# Public Key <br> Cryptography: Attacks on RSA, NON-RSA Encryption 

# Public Key Cryptography: Low e Attacks on RSA 

## Needed Math: Chinese Remainder Theorem Example

Find $x$ such that:

$$
\begin{aligned}
& x \equiv 17 \quad(\bmod 31) \\
& x \equiv 20 \quad(\bmod 37)
\end{aligned}
$$

a) The inverse of $31 \bmod 37$ is 6
b) The inverse of $37 \bmod 31$ is the inverse of $6 \bmod 31$ which is 26 .
c) $20 \times 6 \times 31+17 \times 26 \times 37=20,074$

$$
20 \times(31)^{-1} \times 31+17 \times(37)^{-1} \times 37
$$

Mod 31: First term is 0 . Second term is 17 . So 17.
Mod 37: First term is 20 . Second term is 0 . So 20.
So $x=20,074$ is answer.

## Needed Math: Chinese Remainder Theorem Example

Find $x$ such that:

$$
x \equiv 17 \quad(\bmod 31) \quad \& \quad x \equiv 20 \quad(\bmod 37)
$$

So $x=20,074$ is answer. Can we find a smaller $x$ ?
We only care about $x(\bmod 31)$ and $x(\bmod 37)$.
Note:

$$
\begin{array}{llll}
x \equiv 17 & (\bmod 31) & \Longrightarrow x-31 \times 37 \equiv 17 & (\bmod 31) \\
x \equiv 20 & (\bmod 37) & \Longrightarrow x-31 \times 37 \equiv 20 \quad(\bmod 37)
\end{array}
$$

If $x$ works then $x-31 \times 37$ works. Iterate until get between 0 and $31 \times 37$. Whats this called? Discuss

## Needed Math: Chinese Remainder Theorem Example

Find $x$ such that:

$$
x \equiv 17 \quad(\bmod 31) \quad \& \quad x \equiv 20 \quad(\bmod 37)
$$

So $x=20,074$ is answer. Can we find a smaller $x$ ?
We only care about $x(\bmod 31)$ and $x(\bmod 37)$.
Note:

$$
\begin{array}{lll}
x \equiv 17 & (\bmod 31) & \Longrightarrow x-31 \times 37 \equiv 17 \\
x \equiv 20 & (\bmod 37) & \Longrightarrow x-31 \times 37 \equiv 20
\end{array} \quad(\bmod 37)
$$

If $x$ works then $x-31 \times 37$ works. Iterate until get between 0 and $31 \times 37$. Whats this called? Discuss $\times(\bmod 31 \times 37)$

## Needed Math: Chinese Remainder Theorem Example

Find $x$ such that:

$$
x \equiv 17 \quad(\bmod 31) \quad \& \quad x \equiv 20 \quad(\bmod 37)
$$

So $x=20,074$ is answer. Can we find a smaller $x$ ?
We only care about $x(\bmod 31)$ and $x(\bmod 37)$.
Note:

$$
\begin{array}{llll}
x \equiv 17 & (\bmod 31) & \Longrightarrow x-31 \times 37 \equiv 17 & (\bmod 31) \\
x \equiv 20 & (\bmod 37) & \Longrightarrow x-31 \times 37 \equiv 20 \quad(\bmod 37)
\end{array}
$$

If $x$ works then $x-31 \times 37$ works. Iterate until get between 0 and $31 \times 37$. Whats this called? Discuss $\times(\bmod 31 \times 37)$
Upshot: Can take $x=20,074(\bmod 31 \times 37)=629$

## Needed Math: Chinese Remainder Theorem $L=2$ Case

1. Input $a, b, N_{1}, N_{2}, N_{1}, N_{2}$, rel primes. Want $0 \leq x \leq N_{1} N_{2}$ :

$$
\begin{aligned}
& x \equiv a \quad\left(\bmod N_{1}\right) \\
& x \equiv b \quad\left(\bmod N_{2}\right)
\end{aligned}
$$

