Public Key Crypto: Low e Attacks on RSA. REDO

Needed Math: Chinese Remainder Theorem Example

Find x such that:

$$
\begin{aligned}
& x \equiv 17 \quad(\bmod 31) \\
& x \equiv 20 \quad(\bmod 37)
\end{aligned}
$$

a) The inverse of $31 \bmod 37$ is 6
b) The inverse of $37 \bmod 31$ is the inverse of $6 \bmod 31$ which is 26 .
c) $20 \times 6 \times 31+17 \times 26 \times 37=20,074$

$$
20 \times(31)^{-1} \times 31+17 \times(37)^{-1} \times 37
$$

Mod 31: First term is 0 . Second term is 17 . So 17.
Mod 37: First term is 20 . Second term is 0 . So 20.
So $x=20,074$ is answer.

Needed Math: Chinese Remainder Theorem Example

Find x such that:

$$
x \equiv 17 \quad(\bmod 31) \quad \& \quad x \equiv 20 \quad(\bmod 37)
$$

So $x=20,074$ is answer. Can we find a smaller x ?
We only care about $x(\bmod 31)$ and $x(\bmod 37)$.
Note:

$$
\begin{array}{llll}
x \equiv 17 & (\bmod 31) & \Longrightarrow x-31 \times 37 \equiv 17 & (\bmod 31) \\
x \equiv 20 & (\bmod 37) & \Longrightarrow x-31 \times 37 \equiv 20 \quad(\bmod 37)
\end{array}
$$

If x works then $x-31 \times 37$ works. Iterate until get between 0 and 31×37. Whats this called? Discuss

Needed Math: Chinese Remainder Theorem Example

Find x such that:

$$
x \equiv 17 \quad(\bmod 31) \quad \& \quad x \equiv 20 \quad(\bmod 37)
$$

So $x=20,074$ is answer. Can we find a smaller x ?
We only care about $x(\bmod 31)$ and $x(\bmod 37)$.
Note:

$$
\begin{array}{lll}
x \equiv 17 & (\bmod 31) & \Longrightarrow x-31 \times 37 \equiv 17 \\
x \equiv 20 & (\bmod 37) & \Longrightarrow x-31 \times 37 \equiv 20
\end{array} \quad(\bmod 37)
$$

If x works then $x-31 \times 37$ works. Iterate until get between 0 and 31×37. Whats this called? Discuss $\times(\bmod 31 \times 37)$

Needed Math: Chinese Remainder Theorem Example

Find x such that:

$$
x \equiv 17 \quad(\bmod 31) \quad \& \quad x \equiv 20 \quad(\bmod 37)
$$

So $x=20,074$ is answer. Can we find a smaller x ?
We only care about $x(\bmod 31)$ and $x(\bmod 37)$.
Note:

$$
\begin{array}{llll}
x \equiv 17 & (\bmod 31) & \Longrightarrow x-31 \times 37 \equiv 17 & (\bmod 31) \\
x \equiv 20 & (\bmod 37) & \Longrightarrow x-31 \times 37 \equiv 20 \quad(\bmod 37)
\end{array}
$$

If x works then $x-31 \times 37$ works. Iterate until get between 0 and 31×37. Whats this called? Discuss $\times(\bmod 31 \times 37)$
Upshot: Can take $x=20,074(\bmod 31 \times 37)=629$

Needed Math: Chinese Remainder Theorem $L=2$ Case

1. Input $a, b, N_{1}, N_{2}, N_{1}, N_{2}$, rel primes. Want $0 \leq x \leq N_{1} N_{2}$:

$$
\begin{aligned}
& x \equiv a \quad\left(\bmod N_{1}\right) \\
& x \equiv b \quad\left(\bmod N_{2}\right)
\end{aligned}
$$

2. Find the inverse of $N_{1} \bmod N_{2}$ and denote this N_{1}^{-1}.
3. Find the inverse of $N_{2} \bmod N_{1}$ and denote this N_{2}^{-1}.
4. $y=b N_{1}^{-1} N_{1}+a N_{2}^{-1} N_{2}$
$\operatorname{Mod} N_{1}: 1$ st term is 0,2 nd term is a. So $y \equiv a\left(\bmod N_{1}\right)$.
$\operatorname{Mod} N_{2}: 2$ nd term is 0,1 st term is b. So $y \equiv b\left(\bmod N_{2}\right)$.
5. $x \equiv y\left(\bmod N_{1} N_{2}\right)$. (Convention that $\left.0 \leq x \leq N_{1} N_{2}-1\right)$

Needed Math: The Chinese Remainder Theorem

Theorem: If N_{1}, \ldots, N_{L} are rel prime, x_{1}, \ldots, x_{L} are anything, then there exists x with $0 \leq x \leq N_{1} \cdots N_{L}$ such that
$x \equiv x_{1}\left(\bmod N_{1}\right)$
$x \equiv x_{2}\left(\bmod N_{2}\right)$
\vdots
$x \equiv x_{L}\left(\bmod N_{L}\right)$
Proof: On HW.
Notation: CRT is Chinese Remainder Theorem.

