} \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$ as follows:

 $$F_{k_1,k_2}^2(x) = F_{k_1}(F_{k_2}(x))$$

 (still invertible)

- If best known attack on F takes time 2^n, is it reasonable to assume that the best known attack on F^2 takes time 2^{2n}?

 Vote! YES, NO, UNKNOWN TO SCIENCE
Double encryption

- Let $F : \{0, 1\}^n \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$

 - (i.e. $n=56$, $\ell=64$ for DES)

- Define $F^2 : \{0, 1\}^{2n} \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$ as follows:

 $$F^2_{k_1,k_2}(x) = F_{k_1}(F_{k_2}(x))$$

 (still invertible)

- If best known attack on F takes time 2^n, is it reasonable to assume that the best known attack on F^2 takes time 2^{2n}?

 Vote! YES, NO, UNKNOWN TO SCIENCE

 NO The Meet-in-the-Middle attack takes 2^n time. We omit details.
Define $F^3 : \{0, 1\}^{3n} \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$ as follows:

$$F^3_{k_1, k_2, k_3}(x) = F_{k_1}(F_{k_2}(F_{k_3}(x)))$$

- Can do meet-in-the-middle but would be 2^{2n}.
- No better attack known.
Two-key triple encryption

- Define $F^3 : \{0,1\}^{2n} \times \{0,1\}^\ell \to \{0,1\}^\ell$ as follows:

 $$F_{k_1,k_2}^3(x) = F_{k_1}(F_{k_2}(F_{k_1}(x)))$$

- Best attacks take time 2^{2n} — optimal given the key length!

- Sames on key length.

- Good for some backward-compatibility issues