2. Find the inverse of $N_{1} \bmod N_{2}$ and denote this $N_{1}^{-1}$.
3. Find the inverse of $N_{2} \bmod N_{1}$ and denote this $N_{2}^{-1}$.
4. $y=b N_{1}^{-1} N_{1}+a N_{2}^{-1} N_{2}$
$\operatorname{Mod} N_{1}: 1$ st term is 0,2 nd term is a. So $y \equiv a\left(\bmod N_{1}\right)$.
$\operatorname{Mod} N_{2}: 2$ nd term is 0,1 st term is $b$. So $y \equiv b\left(\bmod N_{2}\right)$.
5. $x \equiv y\left(\bmod N_{1} N_{2}\right)$. (Convention that $\left.0 \leq x \leq N_{1} N_{2}-1\right)$

## Needed Math: The Chinese Remainder Theorem

Theorem: If $N_{1}, \ldots, N_{L}$ are rel prime, $x_{1}, \ldots, x_{L}$ are anything, then there exists $x$ with $0 \leq x \leq N_{1} \cdots N_{L}$ such that
$x \equiv x_{1}\left(\bmod N_{1}\right)$
$x \equiv x_{2}\left(\bmod N_{2}\right)$
$\vdots$
$x \equiv x_{L}\left(\bmod N_{L}\right)$
Proof: On HW.
Notation: CRT is Chinese Remainder Theorem.

## Needed Math: The e Theorem, $L=2$ case

Theorem: Assume $N_{1}, N_{2}$ are rel prime, $e, m \in \mathbb{N}$. Let
$0 \leq x<N_{1} N_{2}$ be the number from CRT such that
$x \equiv m^{e}\left(\bmod N_{1}\right)$
$x \equiv m^{e}\left(\bmod N_{2}\right)$
Then $x \equiv m^{e}\left(\bmod N_{1} N_{2}\right)$. IF $m^{e}<N_{1} N_{2}$ then $x=m^{e}$.
Proof: There exists $k_{1}, k_{2}$ such that
$x=m^{e}+k_{1} N_{1} \quad k_{1} \in \mathbb{Z}$, Could be negative)
$x=m^{e}+k_{2} N_{2} \quad k_{2} \in \mathbb{Z}$, Could be negative)
Subtract to get $k_{1} N_{1}=k_{2} N_{2}$. Since $N_{1}, N_{2}$ rel prime, $N_{1}$ divides $k_{2}$, so $k_{2}=k N_{1}$.
$x=m^{e}+k N_{1} N_{2}$. Hence $x \equiv m^{e}\left(\bmod N_{1} N_{2}\right)$.
If $0 \leq m^{e}<N_{1} N_{2}$ then since $0 \leq x \leq N_{1} N_{2} \& x \equiv m^{e}, x=m^{e}$.

## Needed Math: The e Theorem, $L=2$, Example

$$
\begin{aligned}
& N=31 \times 37=1147 . m=6, e=4 . \text { Note that } 6^{4}=1296>1147 . \\
& x \equiv 6^{4}(\bmod 31) \\
& x \equiv 6^{4}(\bmod 37) \\
& x=149 . \text { So } 149 \equiv 6^{4}(\bmod 1147) \text { but } \\
& \qquad 149=6^{4}-1147, \text { so }
\end{aligned}
$$

149 is NOT a power of 4 .

## Needed Math: The e Theorem, $L=2$, Example

$$
\begin{aligned}
& N=31 \times 37=1147 . m=6, e=4 . \text { Note that } 6^{4}=1296>1147 \\
& x \equiv 6^{4}(\bmod 31) \\
& x \equiv 6^{4}(\bmod 37) \\
& x=149 . \text { So } 149 \equiv 6^{4}(\bmod 1147) \text { but } \\
& \qquad 149=6^{4}-1147, \text { so }
\end{aligned}
$$

149 is NOT a power of 4 .
$N=31 \times 37=1147 . m=5, e=4$. Note that $5^{4}=625<1147$.
$x \equiv 5^{4}(\bmod 31)$
$x \equiv 5^{4}(\bmod 37)$
$x=625$. So $625 \equiv 5^{4}(\bmod 1147)$ but
$625<1147$, so $x=625$ IS a power of 4 .

