
Public Key Crypto: Math
Needed and DH

Private-Key Ciphers

What do the following Private Key Encryption Schemes all have in
common:

1. Shift Cipher

2. Affine Cipher

3. Vig Cipher

4. General Sub

5. Matrix Cipher

6. One-Time Pad

Alice and Bob need to meet! (Hence Private Key.)
Can Alice and Bob to establish a key without meeting?
Yes! And that is the key to public-key cryptography.

Math Needed for Both
Diffie-Helman and RSA

Notation

Let p be a prime.

1. Zp is the numbers {0, . . . , p − 1} with modular addition and
multiplication.

2. Z∗
p is the numbers {1, . . . , p − 1} with modular multiplication.

Exponentiation mod p

Problem: Given a, n, p find an (mod p)
First Attempt

1. x0 = a

2. For i = 1 to n, xi = axi−1.

3. Let x = xn (mod p).

4. Output x .

Is this a good idea?

Its called First Attempt, so no.
Takes n steps and also x gets really large.
Can mod p every step so x not large. But still takes n steps.

Exponentiation mod p

Problem: Given a, n, p find an (mod p)
First Attempt

1. x0 = a

2. For i = 1 to n, xi = axi−1.

3. Let x = xn (mod p).

4. Output x .

Is this a good idea? Its called First Attempt, so no.

Takes n steps and also x gets really large.
Can mod p every step so x not large. But still takes n steps.

Exponentiation mod p

Problem: Given a, n, p find an (mod p)
First Attempt

1. x0 = a

2. For i = 1 to n, xi = axi−1.

3. Let x = xn (mod p).

4. Output x .

Is this a good idea? Its called First Attempt, so no.
Takes n steps and also x gets really large.

Can mod p every step so x not large. But still takes n steps.

Exponentiation mod p

Problem: Given a, n, p find an (mod p)
First Attempt

1. x0 = a

2. For i = 1 to n, xi = axi−1.

3. Let x = xn (mod p).

4. Output x .

Is this a good idea? Its called First Attempt, so no.
Takes n steps and also x gets really large.
Can mod p every step so x not large. But still takes n steps.

Exponentiation mod p

Example of a Good Algorithm
Want 364 (mod 101). All arithmetic is mod 101.
x0 = 3
x1 = x20 ≡ 9 This is 32.
x2 = x21 ≡ 92 ≡ 81. This is 34.
x3 = x22 ≡ 812 ≡ 97. This is 38.
x4 = x23 ≡ 972 ≡ 16. This is 316.
x5 = x24 ≡ 162 ≡ 54. This is 332.
x6 = x25 ≡ 542 ≡ 88. This is 364.
So in 6 steps we got the answer!

Discuss how many steps this take for an (p).Answer: lg n.
Discuss how we can generalize to when n is not a power of 2.

Exponentiation mod p

Example of a Good Algorithm
Want 364 (mod 101). All arithmetic is mod 101.
x0 = 3
x1 = x20 ≡ 9 This is 32.
x2 = x21 ≡ 92 ≡ 81. This is 34.
x3 = x22 ≡ 812 ≡ 97. This is 38.
x4 = x23 ≡ 972 ≡ 16. This is 316.
x5 = x24 ≡ 162 ≡ 54. This is 332.
x6 = x25 ≡ 542 ≡ 88. This is 364.
So in 6 steps we got the answer!
Discuss how many steps this take for an (p).

Answer: lg n.
Discuss how we can generalize to when n is not a power of 2.

Exponentiation mod p

Example of a Good Algorithm
Want 364 (mod 101). All arithmetic is mod 101.
x0 = 3
x1 = x20 ≡ 9 This is 32.
x2 = x21 ≡ 92 ≡ 81. This is 34.
x3 = x22 ≡ 812 ≡ 97. This is 38.
x4 = x23 ≡ 972 ≡ 16. This is 316.
x5 = x24 ≡ 162 ≡ 54. This is 332.
x6 = x25 ≡ 542 ≡ 88. This is 364.
So in 6 steps we got the answer!
Discuss how many steps this take for an (p).Answer: lg n.

Discuss how we can generalize to when n is not a power of 2.

