The Secret Lives of Mathematicians

Where in the World?

History of No Such Agency

Before the NSA:

- Codes were handles by Armed Forces Units
- WWI and WWII brought a higher need for cryptologic concentration

Establishment:

- Created November 1952 by President Truman
- Centralized and joined military and civilian Cryptologic Activity into one organization

What You May Have Heard...

What You May Have Heard...

Books

- Digital Fortress by Dan Brown
- Red Storm Rising by Tom Clancy

Movies

- Enemy of the State (1998)
-xXx (2002): Vin Diesel
- The Simpsons Movie (2007)
- Scandal
- NCIS: Eleanor 'Ellie' Bishop
- Person of Interest
- Chuck: John Casey

Who Are We Really?

Who Are We Really?

- Civilians
- Military
- Lawyers
- Engineers
- Computer Scientists
- Management - And More!!!
- Mathematicians
- Language Analysts
- Accountants

What We Really Do...

What We Really Do...

- Workforce Support Activities $\underset{3}{ }$
- Business Management and Acquisition
- Engagement \& Policy Research
- Capabilities
- Operations

What We Really Do...

- Research
- Manages research on developing capabilities
- The "Really Big" Problems
- Capabilities
- Develops and provides solutions
- Operations
- Executes all operations, analysis, and information
- Signals Analysis, Information Assurance, and Cyber Defense

Why Do We Need Mathematicians??

The Role of Mathematicians

We Use:
...Number Theory, Group Theory, Graph Theory, Linear Algebra, Math Modeling, Probability and Statistics, Combinatorics...

In Combination With:

... computer science, data processing techniques, advanced technology.
...search for weaknesses in adversaries' systems
... build and strengthen national systems
... research, discover, and develop new security techniques

What are the Mathematicians Doing?

They Work in:

- Computer and Network Security
- Signals Analysis
- Data Mining
- Information Retrieval
- Information Processing
- Speech Processing
- Analysis of Computer Networks
- Data Compression
- Super Computing
- Biometrics
- And much, much more!

How Do You Fit In??

How Do You Fit In?

 Workforce Support Activities

Career Development Programs

- AMP
- CMP
- CADP
- C2DP
- SADP
- And More!
 4-6 Rotational Tours One-the-job Classes Senior Leadership and Mentoring Permanent Placement Upon Completion

Summer Opportunities

囯 momenal	[7] momens		Monem en	
-matemem				
	-	$=$	\checkmark	
mamo	-	\%	\checkmark	
20memmem			\checkmark	
				\checkmark
	-	$=$		ν

12 Week Paid Internships! Deadlines typically in mid-October

Top 10 Reasons to Work at NSA

Top 10 Reasons to Work at NSA

10) Large Expert Community (collaboration and mentoring are highly encouraged)
11) Casual Dress Code

Excellent Benefits (Health, Retirement, Vacation/Sick)
Flexible Schedule
6) NSA Supports Furthering Education

Top 10 Reasons to Work at NSA

5) Opportunities to Travel

4) Diversity of Work

(4)

圈
Impact
2) Challenging and Fun

And...

Top 10 Reasons to Work at NSA

1) ... You'll never turn a Happy Hour into a Sad Hour by talking about work!

Application Requirements

Application Requirements

One must:

- Be a US Citizen

Be able to obtain a TS Security Clearance (includes background investigation, polygraph, and psychological evaluation)

- Allow 6 to 18 months for application processing

What is Cryptanalysis?

Definitions

Plaintext: Text or file which will be encoded

Cipher Text: Encoded plaintext

Code: Replaces elements of a plaintext by other letters, numbers, words, or symbols

Cipher: Transposes or substitutes elements of plaintext according to a key

Definitions

Cryptanalysis: The decryption of messages into plaintext without having initial knowledge of the key used to encrypt

Cryptography: The science and art of making codes and ciphers

Cryptology: The science and art of making AND breaking codes and ciphers

Definitions

What is a character?