## Needed Math: The e Theorem, General L

Theorem: Assume $N_{1}, \ldots, N_{L}$ are rel prime, $e, m \in \mathbb{N}$. Assume there is an $x$ (NOT necc $\left.\leq N_{1} \cdots N_{L}\right)$ such that

$$
\begin{array}{cc}
x \equiv m^{e} & \left(\bmod N_{1}\right) \\
\vdots & \vdots \\
x \equiv m^{e} & \left(\bmod N_{L}\right)
\end{array}
$$

Then $x \equiv m^{e}\left(\bmod N_{1} \cdots N_{L}\right)$. If $m^{e}<N_{1} \cdots N_{L}$ then $x=m^{e}$. Proof: Might be on a future HW, or Midterm, or Final, or any combination of the three. Or might not.

## Low Exponent Attack: Example

1) $N_{a}=377, N_{b}=391, N_{c}=589$. For Alice, Bob, Carol.
2) $e=3$.
3) Zelda sends $m$ to all three. Eve will find $m$. Note $m<377$.
1. Zelda sends Alice 330 . So $m^{3} \equiv 330(\bmod 377)$.
2. Zelda sends Bob 34 . So $m^{3} \equiv 34(\bmod 391)$.
3. Zelda sends Carol 419. So $m^{3} \equiv 419(\bmod 589)$.

Eve sees all of this. Eve uses CRT to find $0 \leq x<377 \times 391 \times 589$.
$x \equiv 330 \equiv m^{3}(\bmod 377)$
$x \equiv 34 \equiv m^{3}(\bmod 391)$
$x \equiv 419 \equiv m^{3}(\bmod 589)$
Eve finds such a number: $x=1,061,208$.
By e-Theorem

$$
1,061,208 \equiv m^{3} \quad(\bmod 377 \times 391 \times 589)
$$

## Low Exponent Attack: Example Continued

By e-Theorem

$$
1,061,208 \equiv m^{3} \quad(\bmod 377 \times 391 \times 589)
$$

Most Important Fact: Recall that $m \leq 377$. Hence note that:

$$
\begin{aligned}
& m^{3}<377 \times 377 \times 377<377 \times 391 \times 589 \\
& m^{3} \equiv 1,061,208 \quad(\bmod 377 \times 391 \times 589)
\end{aligned}
$$

Therefore the $m^{3}$ calcuation cannot have wrap-around. Hence $m$ can be gotten from the ordinary cube root operation. We find

$$
(1,061,208)^{1 / 3}=102
$$

So $m=102$,
Note: Cracked RSA without factoring.

## Where did $e=3$ Come Into This?

Since $m<377$ we had:

$$
m^{3}<377 \times 377 \times 377<377 \times 391 \times 589
$$

What is $e=4$ was used? Then everything goes through until we get to:

$$
m^{4}<377 \times 377 \times 377 \times 377
$$

We need this to be $<377 \times 391 \times 589$.
But its not. So we needed
$e \leq$ The number of people

## Low Exponent Attack: Generalized

1) $L$ people. Use $N_{1}<\cdots<N_{L}$. All Rel Prime.
2) $e \leq L$
3) Zelda sends $m$ to $L$ people. Note $m<N_{1}$.

## Low Exponent Attack: Generalized

1) $L$ people. Use $N_{1}<\cdots<N_{L}$. All Rel Prime.
2) $e \leq L$
3) Zelda sends $m$ to $L$ people. Note $m<N_{1}$.
4) You will finish this on HW. You will write psuedocode.

Can you run the algorithm even if $e$ is not small? Discuss

## Low Exponent Attack: Generalized

1) $L$ people. Use $N_{1}<\cdots<N_{L}$. All Rel Prime.
2) $e \leq L$
3) Zelda sends $m$ to $L$ people. Note $m<N_{1}$.
4) You will finish this on HW. You will write psuedocode.

