hw09 Solutions

hw09 Problem 2: Shorter Shares

Problem 2.1

Assume there is an α-SES. From class we know we can, with a hardness assumption, use the α-SES to get a (t, L) secret sharing scheme with shares of size $\frac{n}{t}+\alpha n$.

PART 1: Use the α-SES to get a (t, L) secret sharing scheme with even SHORTER shares.

Problem 2.1: The Protocol

We begin similar to the $\frac{n}{t}+\alpha n$ protocol.

1. Zelda does $k_{1} \leftarrow \operatorname{GEN}(n) .\left|k_{1}\right|=\alpha n$.
2. $u=E N C_{k_{1}}(s)$. that $|u|=n$. Let $u=u_{0} \cdots u_{t-1},\left|u_{i}\right| \sim \frac{n}{t}$.
3. Let $p_{1} \sim 2^{n / t} . f(x)=u_{t-1} x^{t-1}+\cdots+u_{0}$
4. Zelda does $k_{2} \leftarrow \operatorname{GEN}(\alpha n)$. $\left|k_{2}\right|=\alpha^{2} n$.
5. $v=E N C_{k_{2}}\left(k_{1}\right) .|v|=\alpha n$. Let $v=v_{0} \cdots v_{t-1},\left|v_{i}\right|=\frac{\alpha n}{t}$.
6. Let $p_{2} \sim 2^{\alpha n / t} . g(x)=v_{t-1} x^{t-1}+\cdots+v_{0}$.
7. Let $p_{3} \sim 2^{\alpha^{2} n} . h(x)=r_{t-1} x^{t-1}+\cdots+r_{1} x+k_{2}$
8. Zelda gives $A_{i},(f(i), g(i), h(i))$.

Problem 2.1: Length of Shares

Length:

- $f(i) \in \mathbb{Z}_{p_{1}}$ where $p_{1} \sim 2^{n / t}$, so $|f(i)| \sim \frac{n}{t}$.
- $g(i) \in \mathbb{Z}_{p_{2}}$ where $p_{2} \sim 2^{\alpha n / t}$, so $|g(i)| \sim \alpha n / t$.
- $h(i) \in \mathbb{Z}_{p_{3}}$ where $p_{3} \sim 2^{\alpha^{2} n}$, so $|g(i)| \sim \alpha^{2} n$.

So the length is $\frac{n}{t}+\frac{\alpha n}{t}+\alpha^{2} n$.
When is:

$$
\begin{gathered}
\frac{n}{t}+\frac{\alpha n}{t}+\alpha^{2} n<\frac{n}{t}+\alpha n \\
\frac{\alpha n}{t}+\alpha^{2} n<\alpha n \\
\frac{1}{t}+\alpha<1
\end{gathered}
$$

Note: This is usually satisfied!

Problem 2.2: Even Shorter Shares: Protocol

1. Zelda does $k_{1} \leftarrow \operatorname{GEN}(n)$. $\left|k_{1}\right|=\alpha n$.
2. $u=E N C_{k_{1}}(s)$. that $|u|=n$. Let $u=u_{0} \cdots u_{t-1},\left|u_{i}\right| \sim \frac{n}{t}$.
3. Let $p_{1} \sim 2^{n / t}$. $f_{1}(x)=u_{t-1} x^{t-1}+\cdots+u_{0}$
4. Zelda does $k_{2} \leftarrow \operatorname{GEN}(\alpha n)$. $\left|k_{2}\right|=\alpha^{2} n$.
5. $v=E N C_{k_{2}}\left(k_{1}\right) .|v|=\alpha n$. Let $v=v_{0} \cdots v_{t-1},\left|v_{i}\right|=\frac{\alpha n}{t}$.
6. Let $p_{2} \sim 2^{\alpha n / t} . f_{2}(x)=v_{t-1} x^{t-1}+\cdots+v_{0}$.
7. Zelda does $k_{3} \leftarrow \operatorname{GEN}\left(\alpha^{2} n\right) .\left|k_{3}\right|=\alpha^{3} n$.
8. $w=E N C_{k_{3}}\left(k_{2}\right) .|v|=\alpha^{2} n$. Let $w=w_{0} \cdots w_{t-1},\left|w_{i}\right|=\frac{\alpha^{2} n}{t}$.
9. Let $p_{3} \sim 2^{\alpha^{2} n / t} . f_{3}(x)=w_{t-1} x^{t-1}+\cdots+w_{0}$.
10. Let $p_{4} \sim 2^{\alpha^{3} n} . f_{4}(x)=r_{t-1} x^{t-1}+\cdots+r_{1} x+k_{3}$
11. Zelda gives $A_{i},\left(f_{1}(i), f_{2}(i), f_{3}(i), f_{4}(i)\right)$.

