hw09 Solutions

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

hw09 Problem 2: Shorter Shares

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Assume there is an α -SES. From class we know we can, with a hardness assumption, use the α -SES to get a (t, L) secret sharing scheme with shares of size $\frac{n}{t} + \alpha n$.

PART 1: Use the α -SES to get a (t, L) secret sharing scheme with even SHORTER shares.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Problem 2.1: The Protocol

We begin similar to the $\frac{n}{t} + \alpha n$ protocol.

1. Zelda does
$$k_1 \leftarrow GEN(n)$$
. $|k_1| = \alpha n$.
2. $u = ENC_{k_1}(s)$. that $|u| = n$. Let $u = u_0 \cdots u_{t-1}$, $|u_i| \sim \frac{n}{t}$.
3. Let $p_1 \sim 2^{n/t}$. $f(x) = u_{t-1}x^{t-1} + \cdots + u_0$
4. Zelda does $k_2 \leftarrow GEN(\alpha n)$. $|k_2| = \alpha^2 n$.
5. $v = ENC_{k_2}(k_1)$. $|v| = \alpha n$. Let $v = v_0 \cdots v_{t-1}$, $|v_i| = \frac{\alpha n}{t}$.
6. Let $p_2 \sim 2^{\alpha n/t}$. $g(x) = v_{t-1}x^{t-1} + \cdots + v_0$.
7. Let $p_3 \sim 2^{\alpha^2 n}$. $h(x) = r_{t-1}x^{t-1} + \cdots + r_1x + k_2$
8. Zelda gives A_i , $(f(i), g(i), h(i))$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

Problem 2.1: Length of Shares

Length:

►
$$f(i) \in \mathbb{Z}_{p_1}$$
 where $p_1 \sim 2^{n/t}$, so $|f(i)| \sim \frac{n}{t}$.
► $g(i) \in \mathbb{Z}_{p_2}$ where $p_2 \sim 2^{\alpha n/t}$, so $|g(i)| \sim \alpha n/t$.
► $h(i) \in \mathbb{Z}_{p_3}$ where $p_3 \sim 2^{\alpha^2 n}$, so $|g(i)| \sim \alpha^2 n$.
So the length is $\frac{n}{t} + \frac{\alpha n}{t} + \alpha^2 n$.
When is:

$$\frac{n}{t} + \frac{\alpha n}{t} + \alpha^2 n < \frac{n}{t} + \alpha n$$
$$\frac{\alpha n}{t} + \alpha^2 n < \alpha n$$
$$\frac{1}{t} + \alpha < 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Note: This is usually satisfied!

Problem 2.2: Even Shorter Shares: Protocol

1. Zelda does
$$k_1 \leftarrow GEN(n)$$
. $|k_1| = \alpha n$.
2. $u = ENC_{k_1}(s)$. that $|u| = n$. Let $u = u_0 \cdots u_{t-1}$, $|u_i| \sim \frac{n}{t}$.
3. Let $p_1 \sim 2^{n/t}$. $f_1(x) = u_{t-1}x^{t-1} + \cdots + u_0$
4. Zelda does $k_2 \leftarrow GEN(\alpha n)$. $|k_2| = \alpha^2 n$.
5. $v = ENC_{k_2}(k_1)$. $|v| = \alpha n$. Let $v = v_0 \cdots v_{t-1}$, $|v_i| = \frac{\alpha n}{t}$.
6. Let $p_2 \sim 2^{\alpha n/t}$. $f_2(x) = v_{t-1}x^{t-1} + \cdots + v_0$.
7. Zelda does $k_3 \leftarrow GEN(\alpha^2 n)$. $|k_3| = \alpha^3 n$.
8. $w = ENC_{k_3}(k_2)$. $|v| = \alpha^2 n$. Let $w = w_0 \cdots w_{t-1}$, $|w_i| = \frac{\alpha^2 n}{t}$.
9. Let $p_3 \sim 2^{\alpha^2 n/t}$. $f_3(x) = w_{t-1}x^{t-1} + \cdots + w_0$.
10. Let $p_4 \sim 2^{\alpha^3 n}$. $f_4(x) = r_{t-1}x^{t-1} + \cdots + r_1x + k_3$
11. Zelda gives A_i , $(f_1(i), f_2(i), f_3(i), f_4(i))$.

Problem 2.2: Even Shorter Shares: Length

Length:

So the length is $\frac{n}{t} + \frac{\alpha n}{t} + \frac{\alpha^2 n}{t} + \alpha^3 n$ When is

$$\frac{n}{t} + \frac{\alpha n}{t} + \frac{\alpha^2 n}{t} + \alpha^3 n < \frac{n}{t} + \frac{\alpha n}{t} + \alpha^2 n$$
$$\frac{1}{t} + \alpha < 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Note: Great! Same condition as before, and usually holds.

Problem 2. ω : Pushing The Method To the Limit

One Iteration got us $\frac{n}{t} + \alpha n$ Two Iteration got us $\frac{n}{t} + \frac{\alpha n}{t} + \alpha^2 n$ Three Iteration got us $\frac{n}{t} + \frac{\alpha n}{t} + \frac{\alpha^2 n}{t} + \alpha^3 n$

Your chance to get back some points on hw09 Problem 2: Do CLEANLY and CLEARLY the problem of M Iteration. Include the protocol and how they recover the secret.

- 1. DUE Mon Dec 3. This is a courtesy. NO DEAD CAT EXT.
- If you got ≤ X on and you do it CLEANLY and CORRECTLY then you will get Y. Have not determined X and Y yet.
- 3. You will likely either get 0 or Y. We will not spend that much time grading this one just do it CLEANLY, CORRECTLY.
- 4. Will post formally what we want soon.

hw09 Problem 3: A Different Access Structure

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Problem 3: A Different Access Structure

Zelda has a secret $s \in \{0,1\}^n$. She wants to share a secret with $A_1, \ldots, A_{L_1}, B_1, \ldots, B_{L_2}$. such that the following happens:

1. If $\geq k_1$ of A_1, \ldots, A_{L_1} meet with $\geq k_2$ of B_1, \ldots, B_{L_2} then they can learn the secret

- 2. No other set of people can learn the secret.
- 3. Everyone gets a string of length roughly n.

Problem 3: The Protocol

- 1. Zelda generates a random $r_1 \in \{0,1\}^n$.
- 2. Zelda lets $r_2 = s \oplus r_1$.
- 3. Zelda does (t_1, L_1) secret sharing with secret r_1 and people A_1, \ldots, A_{L_1} .
- 4. Zelda does (t_2, L_2) secret sharing with secret r_2 and people B_1, \ldots, B_{L_1} .

Recovery:

If t_1 of A_1, \ldots, A_{L_1} and t_2 of B_1, \ldots, B_{L_2} get together then:

- 1. The A_1, \ldots, A_{L_1} can recover r_1 .
- 2. The B_1, \ldots, B_{L_2} can recover r_2 .
- 3. They can all do

$$r_1 \oplus r_2 = s$$