Can you run the algorithm even if $e$ is not small? Discuss Yes- and if $m$ is small enough it may even work. But it needs to report FAILURE if get $x>N_{1} \cdots N_{L}$.

> Public Key Cryptography: NON-RSA Encryption

## RSA

Let $n$ be a security parameter

1. Alice picks two primes $p, q$ of length $n$ and computes $N=p q$.
2. Alice computes $\phi(N)=\phi(p q)=(p-1)(q-1)$. Denote by $R$
3. Alice picks an $e \in\left\{\frac{R}{3}, \ldots, \frac{2 R}{3}\right\}$ that is relatively prime to $R$. Alice finds $d$ such that $e d \equiv 1(\bmod R)$.
4. Alice broadcasts $(N, e)$. (Bob and Eve both see it.)
5. Bob: To send $m \in\{1, \ldots, N-1\}$, send $m^{e}(\bmod N)$.

6 . If Alice gets $m^{e}(\bmod N)$ she computes

$$
\left(m^{e}\right)^{d} \equiv m^{e d} \equiv m^{e d} \quad(\bmod R) \equiv m^{1} \quad(\bmod R) \equiv m
$$

## Is RSA Hard to Crack?

Hardness Assumption for RSA: The following problem is hard: Given $(N, e, c)$ where $N=p q$ and $c \equiv m^{e}(\bmod N)$ for some $m$, Find $m$.

Objection: Hardness assumption not natural.
Objection: Hardness assumption does not have a long history of being tested.
We Want: An Encryption scheme based on Factoring being hard.
Is there one? Vote: Yes, No, or Unk?

## Is RSA Hard to Crack?

Hardness Assumption for RSA: The following problem is hard: Given $(N, e, c)$ where $N=p q$ and $c \equiv m^{e}(\bmod N)$ for some $m$, Find $m$.

Objection: Hardness assumption not natural.
Objection: Hardness assumption does not have a long history of being tested.
We Want: An Encryption scheme based on Factoring being hard.
Is there one? Vote: Yes, No, or Unk?
Yes. Rabin Encryption.

## Rabin Encryption

## Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7)$

## Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$

## Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7)$

## Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$

## Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$

## Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$ NONE

## Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$ NONE
4. Solve $m^{2} \equiv 4(\bmod 7)$

## Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$ NONE
4. Solve $m^{2} \equiv 4(\bmod 7) m=2,5$

## Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$ NONE
4. Solve $m^{2} \equiv 4(\bmod 7) m=2,5$
5. Solve $m^{2} \equiv 5(\bmod 7)$

## Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$ NONE
4. Solve $m^{2} \equiv 4(\bmod 7) m=2,5$
5. Solve $m^{2} \equiv 5(\bmod 7)$ NONE

## Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$ NONE
4. Solve $m^{2} \equiv 4(\bmod 7) m=2,5$
5. Solve $m^{2} \equiv 5(\bmod 7)$ NONE
6. Solve $m^{2} \equiv 6(\bmod 7)$

## Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$ NONE
4. Solve $m^{2} \equiv 4(\bmod 7) m=2,5$
5. Solve $m^{2} \equiv 5(\bmod 7)$ NONE
6. Solve $m^{2} \equiv 6(\bmod 7)$ NONE

## Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$ NONE
4. Solve $m^{2} \equiv 4(\bmod 7) m=2,5$
5. Solve $m^{2} \equiv 5(\bmod 7)$ NONE
6. Solve $m^{2} \equiv 6(\bmod 7)$ NONE

## Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$ NONE
4. Solve $m^{2} \equiv 4(\bmod 7) m=2,5$
5. Solve $m^{2} \equiv 5(\bmod 7)$ NONE
6. Solve $m^{2} \equiv 6(\bmod 7)$ NONE

Since $a^{2}=(-a)^{2}$ will always have, for all prime $p$, $\frac{p-1}{2}$ elements of $\{1, \ldots, p\}$ have sqrts $\bmod p$.
$\frac{p-1}{2}$ elements of $\{1, \ldots, p\}$ do not have sqrts $\bmod p$.
Note: Computing Square Roots Mod $n$ will mean determining if they exists and if so return all of them.