Needed Math: The e Theorem, $L=2$ case

Theorem: Assume N_{1}, N_{2} are rel prime, $e, m \in \mathbb{N}$. Let
$0 \leq x<N_{1} N_{2}$ be the number from CRT such that
$x \equiv m^{e}\left(\bmod N_{1}\right)$
$x \equiv m^{e}\left(\bmod N_{2}\right)$
Then $x \equiv m^{e}\left(\bmod N_{1} N_{2}\right)$. IF $m^{e}<N_{1} N_{2}$ then $x=m^{e}$.
Proof: There exists k_{1}, k_{2} such that
$x=m^{e}+k_{1} N_{1} \quad k_{1} \in \mathbb{Z}$, Could be negative
$x=m^{e}+k_{2} N_{2} \quad k_{2} \in \mathbb{Z}$, Could be negative
Subtract to get $k_{1} N_{1}=k_{2} N_{2}$. Since N_{1}, N_{2} rel prime, N_{1} divides k_{2}, so $k_{2}=k N_{1}$.
$x=m^{e}+k N_{1} N_{2}$. Hence $x \equiv m^{e}\left(\bmod N_{1} N_{2}\right)$.
If $0 \leq m^{e}<N_{1} N_{2}$ then since $0 \leq x \leq N_{1} N_{2} \& x \equiv m^{e}, x=m^{e}$.

Needed Math: The e Theorem, $L=2$, Example

$$
\begin{aligned}
& N=31 \times 37=1147 . m=6, e=4 . \text { Note that } 6^{4}=1296>1147 . \\
& x \equiv 6^{4}(\bmod 31) \\
& x \equiv 6^{4}(\bmod 37) \\
& x=149 . \text { So } 149 \equiv 6^{4}(\bmod 1147) \text { but } \\
& \qquad 149=6^{4}-1147, \text { so }
\end{aligned}
$$

149 is NOT a power of 4 .

Needed Math: The e Theorem, $L=2$, Example

$$
\begin{aligned}
& N=31 \times 37=1147 . m=6, e=4 . \text { Note that } 6^{4}=1296>1147 \\
& x \equiv 6^{4}(\bmod 31) \\
& x \equiv 6^{4}(\bmod 37) \\
& x=149 . \text { So } 149 \equiv 6^{4}(\bmod 1147) \text { but } \\
& \qquad 149=6^{4}-1147, \text { so }
\end{aligned}
$$

149 is NOT a power of 4 .
$N=31 \times 37=1147 . m=5, e=4$. Note that $5^{4}=625<1147$.
$x \equiv 5^{4}(\bmod 31)$
$x \equiv 5^{4}(\bmod 37)$
$x=625$. So $625 \equiv 5^{4}(\bmod 1147)$ but
$625<1147$, so $x=625$ IS a power of 4 .

Needed Math: The e Theorem, General L

Theorem: Assume N_{1}, \ldots, N_{L} are rel prime, $e, m \in \mathbb{N}$. Assume there is an x (NOT necc $\left.\leq N_{1} \cdots N_{L}\right)$ such that

$$
\begin{array}{cc}
x \equiv m^{e} & \left(\bmod N_{1}\right) \\
\vdots & \vdots \\
x \equiv m^{e} & \left(\bmod N_{L}\right)
\end{array}
$$

Then $x \equiv m^{e}\left(\bmod N_{1} \cdots N_{L}\right)$. If $m^{e}<N_{1} \cdots N_{L}$ then $x=m^{e}$. Proof: Might be on a future HW, or Midterm, or Final, or any combination of the three. Or might not.

Low Exponent Attack: Example

1) $N_{a}=377, N_{b}=391, N_{c}=589$. For Alice, Bob, Carol.
2) $e=3$.
3) Zelda sends m to all three. Eve will find m. Note $m<377$.
1. Zelda sends Alice 330 . So $m^{3} \equiv 330(\bmod 377)$.
2. Zelda sends Bob 34 . So $m^{3} \equiv 34(\bmod 391)$.
3. Zelda sends Carol 419. So $m^{3} \equiv 419(\bmod 589)$.