Exponentiation mod p

Example of a Good Algorithm
Want 364 (mod 101). All arithmetic is mod 101.
x0 = 3
x1 = x20 ≡ 9 This is 32.
x2 = x21 ≡ 92 ≡ 81. This is 34.
x3 = x22 ≡ 812 ≡ 97. This is 38.
x4 = x23 ≡ 972 ≡ 16. This is 316.
x5 = x24 ≡ 162 ≡ 54. This is 332.
x6 = x25 ≡ 542 ≡ 88. This is 364.
So in 6 steps we got the answer!
Discuss how many steps this take for an (p).Answer: lg n.
Discuss how we can generalize to when n is not a power of 2.

Repeated Squaring Algorithm

All arithmetic is mod p.

1. Input (a, n, p)

2. Convert n to base 2: n = 2nL + · · ·+ 2n0 .

3. x0 = a

4. For i = 1 to nL, xi = x2i−1.

5. (Now have a2
n0 , . . . , a2

nL) Answer is a2
n0 × · · · × a2

nL

Number of operations: O(log n).

Diffie-Helman Key
Exchange

Generators mod p

Lets take powers of 3 mod 7. All arithmetic is mod 7.
30 ≡ 1
31 ≡ 3
32 ≡ 3× 31 ≡ 9 ≡ 2
33 ≡ 3× 32 ≡ 3× 2 ≡ 6
34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4
35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5
36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{30, 31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order

3 is a generator for Z7.
Definition: If p is a prime and {g0, g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Zp.

Generators mod p

Lets take powers of 3 mod 7. All arithmetic is mod 7.
30 ≡ 1
31 ≡ 3
32 ≡ 3× 31 ≡ 9 ≡ 2
33 ≡ 3× 32 ≡ 3× 2 ≡ 6
34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4
35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5
36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{30, 31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order

3 is a generator for Z7.

Definition: If p is a prime and {g0, g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Zp.

Generators mod p

Lets take powers of 3 mod 7. All arithmetic is mod 7.
30 ≡ 1
31 ≡ 3
32 ≡ 3× 31 ≡ 9 ≡ 2
33 ≡ 3× 32 ≡ 3× 2 ≡ 6
34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4
35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5
36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{30, 31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order

3 is a generator for Z7.
Definition: If p is a prime and {g0, g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Zp.

Discrete Log-Example

Fact: 5 is a generator mod 73. All arithmetic is mod 73.
Discuss the following with your neighbor:

1. Find x such that 5x ≡ 25

2. Find x such that 5x ≡ 26

1. Find x such that 5x ≡ 25. x = 2 obv works.

2. Find x such that 5x ≡ 26. Do not know. Could try computing
53, 54, . . . , until you get 26. Might take ∼ 70 steps.

The second problem seems hard.

Discrete Log-Example

Fact: 5 is a generator mod 73. All arithmetic is mod 73.
Discuss the following with your neighbor:

1. Find x such that 5x ≡ 25

2. Find x such that 5x ≡ 26

1. Find x such that 5x ≡ 25. x = 2 obv works.

2. Find x such that 5x ≡ 26. Do not know. Could try computing
53, 54, . . . , until you get 26. Might take ∼ 70 steps.

The second problem seems hard.

Discrete Log-General

Definition Let p be a prime and g be a generator mod p.
The Discrete Log Problem is:
given y , find x such that g x = y .

Discuss: Is this problem computationally hard?

1. If g , y are small so that then could be easy.
Example: 7x ≡ 49 (mod 1009) is easy.

2. If g small, y large, then the problem is sometimes easy (HW).

3. If g , y ∈ {p3 , . . . ,
2p
3 } then problem suspected hard.

4. Obv alg: O(p) steps. There is an O(
√
p) alg. Still too slow.

Discrete Log-General

Definition Let p be a prime and g be a generator mod p.
The Discrete Log Problem is:
given y , find x such that g x = y .

Discuss: Is this problem computationally hard?

1. If g , y are small so that then could be easy.
Example: 7x ≡ 49 (mod 1009) is easy.

2. If g small, y large, then the problem is sometimes easy (HW).

3. If g , y ∈ {p3 , . . . ,
2p
3 } then problem suspected hard.

4. Obv alg: O(p) steps. There is an O(
√
p) alg. Still too slow.

Consider What We Already Have Here

I Exponentiation is Easy.