Problem 2.2: Even Shorter Shares: Length

Length:

- $f_{1}(i) \in \mathbb{Z}_{p_{1}}$ where $p_{1} \sim 2^{n / t}$, so $\left|f_{1}(i)\right| \sim \frac{n}{t}$.
- $f_{2}(i) \in \mathbb{Z}_{p_{2}}$ where $p_{2} \sim 2^{\alpha n / t}$, so $\left|f_{2}(i)\right| \sim \alpha n / t$.
- $f_{3}(i) \in \mathbb{Z}_{p_{3}}$ where $p_{3} \sim 2^{\alpha^{2} n / t}$, so $\left|f_{3}(i)\right| \sim \alpha^{2} n / t$.
- $f_{4}(i) \in \mathbb{Z}_{p_{4}}$ where $p_{4} \sim 2^{\alpha^{3} n}$, so $\left|f_{4}(i)\right| \sim \alpha^{3} n$.

So the length is $\frac{n}{t}+\frac{\alpha n}{t}+\frac{\alpha^{2} n}{t}+\alpha^{3} n$
When is

$$
\begin{gathered}
\frac{n}{t}+\frac{\alpha n}{t}+\frac{\alpha^{2} n}{t}+\alpha^{3} n<\frac{n}{t}+\frac{\alpha n}{t}+\alpha^{2} n \\
\frac{1}{t}+\alpha<1
\end{gathered}
$$

Note: Great! Same condition as before, and usually holds.

Problem 2. : Pushing The Method To the Limit

One Iteration got us $\frac{n}{t}+\alpha n$
Two Iteration got us $\frac{n}{t}+\frac{\alpha n}{t}+\alpha^{2} n$
Three Iteration got us $\frac{n}{t}+\frac{\alpha n}{t}+\frac{\alpha^{2} n}{t}+\alpha^{3} n$
Your chance to get back some points on hw09 Problem 2: Do CLEANLY and CLEARLY the problem of M Iteration. Include the protocol and how they recover the secret.

1. DUE Mon Dec 3. This is a courtesy. NO DEAD CAT EXT.
2. If you got $\leq X$ on and you do it CLEANLY and CORRECTLY then you will get Y. Have not determined X and Y yet.
3. You will likely either get 0 or Y. We will not spend that much time grading this one - just do it CLEANLY, CORRECTLY.
4. Will post formally what we want soon.

hw09 Problem 3: A Different Access Structure

Problem 3: A Different Access Structure

Zelda has a secret $s \in\{0,1\}^{n}$. She wants to share a secret with $A_{1}, \ldots, A_{L_{1}}, B_{1}, \ldots, B_{L_{2}}$. such that the following happens:

1. If $\geq k_{1}$ of $A_{1}, \ldots, A_{L_{1}}$ meet with $\geq k_{2}$ of $B_{1}, \ldots, B_{L_{2}}$ then they can learn the secret
2. No other set of people can learn the secret.
3. Everyone gets a string of length roughly n.

Problem 3: The Protocol

1. Zelda generates a random $r_{1} \in\{0,1\}^{n}$.
2. Zelda lets $r_{2}=s \oplus r_{1}$.
3. Zelda does $\left(t_{1}, L_{1}\right)$ secret sharing with secret r_{1} and people $A_{1}, \ldots, A_{L_{1}}$.
4. Zelda does $\left(t_{2}, L_{2}\right)$ secret sharing with secret r_{2} and people $B_{1}, \ldots, B_{L_{1}}$.

Recovery:

If t_{1} of $A_{1}, \ldots, A_{L_{1}}$ and t_{2} of $B_{1}, \ldots, B_{L_{2}}$ get together then:

1. The $A_{1}, \ldots, A_{L_{1}}$ can recover r_{1}.
2. The $B_{1}, \ldots, B_{L_{2}}$ can recover r_{2}.
3. They can all do

$$
r_{1} \oplus r_{2}=s
$$