Eve sees all of this. Eve uses CRT to find $0 \leq x<377 \times 391 \times 589$.
$x \equiv 330 \equiv m^{3}(\bmod 377)$
$x \equiv 34 \equiv m^{3}(\bmod 391)$
$x \equiv 419 \equiv m^{3}(\bmod 589)$
Eve finds such a number: $x=1,061,208$.
By e-Theorem

$$
x=1,061,208 \equiv m^{3} \quad(\bmod 377 \times 391 \times 589)
$$

Low Exponent Attack: Example Continued

By e-Theorem

$$
1,061,208 \equiv m^{3} \quad(\bmod 377 \times 391 \times 589)
$$

Most Important Fact: Recall that $m \leq 377$. Hence note that:

$$
\begin{aligned}
& m^{3}<377 \times 377 \times 377<377 \times 391 \times 589 \\
& m^{3} \equiv 1,061,208 \quad(\bmod 377 \times 391 \times 589)
\end{aligned}
$$

AH-HA: $m^{3}<N_{a} N_{b} N_{c}$. Hence
$x=1,061,208=m^{3}$, so $m=(1,061,208)^{1 / 3}=102$
Note: Cracked RSA without factoring.

Where did $e=3$ Come Into This?

Since $m<377$ we had:

$$
m^{3}<377 \times 377 \times 377<377 \times 391 \times 589
$$

What if $e=4$ was used? Then everything goes through until we get to:

$$
m^{4}<377 \times 377 \times 377 \times 377
$$

We need this to be $<377 \times 391 \times 589$.
But its not. So we needed
$e \leq$ The number of people

Low Exponent Attack: Generalized

1) L people. Use $N_{1}<\cdots<N_{L}$. All Rel Prime.
2) $e \leq L$
3) Zelda sends m to L people. Note $m<N_{1}$.

Low Exponent Attack: Generalized

1) L people. Use $N_{1}<\cdots<N_{L}$. All Rel Prime.
2) $e \leq L$
3) Zelda sends m to L people. Note $m<N_{1}$.
4) You will finish this on HW. You will write psuedocode.

Can you run the algorithm even if e is not small? Discuss

Low Exponent Attack: Generalized

1) L people. Use $N_{1}<\cdots<N_{L}$. All Rel Prime.
2) $e \leq L$
3) Zelda sends m to L people. Note $m<N_{1}$.
4) You will finish this on HW. You will write psuedocode.

Can you run the algorithm even if e is not small? Discuss
Yes If $m^{e}<N_{1} \cdots N_{L}$ then it will WORK. But if not then you need to report FAILURE.

Note: If m is small it is possible for $e>L$ but still have $m^{e}<N_{1} \cdots N_{L}$. Another reason to pad your messages!

> Public Key Cryptography: NON-RSA Encryption

RSA

Let n be a security parameter

1. Alice: rand two primes p, q of length n and computes $N=p q$.
2. Alice computes $\phi(N)=\phi(p q)=(p-1)(q-1)$. Denote by R
3. Alice: rand $e \in\left\{\frac{R}{3}, \ldots, \frac{2 R}{3}\right\}$ that is relatively prime to R. Alice finds d such that $e d \equiv 1(\bmod R)$.
4. Alice broadcasts (N, e). (Bob and Eve both see it.)
5. Bob: send $m \in\{1, \ldots, N-1\}$, send $m^{e}(\bmod N)$.

6 . Alice gets $m^{e}(\bmod N)$. She computes

$$
\left(m^{e}\right)^{d} \equiv m^{e d} \equiv m^{e d} \quad(\bmod R) \equiv m^{1} \quad(\bmod R) \equiv m
$$

Is RSA Hard to Crack?

Hardness Assumption (HA) for RSA: The following problem is hard: Given (N, e, c) where $N=p q$ and $c \equiv m^{e}(\bmod N)$ for some m, Find m.

Objection: HA not natural.
Objection: Contrast:

1. People have been trying to factor QUICKLY since the 1600 's. Fermat has the first algorithm I know of.
2. People have been trying to crack RSA since the 1970's.
3. A large part of that effort has been MORE effort on factoring.
4. Caveat: Lots of people, time, money have gone into trying to crack RSA so the contrast is not as clear as it might seem.
Even so:
We Want: An Encryption scheme based on Factoring being hard.
Is there one? Vote: Yes, No, or Unk?

Is RSA Hard to Crack?

Hardness Assumption (HA) for RSA: The following problem is hard: Given (N, e, c) where $N=p q$ and $c \equiv m^{e}(\bmod N)$ for some m, Find m.