I Discrete Log is thought to be Hard.

Can we come up with a crypto system where Alice and Bob do
Exponentiation to encrypt and decrypt, while Eve has to do
Discrete Log to crack it?

No. But we’ll come close.

Consider What We Already Have Here

I Exponentiation is Easy.

I Discrete Log is thought to be Hard.

Can we come up with a crypto system where Alice and Bob do
Exponentiation to encrypt and decrypt, while Eve has to do
Discrete Log to crack it?

No. But we’ll come close.

Consider What We Already Have Here

I Exponentiation is Easy.

I Discrete Log is thought to be Hard.

Can we come up with a crypto system where Alice and Bob do
Exponentiation to encrypt and decrypt, while Eve has to do
Discrete Log to crack it?

No. But we’ll come close.

Finding Generators

First Attempt at, given p, find a gen for Zp

1. Input p

2. For g = 2 to p − 1

Compute g1, g2, . . . , gp−1 until either hit a repeat or fin-
ish. If repeats then g is NOT a generator, so goto the next
g . If finishes then output g and stop.

PRO: ∼ p/2 g ’s are gens so O(1) iterations.
CON: Computing g1, . . . , gp−1 is O(p log p) operations.

Finding Generators

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x = 1.

Second Attempt at, given p, find a gen for Zp

1. Input p

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = 2 to p − 1
Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?

PRO: As noted before, O(1) iterations.
PRO: Every iter – O(|F |(log p)) ops. |F | ≤ log p so okay.
BIG CON: Factoring p − 1? Really? Darn!

Finding Generators

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x = 1.

Second Attempt at, given p, find a gen for Zp

1. Input p

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = 2 to p − 1
Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?
PRO: As noted before, O(1) iterations.
PRO: Every iter – O(|F |(log p)) ops. |F | ≤ log p so okay.

BIG CON: Factoring p − 1? Really? Darn!

Finding Generators

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x = 1.

Second Attempt at, given p, find a gen for Zp

1. Input p

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = 2 to p − 1
Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?
PRO: As noted before, O(1) iterations.
PRO: Every iter – O(|F |(log p)) ops. |F | ≤ log p so okay.
BIG CON: Factoring p − 1? Really? Darn!

Finding Generators

Idea:Pick p such that p − 1 = 2q where q is prime.
Third Attempt at, given p, find a gen for Zp

1. Input p a prime such that p − 1 = 2q where q is prime.

2. Factor p − 1. Let F be the set of its factors except p − 1.
Thats EASY: F = {2, q}.

3. For g = 2 to p − 1
Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?

PRO: As noted above O(1) iterations.
PRO: Every iteration does O(|F |(log p)) = O(log p) operations.
CON: None. But need both p and p−1

2 are primes.

Finding Generators

Idea:Pick p such that p − 1 = 2q where q is prime.
Third Attempt at, given p, find a gen for Zp

1. Input p a prime such that p − 1 = 2q where q is prime.

2. Factor p − 1. Let F be the set of its factors except p − 1.
Thats EASY: F = {2, q}.

3. For g = 2 to p − 1
Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO: As noted above O(1) iterations.
PRO: Every iteration does O(|F |(log p)) = O(log p) operations.

CON: None. But need both p and p−1
2 are primes.

Finding Generators

Idea:Pick p such that p − 1 = 2q where q is prime.
Third Attempt at, given p, find a gen for Zp

1. Input p a prime such that p − 1 = 2q where q is prime.

2. Factor p − 1. Let F be the set of its factors except p − 1.
Thats EASY: F = {2, q}.

3. For g = 2 to p − 1
Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO: As noted above O(1) iterations.
PRO: Every iteration does O(|F |(log p)) = O(log p) operations.
CON: None. But need both p and p−1

2 are primes.

Primality Testing – What is Really True

Trying to test a number of length n (n bits, so number is ∼ 2n).

1. Exists an algorithm has prob of failure ≤ 1
2p . Good enough!

2. Exists deterministic poly time algorithm but is much slower.

Generating Primes (also needed for RSA)

Take as given: Primality Testing is FAST.

First Attempt at, given n, generate a prime of length n.