## Math for Rabin Encryption - Square Roots Mod $p$

Theorem: $c$ has a sqrt $\bmod p$ iff $c^{(p-1) / 2}-1 \equiv 0$.

$$
c=m^{2} \Longrightarrow c^{(p-1) / 2} \equiv\left(m^{2}\right)^{(p-1) / 2} \equiv m^{p-1} \equiv 1
$$

The equation $x^{(p-1) / 2}-1 \equiv 0$ has $(p-1) / 2$ roots.
There are $(p-1) / 2$ numbers that have sqrts. Hence If $c$ does not have a sqrt root then $c^{(p-1) / 2}-1 \not \equiv 0$.

Theorem: If $p \equiv 3(\bmod 4)$ then easy to compute sqrt $\bmod p$. Given $c$ if $c^{(p-1) / 2} \not \equiv 1$ NO. If $\equiv 1$ then:

$$
\left(c^{(p+1) / 4}\right)^{2} \equiv c^{(p+1) / 2} \equiv c\left(c^{(p-1) / 2}\right) \equiv c \times 1 \equiv c
$$

So output $c^{(p+1) / 4}$ and other sqrt is $p-c^{(p+1) / 4}$.
Note: If $p \equiv 1(\bmod 4)$ also easy to do sqrt.
Upshot: Sqrt mod a prime is easy!

## Math for Rabin Encryption - Procedures

We refashion the previous slide to make it into an algorithm How to find square roots $\bmod p$ if $p \equiv 3(\bmod 4)$. All arithmetic is $\bmod p$.

Input(c)
Compute $c^{(p-1) / 2}$. If it is NOT 1 then output There is no square root!. If it is 1 then goto next step
Compute $a=c^{(p+1) / 4}$.
Output $a$ and $p-a$. These are the two square roots.
Note: There is a similar algorithm for $p \equiv 1(\bmod 4)$ but it is slightly more complicated.

Theorem: $c$ has a sqrt $\bmod p$ iff $c^{(p-1) / 2}-1 \equiv 0$.

## Math for Rabin Encryption - Square Roots Mod $n$

What about sqrt mod a composite. Try these:

1. Solve $m^{2} \equiv 9(\bmod 1147)$
2. Solve $m^{2} \equiv 101(\bmod 1147)$

## Math for Rabin Encryption - Square Roots Mod $n$

What about sqrt mod a composite. Try these:

1. Solve $m^{2} \equiv 9(\bmod 1147)$
2. Solve $m^{2} \equiv 101(\bmod 1147)$
3. Solve $m^{2} \equiv 9(\bmod 1147)$ :

## Math for Rabin Encryption - Square Roots Mod $n$

What about sqrt mod a composite. Try these:

1. Solve $m^{2} \equiv 9(\bmod 1147)$
2. Solve $m^{2} \equiv 101(\bmod 1147)$
3. Solve $m^{2} \equiv 9(\bmod 1147)$ : Answers: $3,34,1113,1144$.

## Math for Rabin Encryption - Square Roots Mod $n$

What about sqrt mod a composite. Try these:

1. Solve $m^{2} \equiv 9(\bmod 1147)$
2. Solve $m^{2} \equiv 101(\bmod 1147)$
3. Solve $m^{2} \equiv 9(\bmod 1147)$ : Answers: $3,34,1113,1144$.
4. Solve $m^{2} \equiv 101(\bmod 1147)$ :

## Math for Rabin Encryption - Square Roots Mod $n$

What about sqrt mod a composite. Try these:

1. Solve $m^{2} \equiv 9(\bmod 1147)$
2. Solve $m^{2} \equiv 101(\bmod 1147)$
3. Solve $m^{2} \equiv 9(\bmod 1147)$ : Answers: $3,34,1113,1144$.
4. Solve $m^{2} \equiv 101(\bmod 1147)$ : Answers: Hmmm.