Objection: HA not natural.
Objection: Contrast:

1. People have been trying to factor QUICKLY since the 1600 's. Fermat has the first algorithm I know of.
2. People have been trying to crack RSA since the 1970's.
3. A large part of that effort has been MORE effort on factoring.
4. Caveat: Lots of people, time, money have gone into trying to crack RSA so the contrast is not as clear as it might seem.
Even so:
We Want: An Encryption scheme based on Factoring being hard.
Is there one? Vote: Yes, No, or Unk?
Yes. Rabin Encryption.

Rabin Encryption

Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7)$

Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$

Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7)$

Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$

Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$

Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$ NONE

Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$ NONE
4. Solve $m^{2} \equiv 4(\bmod 7)$

Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$ NONE
4. Solve $m^{2} \equiv 4(\bmod 7) m=2,5$

Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$ NONE
4. Solve $m^{2} \equiv 4(\bmod 7) m=2,5$
5. Solve $m^{2} \equiv 5(\bmod 7)$

Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$ NONE
4. Solve $m^{2} \equiv 4(\bmod 7) m=2,5$
5. Solve $m^{2} \equiv 5(\bmod 7)$ NONE

Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$ NONE
4. Solve $m^{2} \equiv 4(\bmod 7) m=2,5$
5. Solve $m^{2} \equiv 5(\bmod 7)$ NONE
6. Solve $m^{2} \equiv 6(\bmod 7)$

Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$ NONE
4. Solve $m^{2} \equiv 4(\bmod 7) m=2,5$
5. Solve $m^{2} \equiv 5(\bmod 7)$ NONE
6. Solve $m^{2} \equiv 6(\bmod 7)$ NONE

Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$ NONE
4. Solve $m^{2} \equiv 4(\bmod 7) m=2,5$
5. Solve $m^{2} \equiv 5(\bmod 7)$ NONE
6. Solve $m^{2} \equiv 6(\bmod 7)$ NONE

Math for Rabin Encryption - Square Roots Mod 7

1. Solve $m^{2} \equiv 1(\bmod 7) m=1,6$
2. Solve $m^{2} \equiv 2(\bmod 7) m=3,4$
3. Solve $m^{2} \equiv 3(\bmod 7)$ NONE
4. Solve $m^{2} \equiv 4(\bmod 7) m=2,5$
5. Solve $m^{2} \equiv 5(\bmod 7)$ NONE
6. Solve $m^{2} \equiv 6(\bmod 7)$ NONE

Since $a^{2}=(-a)^{2}$ will always have, for all prime p, $\frac{p-1}{2}$ elements of $\{1, \ldots, p\}$ have sqrts $\bmod p$.
$\frac{p-1}{2}$ elements of $\{1, \ldots, p\}$ do not have sqrts $\bmod p$.
Note: Computing Square Roots Mod n will mean determining if they exists and if so return all of them.

Math for Rabin Encryption - Square Roots Mod p

Theorem: c has a sqrt $\bmod p$ iff $c^{(p-1) / 2}-1 \equiv 0$.

$$
c=m^{2} \Longrightarrow c^{(p-1) / 2} \equiv\left(m^{2}\right)^{(p-1) / 2} \equiv m^{p-1} \equiv 1
$$

The equation $x^{(p-1) / 2}-1 \equiv 0$ has $(p-1) / 2$ roots.
There are $(p-1) / 2$ numbers that have sqrts. Hence If c does not have a sqrt root then $c^{(p-1) / 2}-1 \not \equiv 0$.

Theorem: If $p \equiv 3(\bmod 4)$ then easy to compute sqrt $\bmod p$. Given c if $c^{(p-1) / 2} \not \equiv 1$ NO. If $\equiv 1$ then:

$$
\left(c^{(p+1) / 4}\right)^{2} \equiv c^{(p+1) / 2} \equiv c\left(c^{(p-1) / 2}\right) \equiv c \times 1 \equiv c
$$

So output $c^{(p+1) / 4}$ and other sqrt is $p-c^{(p+1) / 4}$.
Note: If $p \equiv 1(\bmod 4)$ also easy to do sqrt.
Upshot: Sqrt mod a prime is easy!

Math for Rabin Encryption - Square Roots Mod n

What about sqrt mod a composite. Try these:

1. Solve $m^{2} \equiv 9(\bmod 1147)$
2. Solve $m^{2} \equiv 101(\bmod 1147)$

Math for Rabin Encryption - Square Roots Mod n

What about sqrt mod a composite. Try these:

1. Solve $m^{2} \equiv 9(\bmod 1147)$
2. Solve $m^{2} \equiv 101(\bmod 1147)$
3. Solve $m^{2} \equiv 9(\bmod 1147)$:

Math for Rabin Encryption - Square Roots Mod n

What about sqrt mod a composite. Try these:

1. Solve $m^{2} \equiv 9(\bmod 1147)$
2. Solve $m^{2} \equiv 101(\bmod 1147)$
3. Solve $m^{2} \equiv 9(\bmod 1147)$: Answers: $3,34,1113,1144$.

