hw11 Solutions

hw11 Problem 2: An Imperfect Random
 Generator Makes 1-Time Pad Insecure

Problem 2

Alice and Bob are using a 1-time pad.
Their random bit generator is terrible!
It outputs 0^{n} with probability $\frac{1}{2}+\frac{1}{2^{n+1}}$,
and every other string of length n with probability $\frac{1}{2^{n+1}}$.
Answer the following questions which will lead up to a proof that Alice and Bob's 1-time pad leads to an insecure cipher. You can assume n is odd and large.

Problem 2:a,b,c,d,e

a) Eve picks $m_{0}=0^{n}$ and $m_{1}=1^{n}$.
b) What is $\operatorname{Pr}\left(m=m_{0}\right) ? \operatorname{Pr}\left(m=m_{1}\right)$?

ANSWER: Both are $\frac{1}{2}$ since Alice picks them by flipping a fair coin.
c) Recall that Alice picks $m \in\left\{m_{0}, m_{1}\right\}$ and then generates k (badly!) and sends Eve $m \oplus k$.
d) Let MAJO be that c is over half 0 's.
e) Let MAJ1 be that c is over half 1 's.

Problem 2: f,g,h,i

f) What is $\operatorname{Pr}\left(M A J O \mid m=m_{0}\right)$? (Approx $\frac{1}{2^{n+1}} \sim 0$.).)

ANSWER: $\operatorname{Pr}\left(M A J O \mid m=0^{n}\right)$: If $m=0^{n}$ then there are several ways that MAJO could happen:

- $k=0^{n}$. This happens with prob $\frac{1}{2}+\frac{1}{2^{n+1}}$.
- k is not 0^{n} but has over half 0 's. Since n is large we can take this to be approx $\frac{1}{4}$.
Hence $\operatorname{Pr}\left(M A J O \mid m=0^{n}\right) \sim \frac{3}{4}+\frac{1}{2^{n+1}} \sim \frac{3}{4}$.
g) What is $\operatorname{Pr}\left(M A J 1 \mid m=m_{1}\right)$? ANSWER: Similar to above, $\frac{3}{4}$.
h) What is $\operatorname{Pr}\left(M A J O \mid m=m_{1}\right)$? ANSWER: Similar to above, $\frac{1}{4}$.
i) What is $\operatorname{Pr}\left(M A J 1 \mid m=m_{0}\right)$? ANSWER: Similar to above, $\frac{1}{4}$.

Problem 2: j,k

j) What is $\operatorname{Pr}($ MAJO $)$? ANSWER: Its:

$$
\operatorname{Pr}\left(M A J 0 \mid m=m_{0}\right) \operatorname{Pr}\left(m=m_{0}\right)+\operatorname{Pr}\left(M A J 0 \mid m=m_{1}\right) \operatorname{Pr}\left(m=m_{1}\right)
$$

We have all of these parts so we get:

$$
\frac{3}{4} \times \frac{1}{2}+\frac{1}{4} \times \frac{1}{2}=\frac{1}{2}
$$

k) What is $\operatorname{Pr}(M A J 1)$? ANSWER: Similar to above, its $\frac{1}{2}$.

Problem 2: I,m

I) What is $\operatorname{Pr}\left(m=m_{0} \mid M A J 0\right)$ (Hint: Use Bayes's theorem) ANSWER:
$\operatorname{Pr}\left(m=m_{0} \mid M A J 0\right)=\operatorname{Pr}\left(M A J 0 \mid m=m_{0}\right) \frac{\operatorname{Pr}\left(m=m_{0}\right)}{\operatorname{Pr}(M A J 0)}=\frac{\frac{3}{4} \times \frac{1}{2}}{\frac{1}{2}}=\frac{3}{4}$
m) What is $\operatorname{Pr}\left(m=m_{1} \mid M A J 1\right)$ (Hint: Use Bayes's theorem) ANSWER: Similar to the above. $\frac{3}{4}$.

Problem 2: n

n) Show that Eve has a winning strategy. Describe the strategy and use the parts above to show it has prob $>\frac{1}{2}$ of winning. What is the prob of Eve winning?

ANSWER: Eve's strategy: look at c. If it has more 0's than 1's then guess $m=0^{n}$. If it has more 1's then 0 's then guess $m=1^{n}$. By the above this wins with prob $\frac{3}{4}$.