## Math for Rabin Encryption - Square Roots Mod $n$

What about sqrt mod a composite. Try these:

1. Solve $m^{2} \equiv 9(\bmod 1147)$
2. Solve $m^{2} \equiv 101(\bmod 1147)$
3. Solve $m^{2} \equiv 9(\bmod 1147)$ : Answers: $3,34,1113,1144$.
4. Solve $m^{2} \equiv 101(\bmod 1147)$ : Answers: Hmmm.

Solve $m^{2} \equiv 9(\bmod 1147): 3,1147-3=1144$ easy. If had 34 then $1147-34=1144$ easy. But how to get 34 ?

Vote: Is finding sqrts mod $N$ hard? Yes, No, Unk?

## Math for Rabin Encryption - Square Roots Mod $n$

What about sqrt mod a composite. Try these:

1. Solve $m^{2} \equiv 9(\bmod 1147)$
2. Solve $m^{2} \equiv 101(\bmod 1147)$
3. Solve $m^{2} \equiv 9(\bmod 1147)$ : Answers: $3,34,1113,1144$.
4. Solve $m^{2} \equiv 101(\bmod 1147)$ : Answers: Hmmm.

Solve $m^{2} \equiv 9(\bmod 1147): 3,1147-3=1144$ easy. If had 34 then $1147-34=1144$ easy. But how to get 34 ?

Vote: Is finding sqrts mod $N$ hard? Yes, No, Unk?
Unk: Many computational questions in Number Theory are Unk.

## $m^{2} \equiv 101(\bmod 1147) 1147=31 \times 37$

$m^{2} \equiv 101(\bmod 31) . m^{2} \equiv 8(\bmod 31): m \equiv \pm 15(\bmod 31)$
$m^{2} \equiv 101(\bmod 37) \cdot m^{2} \equiv 27(\bmod 37) m \equiv \pm 8(\bmod 37)$.
One approach: Want number $m \in\{1, \ldots, 1146\}$ such that $m \equiv 15(\bmod 31)$
$m \equiv 8(\bmod 37)$
Use CRT to get:

$$
m=15918 \equiv 1007 \quad(\bmod 1147)
$$

## Math for Rabin Encryption - Square Roots Mod $n$

By using $\pm 15(\bmod 31)$ and $\pm 8(\bmod 37)$ can find 4 sqrts.
Upshot: sqrts $\bmod N$ easy if know the factors of $n$.
Upshot: Always get 0 or 2 or 4 sqrts if $\bmod N=p q$.
What about finding sqrts $\bmod N$ where factors of $N$ are not known?

## Math for Rabin Encryption - Square Roots Mod $n$

By using $\pm 15(\bmod 31)$ and $\pm 8(\bmod 37)$ can find 4 sqrts.
Upshot: sqrts mod $N$ easy if know the factors of $n$.
Upshot: Always get 0 or 2 or 4 sqrts if $\bmod N=p q$.
What about finding sqrts mod $N$ where factors of $N$ are not known?
Normally I would say
The problem of finding sqrt $\bmod N$ where the factors of $N$ are not known is believed to be hard.

## Math for Rabin Encryption - Square Roots Mod $n$

By using $\pm 15(\bmod 31)$ and $\pm 8(\bmod 37)$ can find 4 sqrts.
Upshot: sqrts mod $N$ easy if know the factors of $n$.
Upshot: Always get 0 or 2 or 4 sqrts if $\bmod N=p q$.
What about finding sqrts mod $N$ where factors of $N$ are not known?
Normally I would say
The problem of finding sqrt $\bmod N$ where the factors of $N$ are not known is believed to be hard.
This time I can say something stronger.

## Math for Rabin Encryption - Square Roots Mod $n$

How hard is sqrts $\bmod N$ when factors of $N$ not known?

## Math for Rabin Encryption - Square Roots Mod $n$

How hard is sqrts mod $N$ when factors of $N$ not known?
Theorem: If finding sqrts mod $N$ is easy then factoring is easy.