1. Input(n)

2. Pick y ∈ {0, 1}n−1 at random.

3. x = 1y (so x is a true n-bit number)

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?

PRO: NT tells us returns a prime within 3n2 tries with high prob.
CON: None! Algorithm is fine! Can speed it up a bit (HW).

Generating Primes (also needed for RSA)

Take as given: Primality Testing is FAST.

First Attempt at, given n, generate a prime of length n.

1. Input(n)

2. Pick y ∈ {0, 1}n−1 at random.

3. x = 1y (so x is a true n-bit number)

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO: NT tells us returns a prime within 3n2 tries with high prob.

CON: None! Algorithm is fine! Can speed it up a bit (HW).

Generating Primes (also needed for RSA)

Take as given: Primality Testing is FAST.

First Attempt at, given n, generate a prime of length n.

1. Input(n)

2. Pick y ∈ {0, 1}n−1 at random.

3. x = 1y (so x is a true n-bit number)

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO: NT tells us returns a prime within 3n2 tries with high prob.
CON: None! Algorithm is fine! Can speed it up a bit (HW).

Generating Safe Primes

Definition
p is a safe prime if p is prime and p−1

2 is prime.

First Attempt at, given n, generate a safe prime of length n

1. Input(n)

2. Pick y ∈ {0, 1}n−21 at random.

3. x = 1y (note that x is odd).

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?

PRO: NT tells us returns prime quickly with high prob.
CON: None. Algorithm is fine! Can speed it up a bit (HW).

Generating Safe Primes

Definition
p is a safe prime if p is prime and p−1

2 is prime.

First Attempt at, given n, generate a safe prime of length n

1. Input(n)

2. Pick y ∈ {0, 1}n−21 at random.

3. x = 1y (note that x is odd).

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?
PRO: NT tells us returns prime quickly with high prob.

CON: None. Algorithm is fine! Can speed it up a bit (HW).

Generating Safe Primes

Definition
p is a safe prime if p is prime and p−1

2 is prime.

First Attempt at, given n, generate a safe prime of length n

1. Input(n)

2. Pick y ∈ {0, 1}n−21 at random.

3. x = 1y (note that x is odd).

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?
PRO: NT tells us returns prime quickly with high prob.
CON: None. Algorithm is fine! Can speed it up a bit (HW).

The Diffie-Helman Key Exchange

Alice and Bob will share a secret s.

1. Alice finds a (p, g), p of length n, g gen for Zp. Arith mod p.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks random a ∈ {p3 , . . . ,
2p
3 }. Alice computes ga and

sends it to Bob in the clear (Eve can see it).

4. Bob picks random b ∈ {p3 , . . . ,
2p
3 }. Bob computes gb and

sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab.

6. Bob computes (ga)b = gab.

7. gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?

The Diffie-Helman Key Exchange

Alice and Bob will share a secret s.

1. Alice finds a (p, g), p of length n, g gen for Zp. Arith mod p.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks random a ∈ {p3 , . . . ,
2p
3 }. Alice computes ga and

sends it to Bob in the clear (Eve can see it).

4. Bob picks random b ∈ {p3 , . . . ,
2p
3 }. Bob computes gb and

sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab.

6. Bob computes (ga)b = gab.

7. gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.

Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?

The Diffie-Helman Key Exchange

Alice and Bob will share a secret s.

1. Alice finds a (p, g), p of length n, g gen for Zp. Arith mod p.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks random a ∈ {p3 , . . . ,
2p
3 }. Alice computes ga and

sends it to Bob in the clear (Eve can see it).

4. Bob picks random b ∈ {p3 , . . . ,
2p
3 }. Bob computes gb and

sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab.

6. Bob computes (ga)b = gab.

7. gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!

Question: Can Eve find out s?

The Diffie-Helman Key Exchange

Alice and Bob will share a secret s.

1. Alice finds a (p, g), p of length n, g gen for Zp. Arith mod p.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks random a ∈ {p3 , . . . ,
2p
3 }. Alice computes ga and

sends it to Bob in the clear (Eve can see it).

4. Bob picks random b ∈ {p3 , . . . ,
2p
3 }. Bob computes gb and

sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab.

6. Bob computes (ga)b = gab.

7. gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?