Problem 3a: Problem and Solution

PROBLEM: Find a s.t., for large $N, a \sqrt{N}$ elts from $\{1, \ldots, N\}$ $\mathrm{w} /$ replacement then the prob that 2 same is $\geq \frac{3}{4}$
SOLUTION: Prob that they are all different is

$$
\frac{N}{N} \frac{N-1}{N} \cdots \frac{N-M}{N}=\left(1-\frac{1}{N}\right)\left(1-\frac{2}{N}\right) \cdots\left(1-\frac{M}{N}\right)
$$

Important! $1-z \sim e^{-z}$. Since N large $\left(1-\frac{c}{N}\right) \sim e^{-c / N}$. Hence:
$\sim e^{(-1-2-3-\cdots-M) / N}=e^{-M^{2} / 2 N}$. So need $e^{-M^{2} / 2 N} \leq \frac{1}{4}$

$$
-M^{2} / 2 N \leq \ln (1 / 4)=-1.38
$$

$$
-M^{2} / N \leq-2.76
$$

$$
2.76 N \leq M^{2}
$$

$$
M \geq \sqrt{2.76 N}=1.66 \sqrt{N} \text { Take } a_{\llcorner }=1.66
$$

Problem 3b: Problem and Solution

PROBLEM: Rand shift, alphabet size N. Show not comp secure by giving a good strategy for Eve.

SOLUTION: Let the alphabet be $\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}$.
Eve picks $m_{0}=\sigma_{1}^{M}, m_{1}=\sigma_{1} \sigma_{2} \cdots \sigma_{M}$ where $M=a \sqrt{N}$.
Alice returns $\left(r_{1}, \sigma_{1}\right) \cdots\left(r_{M}, \sigma_{M}\right)$.
With prob $>\frac{3}{4}$ there will be $i<j$ with $r_{i}=r_{j}$. If that happens
then Eve looks does the following:
If $\sigma_{i}=\sigma_{j}$ then m is m_{0}.
If $\sigma_{i} \neq \sigma_{j}$ then m is m_{1}.

Problem 3c: Problem

PROBLEM: Alphabet is size N, prime. Hence the number of (a, b) such that $a x+b$ is a valid Affine Cipher is N^{2} (we will not let $b=0$). Recall the RANDOMIZED AFFINE CIPHER:

1. Alice and Bob both

$$
f:\left\{1, \ldots, N^{2}\right\} \rightarrow\{1, \ldots, N\} \times\{1, \ldots, N\} .
$$

2. For Alice $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{L}$ she (1) generates RANDOM

$$
\begin{aligned}
& r_{1}, \ldots, r_{L} \in\left\{1, \ldots, N^{2}\right\},(2) \text { for } 1 \leq i \leq L \text { Alice finds } \\
& f\left(r_{i}\right)=\left(a_{i}, b_{i}\right) . \text { (3) sends }
\end{aligned}
$$

$$
\left(r_{1}, a_{1} \sigma_{1}+b_{1}\right),\left(r_{2}, a_{2} \sigma_{2}+b_{2}\right), \ldots,\left(r_{L}, a_{L} \sigma_{L}+b_{L}\right)
$$

Show that the randomized affine is not computationally secure by giving a strategy in the comp sec game where Eve wins with prob much bigger than $\frac{1}{2}$.

Problem 3c: Solution. First Attempt

SOLUTION: Let the alphabet be $\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}$.
Eve: $m_{0}=\sigma_{1}^{M}, m_{1}=\sigma_{1} \sigma_{2} \cdots \sigma_{M}, M$ TBD.
Alice returns $\left(r_{1}, \sigma_{1}\right) \cdots\left(r_{M}, \sigma_{M}\right)$.
Eve WANTS there to be a repeat. There are N^{2} possible r 's so need $M=a \sqrt{N^{2}}=a N$. DOES NOT WORK since $a>1$, and need $M \leq N$.
Start over again with new idea on next slide.

Problem 3c: Solution. Second Attempt

SOLUTION: Let the alphabet be $\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}$.
Eve: $m_{0}=\sigma_{1}^{2 N}, m_{1}=\sigma_{1} \cdots \sigma_{N} \sigma_{1} \cdots \sigma_{N}$.
Alice returns $\left(r_{1}, \sigma_{1}\right) \cdots\left(r_{2 N}, \sigma_{2 N}\right)$.
Since $2 N>a N$, with prob $>\frac{3}{4}$ there will be $i<j$ with $r_{i}=r_{j}$. BUT: if $i \equiv j(\bmod N)$ then having $r_{i}=r_{j}$ won't help Eve! However, the prob of that happening is small so we ignore it.
And now we can do the usual:
If $\sigma_{i}=\sigma_{j}$ then m is m_{0}.
If $\sigma_{i} \neq \sigma_{j}$ then m is m_{1}.

Problem 4

Name two things you learned from Lloyd's NSA talk?
Discuss!