Math for Rabin Encryption - Square Roots Mod n

What about sqrt mod a composite. Try these:

1. Solve $m^{2} \equiv 9(\bmod 1147)$
2. Solve $m^{2} \equiv 101(\bmod 1147)$
3. Solve $m^{2} \equiv 9(\bmod 1147)$: Answers: $3,34,1113,1144$.
4. Solve $m^{2} \equiv 101(\bmod 1147)$:

Math for Rabin Encryption - Square Roots Mod n

What about sqrt mod a composite. Try these:

1. Solve $m^{2} \equiv 9(\bmod 1147)$
2. Solve $m^{2} \equiv 101(\bmod 1147)$
3. Solve $m^{2} \equiv 9(\bmod 1147)$: Answers: $3,34,1113,1144$.
4. Solve $m^{2} \equiv 101(\bmod 1147)$: Answers: Hmmm.

Math for Rabin Encryption - Square Roots Mod n

What about sqrt mod a composite. Try these:

1. Solve $m^{2} \equiv 9(\bmod 1147)$
2. Solve $m^{2} \equiv 101(\bmod 1147)$
3. Solve $m^{2} \equiv 9(\bmod 1147)$: Answers: $3,34,1113,1144$.
4. Solve $m^{2} \equiv 101(\bmod 1147)$: Answers: Hmmm.

Solve $m^{2} \equiv 9(\bmod 1147): 3,1147-3=1144$ easy. If had 34 then $1147-34=1144$ easy. But how to get 34 ?

Vote: Is finding sqrts mod N hard? Yes, No, Unk?

Math for Rabin Encryption - Square Roots Mod n

What about sqrt mod a composite. Try these:

1. Solve $m^{2} \equiv 9(\bmod 1147)$
2. Solve $m^{2} \equiv 101(\bmod 1147)$
3. Solve $m^{2} \equiv 9(\bmod 1147)$: Answers: $3,34,1113,1144$.
4. Solve $m^{2} \equiv 101(\bmod 1147)$: Answers: Hmmm.

Solve $m^{2} \equiv 9(\bmod 1147): 3,1147-3=1144$ easy. If had 34 then $1147-34=1144$ easy. But how to get 34 ?

Vote: Is finding sqrts mod N hard? Yes, No, Unk?
Unk: Many computational questions in Number Theory are Unk.

$m^{2} \equiv 101(\bmod 1147) 1147=31 * 37$

$m^{2} \equiv 101(\bmod 31) \cdot m^{2} \equiv 8(\bmod 31): m \equiv \pm 15(\bmod 31)$
$m^{2} \equiv 101(\bmod 37) \cdot m^{2} \equiv 27(\bmod 37) m \equiv \pm 8(\bmod 37)$.
One approach: Want number $m \in\{1, \ldots, 1146\}$ such that $m \equiv 15(\bmod 31)$
$m \equiv 8(\bmod 37)$
Use CRT to get:

$$
m=15918 \equiv 1007 \quad(\bmod 1147)
$$

Math for Rabin Encryption - Square Roots Mod n

By using $\pm 15(\bmod 31)$ and $\pm 8(\bmod 37)$ can find 4 sqrts.
Upshot: sqrts $\bmod N$ easy if know the factors of n.
Upshot: Always get 0 or 2 or 4 sqrts if $\bmod N=p q$.
What about finding sqrts $\bmod N$ where factors of N are not known?

Math for Rabin Encryption - Square Roots Mod n

By using $\pm 15(\bmod 31)$ and $\pm 8(\bmod 37)$ can find 4 sqrts.
Upshot: sqrts mod N easy if know the factors of n.
Upshot: Always get 0 or 2 or 4 sqrts if $\bmod N=p q$.
What about finding sqrts mod N where factors of N are not known?
Normally I would say
The problem of finding sqrt $\bmod N$ where the factors of N are not known is believed to be hard.

Math for Rabin Encryption - Square Roots Mod n

By using $\pm 15(\bmod 31)$ and $\pm 8(\bmod 37)$ can find 4 sqrts.
Upshot: sqrts mod N easy if know the factors of n.
Upshot: Always get 0 or 2 or 4 sqrts if $\bmod N=p q$.
What about finding sqrts mod N where factors of N are not known?
Normally I would say
The problem of finding sqrt $\bmod N$ where the factors of N are not known is believed to be hard.
This time I can say something stronger.