1. Given $N=p q$ ( $p, q$ unknown) want to factor it.
2. Pick a random $c$ and find its sqrts.
3. If it doesn't have $\geq 4$ sqrts then goto step 2 .
4. The four sqrts are of the form $\pm x$ and $\pm y$. Now use $x, y$. We know that

$$
\begin{gathered}
x^{2} \equiv y^{2} \quad(\bmod N) \\
x^{2}-y^{2} \equiv 0 \quad(\bmod N) \\
(x-y)(x+y) \equiv 0 \quad(\bmod N) \\
G C D(x-y, N) \text { or } G C D(x+y, N) \text { likely factor. } \\
\text { Discuss: Why did } I \text { use } x, y \text { instead of } x,-x ?
\end{gathered}
$$

## All you Need to Know for Rabin's Scheme

1. Finding primes is easy.
2. Squaring is easy.
3. If $N$ is factored then sqrt $\bmod N$ is easy.
4. If $N$ is not factored then sqrt $\bmod N$ is thought to be hard (equiv fo factoring).

## Rabin's Encryption Scheme

$n$ is a security parameter

1. Alice gen $p, q$ primes of length $n$. Let $N=p q$. Send $N$.
2. Encode: To send $m$, Bob sends $c=m^{2}(\bmod N)$.
3. Decode: Alice can find $m$ such that $m^{2} \equiv c(\bmod N)$.

## Rabin's Encryption Scheme

$n$ is a security parameter

1. Alice gen $p, q$ primes of length $n$. Let $N=p q$. Send $N$.
2. Encode: To send $m$, Bob sends $c=m^{2}(\bmod N)$.
3. Decode: Alice can find $m$ such that $m^{2} \equiv c(\bmod N)$. OH! There will be two or four of them! What to do? Later.

## Rabin's Encryption Scheme

$n$ is a security parameter

1. Alice gen $p, q$ primes of length $n$. Let $N=p q$. Send $N$.
2. Encode: To send $m$, Bob sends $c=m^{2}(\bmod N)$.
3. Decode: Alice can find $m$ such that $m^{2} \equiv c(\bmod N)$. OH ! There will be two or four of them! What to do? Later.
PRO: Easy for Alice and Bob
BIG PRO: Factoring Hard is hardness assumption.
CON: Alice has to figure out which of the sqrts is correct message.
Caveat: If $m$ is English text then Alice can tell which one it is.
Caveat: If not. Hmmm.

## How to Modify Rabin's Encryption?

Lets looks at $\bmod 21=3 \times 7$.
$1^{2}, 8^{2}, 13^{2}, 20^{2} \equiv 1$
$2^{2}, 5^{2}, 16^{2}, 19^{2} \equiv 4$
$3^{2}, 18^{2} \equiv 9$
$4^{2}, 10^{2}, 11^{2}, 17^{2} \equiv 16$
$6^{2}, 15^{2} \equiv 15$
$7^{2}, 14^{2} \equiv 7$
$9^{2}, 12^{2} \equiv 18$
Question: What do the red numbers have in common? Discuss

## How to Modify Rabin's Encryption?

Lets looks at $\bmod 21=3 \times 7$.
$1^{2}, 8^{2}, 13^{2}, 20^{2} \equiv 1$
$2^{2}, 5^{2}, 16^{2}, 19^{2} \equiv 4$
$3^{2}, 18^{2} \equiv 9$
$4^{2}, 10^{2}, 11^{2}, 17^{2} \equiv 16$
$6^{2}, 15^{2} \equiv 15$
$7^{2}, 14^{2} \equiv 7$
$9^{2}, 12^{2} \equiv 18$
Question: What do the red numbers have in common? Discuss They all have square roots! They are all also on the RHS.