Binary: base 2: (uses 2 distinct symbols) 0 and 1 Each symbol represents 1 bit
This is the "language" a computer uses to talk

Hex: base 16 (uses 16 distinct symbols): a-f and 0-9 each symbol represents 4 bits

ASCII: printable characters (all the letters, numbers, and symbols on these slides)
each symbol represents 8 bits or 1 byte

Definitions

What is a character?

0100001101110010011110010111000
 0011101000110000101101110011000
 0101101100011110010111001101101
 00101110011

Definitions

What is a character?

0100001101110010011110010111000
 0011101000110000101101110011000
 0101101100011110010111001101101
 00101110011

$0 \times 4372797074616 \mathrm{e} 616 \mathrm{c} 79736973$

Definitions

What is a character?

0100001101110010011110010111000
 0011101000110000101101110011000
 0101101100011110010111001101101
 00101110011

$0 \times 4372797074616 \mathrm{e} 616 \mathrm{c} 79736973$

Cryptanalysis

Symmetric Key Cryptography

Symmetric Key Cryptography

The General Idea:

1. Alice sends Bob a message encrypted with key, k
2. Bob decrypts the message with key, -

Kerckhoff's Principle

Kerckhoff's Principle

A cryptosystem should be secure even if everything about the system, except the key, is public knowledge.

Public Key Cryptography

Public Key Cryptography

The General Idea:

1. Alice and Bob agree on a key system to use
2. Alice and Bob assume Eve could intercept their communication
3. The goal is to get a shared value only they know

Diffie-Hellman Key Exchange

"The Silent Exchange"

One of the earliest forms of Key Exchange
Originally designed by Ellis, Cocks, and Williamson at GCHQ

Discovered by Diffie and Hellman in 1976

Diffie-Hellman Key Exchange

 Secret Values will be in redPublic values (non-secret) will be in purple
g is a generator of a group or order p

Diffie-Hellman Key Exchange

Alice

a: Alice's value
$A=g^{a}(\bmod p)$

Bob
b: Bob's value
$B=g^{b}(\bmod p)$

Diffie-Hellman Key Exchange

Alice

a: Alice's value

$A=g^{a}(\bmod p)$

b: Bob's value
$B=g^{b}(\bmod p)$
$B^{a}=g^{b a}(\bmod p)$
$A^{b}=g^{a b}(\bmod p)$
$=K$
$=K$

Diffie-Hellman Example

$$
p=23 \quad g=5
$$

Alice

Bob

$$
\begin{array}{ll}
a=6 & b=15 \\
A=5^{6}(\bmod 23) & B=5^{15}(\bmod 23) \\
A=8 & B=19 \\
& \\
K=19^{6}(\bmod 23) & K=8^{15}(\bmod 23) \\
=2 & =2
\end{array}
$$

How is Diffie-Hellman Secure?

How is Diffie-Hellman Secure?

When p is large, recovering a from g^{a} is difficult
(This is also known as the Discrete Logarithm Problem)

This is why choosing g to be a generator of a group order p is a wise idea.

Other Types of Commercial Encryption

- AES: Advanced Encryption Standard (Rijndael cipher)
- DES: Data Encryption Standard ECC: Elliptic Curve Cryptography

PGP: Pretty Good Privacy

- RSA: Rivest, Shamir, and Adleman
- And more!

Types of Cipher Systems

Types of Cipher Systems

Stream Cipher:

- Uses a stream of "random" key called the keystream

Each plaintext character is combined with a corresponding character of keystream to become cipher

- A character is normally a bit
- Encryption/decryption happens "on the fly"
- Operation to combine bits normally is an XOR

Types of Cipher Systems

Block Cipher:

- 2 paired algorithms (one for encryption and its inverse for decryption)
- Algorithm uses a fixed-length group of characters called a block

Input is a block size and key size

- Encrypts/Decrypts a block at a time.

Types of Cipher Systems

stream

Keystream
Generator

Keystream Generator

Types of Cipher Systems

Stream

Keystream
Generator

Want More? WWW.nsa.gov
 Questions?