Math for Rabin Encryption - Square Roots Mod n

How hard is sqrts $\bmod N$ when factors of N not known?

Math for Rabin Encryption - Square Roots Mod n

How hard is sqrts mod N when factors of N not known?
Theorem: If finding sqrts mod N is easy then factoring is easy.

1. Given $N=p q$ (p, q unknown) want to factor it.
2. Pick a rand c and find its sqrts.
3. If it doesn't have ≥ 4 sqrts then goto step 2 .
4. The four sqrts are of the form $\pm x$ and $\pm y$. Now use x, y. We know that

$$
\begin{gathered}
x^{2} \equiv y^{2} \quad(\bmod N) \\
x^{2}-y^{2} \equiv 0 \quad(\bmod N) \\
(x-y)(x+y) \equiv 0 \quad(\bmod N) \\
G C D(x-y, N) \text { or } G C D(x+y, N) \text { likely factor. } \\
\text { Discuss: Why did I use } x, y \text { instead of } x,-x ?
\end{gathered}
$$

All you Need to Know for Rabin's Scheme

1. Finding primes is easy.
2. Squaring is easy.
3. If N is factored then sqrt $\bmod N$ is easy.
4. If N is not factored then sqrt $\bmod N$ is thought to be hard (equiv fo factoring).

Rabin's Encryption Scheme

n is a security parameter

1. Alice gen p, q primes of length n. Let $N=p q$. Send N.
2. Encode: To send m, Bob sends $c=m^{2}(\bmod N)$.
3. Decode: Alice can find m such that $m^{2} \equiv c(\bmod N)$.

Rabin's Encryption Scheme

n is a security parameter

1. Alice gen p, q primes of length n. Let $N=p q$. Send N.
2. Encode: To send m, Bob sends $c=m^{2}(\bmod N)$.
3. Decode: Alice can find m such that $m^{2} \equiv c(\bmod N)$. OH! There will be two or four of them! What to do? Later.

Rabin's Encryption Scheme

n is a security parameter

1. Alice gen p, q primes of length n. Let $N=p q$. Send N.
2. Encode: To send m, Bob sends $c=m^{2}(\bmod N)$.
3. Decode: Alice can find m such that $m^{2} \equiv c(\bmod N)$. OH ! There will be two or four of them! What to do? Later.
PRO: Easy for Alice and Bob
BIG PRO: Factoring Hard is hardness assumption.
CON: Alice has to figure out which of the sqrts is correct message.
Caveat: If m is English text then Alice can tell which one it is.
Caveat: If not. Hmmm.

How to Modify Rabin's Encryption?

Lets looks at $\bmod 21=3 * 7$.
$1^{2}, 8^{2}, 13^{2}, 20^{2} \equiv 1$
$2^{2}, 5^{2}, 16^{2}, 19^{2} \equiv 4$
$3^{2}, 18^{2} \equiv 9$
$4^{2}, 10^{2}, 11^{2}, 17^{2} \equiv 16$
$6^{2}, 15^{2} \equiv 15$
$7^{2}, 14^{2} \equiv 7$
$9^{2}, 12^{2} \equiv 18$
Question: What do the red numbers have in common? Discuss

How to Modify Rabin's Encryption?

Lets looks at $\bmod 21=3 * 7$.
$1^{2}, 8^{2}, 13^{2}, 20^{2} \equiv 1$
$2^{2}, 5^{2}, 16^{2}, 19^{2} \equiv 4$
$3^{2}, 18^{2} \equiv 9$
$4^{2}, 10^{2}, 11^{2}, 17^{2} \equiv 16$
$6^{2}, 15^{2} \equiv 15$
$7^{2}, 14^{2} \equiv 7$
$9^{2}, 12^{2} \equiv 18$
Question: What do the red numbers have in common? Discuss They all have square roots! They are all also on the RHS.

How to Modify Rabin's Encryption?

Lets looks at $\bmod 21=3 * 7$.
$1^{2}, 8^{2}, 13^{2}, 20^{2} \equiv 1$
$2^{2}, 5^{2}, 16^{2}, 19^{2} \equiv 4$
$3^{2}, 18^{2} \equiv 9$
$4^{2}, 10^{2}, 11^{2}, 17^{2} \equiv 16$
$6^{2}, 15^{2} \equiv 15$
$7^{2}, 14^{2} \equiv 7$
$9^{2}, 12^{2} \equiv 18$
Question: What do the red numbers have in common? Discuss They all have square roots! They are all also on the RHS.
What is it about 21 that makes this work?