## How to Modify Rabin's Encryption?

Lets looks at $\bmod 21=3 \times 7$.
$1^{2}, 8^{2}, 13^{2}, 20^{2} \equiv 1$
$2^{2}, 5^{2}, 16^{2}, 19^{2} \equiv 4$
$3^{2}, 18^{2} \equiv 9$
$4^{2}, 10^{2}, 11^{2}, 17^{2} \equiv 16$
$6^{2}, 15^{2} \equiv 15$
$7^{2}, 14^{2} \equiv 7$
$9^{2}, 12^{2} \equiv 18$
Question: What do the red numbers have in common? Discuss They all have square roots! They are all also on the RHS.
What is it about 21 that makes this work?

## A Theorem from Number Theory

Definition: A Blum Int is product of two primes $\equiv 3(\bmod 4)$. Example: $21=3 \times 7$.

Notation: $S Q_{N}$ is the set of squares $\bmod N$. (Often called $Q R_{N}$.) Example: If $N=21$ then $S Q_{N}=\{1,4,7,9,15,16,18\}$.

Theorem: Assume $N$ is a Blum Integer. Let $m \in S Q_{N}$. Then of the two or four sqrts of $m$, only one is itself in $S Q_{N}$. Proof: Omitted. Note: (1) not that hard, and (2) in Katz book.

We use Theorem to modify Rabin Encryption.

## Rabin's Encryption Scheme 2.0

(This modification by Blum and Williams.) $n$ is a security parameter.

1. Alice gen $p, q$ primes of length $n$ such that $p, q \equiv 3(\bmod 4)$. Let $N=p q$. Send $N$.
2. Encode: To send $m$, Bob sends $c=m^{2}(\bmod N)$. Only send $m$ 's in $S Q_{N}$.
3. Decode: Alice can find 2 or $4 m$ such that $m^{2} \equiv c(\bmod N)$. Take the $m \in S Q_{N}$.
PRO: Easy for Alice and Bob
Biggest PRO: Factoring Hard is hardness assumption.
CON: Messages have to be in $S Q_{N}$.

## Can Rabin's Encryption Scheme Can Be Cracked?

$n$ is a security parameter

1. Alice gen $p, q$ primes of length $n$. Let $N=p q$. Send $N$.
2. Encode: To send $m$, Bob sends $c=m^{2}(\bmod N)$.
3. Decode: Alice can find $m$ such that $m^{2} \equiv c(\bmod N)$. Picks a poss out somehow.
Vote: Crackable, Uncrackable, Unk

## Can Rabin's Encryption Scheme Can Be Cracked?

$n$ is a security parameter

1. Alice gen $p, q$ primes of length $n$. Let $N=p q$. Send $N$.
2. Encode: To send $m$, Bob sends $c=m^{2}(\bmod N)$.
3. Decode: Alice can find $m$ such that $m^{2} \equiv c(\bmod N)$. Picks a poss out somehow.
Vote: Crackable, Uncrackable, Unk Crackable:
Attack!: Eve picks an $m$ and tricks Alice into sending message $m$ via $m^{2} \equiv c$. Eve is hoping that Bob will find another sqrt of $m^{2}$.
Say Alice gets $m^{\prime}$. Then
$m^{2}-\left(m^{\prime}\right)^{2} \equiv 0(\bmod N)$.
$\left(m-m^{\prime}\right)\left(m+m^{\prime}\right) \equiv 0(\bmod N)$.
$m-m^{\prime}$ or $m+m^{\prime}$ may share factors with $N$ so do $\operatorname{gcd}\left(m-m^{\prime}, N\right)$ and $\operatorname{gcd}\left(m+m^{\prime}, N\right)$. Can factor $N$ and hence - game over!

## What else to known

1. Alice may need to guess which of the 2 or 4 possible messages is the one to use, which is why its not used. Blum and Williams showed how to make the message unique, but by the time they did RSA was pervasive.
2. RSA and Rabin have similar issues which require padding-randomness
3. RSA has also had attacks as we've seen.
4. Rabin can be cracked with Chosen Plaintext Attack.
5. There is a variant of Rabin that thwarts the CPA but not provably equiv to factoring.

Alternate History: Had timing been different Rabin would have been the one everyone uses.