A Theorem from Number Theory

Definition: A Blum Int is product of two primes $\equiv 3(\bmod 4)$. Example: $21=3 \times 7$.

Notation: $S Q_{N}$ is the set of squares $\bmod N$. (Often called $Q R_{N}$.) Example: If $N=21$ then $S Q_{N}=\{1,4,7,9,15,16,18\}$.

Theorem: Assume N is a Blum Integer. Let $m \in S Q_{N}$. Then of the two or four sqrts of m, only one is itself in $S Q_{N}$. Proof: Omitted. Note: (1) not that hard, and (2) in Katz book.

We use Theorem to modify Rabin Encryption.

Rabin's Encryption Scheme 2.0

(This modification by Blum and Williams BW.) n is sec param.

1. Alice gen p, q primes of length n such that $p, q \equiv 3(\bmod 4)$. Let $N=p q$. Send N.
2. Encode: To send $m \in S Q_{N}$, Bob sends $c=m^{2}(\bmod N)$.
3. Decode: Alice can find 2 or $4 m$ such that $m^{2} \equiv c(\bmod N)$. Take the $m \in S Q_{N}$.
PRO: Easy for Alice and Bob
Biggest PRO: Factoring Hard is Hardness Assumption (HA) CON: Messages have to be in $S Q_{N}$.

HA for Rabin's Encryption Scheme 1.0, 2.0

HA1 for Rabin 1.0: Given $N=p q, m^{2}(\bmod N)$, finding m is hard.
Good News: HA1 equiv to: Given $N=p q$, factoring it is hard.
HA2 for Rabin 2.0: Given $N=p q, p, q \equiv 3(\bmod 4), m^{2}$ $(\bmod N), m \in S Q_{N}$, finding m is hard.
Good News: HA2 equiv to: Given $N=p q, p, q \equiv 3(\bmod 4)$, factoring it is hard.

Caveat: The above only applies to ciphertext-only attacks. Eve sees what Bob sends. What if Eve could do more?

Can Rabin's Encryption Scheme Can Be Cracked?

n is a security parameter

1. Alice gen p, q primes of length n. Let $N=p q$. Send N.
2. Encode: To send m, Bob sends $c=m^{2}(\bmod N)$.
3. Decode: Alice can find m such that $m^{2} \equiv c(\bmod N)$. Picks a poss out somehow.
Vote: Crackable, Uncrackable, Unk

Can Rabin's Encryption Scheme Can Be Cracked?

n is a security parameter

1. Alice gen p, q primes of length n. Let $N=p q$. Send N.
2. Encode: To send m, Bob sends $c=m^{2}(\bmod N)$.
3. Decode: Alice can find m such that $m^{2} \equiv c(\bmod N)$. Picks a poss out somehow.
Vote: Crackable, Uncrackable, Unk Crackable:
Attack!: Eve picks an m and tricks Alice into sending message m via $m^{2} \equiv c$. Eve is hoping that Bob will find another sqrt of m^{2}.
Say Alice gets m^{\prime}. Then
$m^{2}-\left(m^{\prime}\right)^{2} \equiv 0(\bmod N)$.
$\left(m-m^{\prime}\right)\left(m+m^{\prime}\right) \equiv 0(\bmod N)$.
$m-m^{\prime}$ or $m+m^{\prime}$ may share factors with N so do $\operatorname{gcd}\left(m-m^{\prime}, N\right)$ and $\operatorname{gcd}\left(m+m^{\prime}, N\right)$. Can factor N and hence - game over!

What else to known

1. Original scheme had problem of which sqrt. BW fixed this but by then RSA was pervasive.
2. RSA \& Rabin both have issues that require padding.
3. RSA \& Rabin both have attacks.
4. There are variants of Rabin that thwarts the attack above. (a) one of them only allows 1 bit at a time, (b) one of them is not provably equiv to factoring.
5. RSA solved its problems. Rabin could have (or perhaps did).

Alternate History: Had timing been different Rabin would have been the one everyone uses.

Goldwasser-Micali (GM) Encryption

Math Needed For GM Encryption

Definition

1. $S Q_{N}$ is a number in \mathbb{Z}_{N} that does have a sqrt $\bmod N$
2. $N S Q_{N}$ is a number in \mathbb{Z}_{N} that does not have a sqrt $\bmod N$ (often called $Q N R_{N}$).

Discuss: Let $N=35$. Find all elements of $S Q_{N}$ and $N S Q_{N}$.

Math Needed For GM Encryption

1. Given n, can gen rand primes of length n easily.
2. Given p, q let $N=p q$. Can gen a rand $z \in N S Q_{N}$ easily.
3. $S Q_{N} \times S Q_{N}=S Q_{N}$.
4. $N S Q_{N} \times S Q_{N}=N S Q_{N}$.
5. Given p, q, c can determine if c is in $S Q_{p q}$ easily.
6. Given N, c determining if $c \in S Q_{N}$ seems hard.

Discuss: Lets do some examples mod 35! (thats not a factorial, I'm excited about doing examples!)

GM Encryption

n is a security parameter. Will only send ONE bit. Bummer!

1. Alice: rand p, q primes of length $n, z \in N S Q_{N}$. Computes $N=p q$. Send (N, z).
2. Encode: To send $m \in\{0,1\}$, Bob: rand $x \in \mathbb{Z}_{N}$, sends $c=z^{m} x^{2}(\bmod N)$. Note that:
2.1 If $m=0$ then $z^{m} x^{2}=x^{2} \in S Q_{N}$.
2.2 If $m=1$ then $z^{m} x^{2}=z x^{2} \in N S Q_{N}$.
3. Decode: Alice determines if $c \in S Q$ or not. If YES then $m=0$. If NO then $m=1$.
BIG PRO: Hardness assumption natural - next slide.
BIG CON: Messages have to be 1-bit long.
TIME: For one bit you need $4 \log N$ steps.

GM Encryption Hardness Assumption (HA)

$S Q$ problem: Given (c, N) determine if $c \in S Q_{N}$. $H A: T h e ~ S Q$ problem is computationally hard.
Note: $S Q$ problem has been studied by Number Theorists for a long time way before there was crypto. Hence it is a natural problem.

PRO: $S Q$ is legit, well studied (unlike RSA assumption)
CON: SQ studied by Number Theorists, not computationally.
Back to GM:
BIGGEST CON: They take life one bit at a time. Really?

Blum-Goldwasser Encryption

Math You Need For Blum-Goldwasser Encryption

Definition

1. $S Q_{N}$ is a number in \mathbb{Z}_{N} that does have a sqrt $\bmod N$
2. $N S Q_{N}$ is a number in \mathbb{Z}_{N} that does not have a sqrt $\bmod N$

Math You Need For Blum-Goldwasser Encryption

(You have seen this before but good review.)

1. Given n, can gen rand primes of length n easily.
2. Given p, q let $N=p q$. Can gen a rand $z \in N S Q_{N}$ easily.
3. $S Q_{N} \times S Q_{N}=S Q_{N}$.
4. $N S Q_{N} \times S Q_{N}=N S Q_{N}$.
5. Given p, q, c can determine if c is in $S Q_{p q}$ easily.
6. Given N, c determining if $c \in S Q_{N}$ seems hard.
7. $\operatorname{LSB}(x)$ is the least sig bit of x.

Blum-Goldwasser Enc. n Sec Param, L length of msg

1. Alice: p, q primes len $n, p, q \equiv 3(\bmod 4) . N=p q$. Send N.
2. Encode: Bob sends $m \in\{0,1\}^{L}$: rand $r \in \mathbb{Z}_{N}$

$$
\begin{array}{ccc}
x_{1}=r^{2} & \bmod N & b_{1}=\operatorname{LSB}\left(x_{1}\right) \\
x_{2}=x_{1}^{2} & \bmod N & b_{2}=\operatorname{LSB}\left(x_{2}\right) \\
\vdots & \vdots & \vdots \quad \vdots \quad \vdots \\
x_{L}=x_{L-1}^{2} & \bmod N & b_{L}=\operatorname{LSB}\left(x_{L}\right)
\end{array}
$$

Send $c=\left(\left(m_{1} \oplus b_{1}, \ldots, m_{L} \oplus b_{L}\right), x_{L}\right)$.
3. Decode: From x_{L} Alice gets x_{L-1}, \ldots, x_{1} by sqrt (since Alice has p, q), then b_{1}, \ldots, b_{L}, then m_{1}, \ldots, m_{L}.

BIG PRO: Hardness assumption - next slide.
TIME: For L bits need $(L+3) \log N$ steps. Better than GM.

Blum-Goldwasser Encryption Hardness Assumption (HA)

The sequence $b_{0}, b_{1}, \ldots, b_{L}$ is the output of a known psuedorandom generator called BBS (Blum-Blum-Shub).
$B B S$ problem: Given x_{L} compute b_{L}, \ldots, b_{1}.
HA: $B B S$ is computationally hard.
PRO: Natural in that $B B S$ predates the cipher.
CON: BBS has not been around that long.

