
Public Key Crypto: Low
e Attacks on RSA. REDO



Needed Math: Chinese Remainder Theorem Example

Find x such that:

x ≡ 17 (mod 31)
x ≡ 20 (mod 37)

a) The inverse of 31 mod 37 is 6
b) The inverse of 37 mod 31 is the inverse of 6 mod 31 which is 26.
c) 20× 6× 31 + 17× 26× 37 = 20, 074

20× (31)−1 × 31 + 17× (37)−1 × 37

Mod 31: First term is 0. Second term is 17. So 17.
Mod 37: First term is 20. Second term is 0. So 20.
So x = 20, 074 is answer.



Needed Math: Chinese Remainder Theorem Example

Find x such that:

x ≡ 17 (mod 31) & x ≡ 20 (mod 37)

So x = 20, 074 is answer. Can we find a smaller x?
We only care about x (mod 31) and x (mod 37).
Note:

x ≡ 17 (mod 31) =⇒ x − 31× 37 ≡ 17 (mod 31)
x ≡ 20 (mod 37) =⇒ x − 31× 37 ≡ 20 (mod 37)

If x works then x − 31× 37 works. Iterate until get between 0 and
31× 37. Whats this called? Discuss

x (mod 31× 37)

Upshot: Can take x = 20, 074 (mod 31× 37) = 629



Needed Math: Chinese Remainder Theorem Example

Find x such that:

x ≡ 17 (mod 31) & x ≡ 20 (mod 37)

So x = 20, 074 is answer. Can we find a smaller x?
We only care about x (mod 31) and x (mod 37).
Note:

x ≡ 17 (mod 31) =⇒ x − 31× 37 ≡ 17 (mod 31)
x ≡ 20 (mod 37) =⇒ x − 31× 37 ≡ 20 (mod 37)

If x works then x − 31× 37 works. Iterate until get between 0 and
31× 37. Whats this called? Discuss x (mod 31× 37)

Upshot: Can take x = 20, 074 (mod 31× 37) = 629



Needed Math: Chinese Remainder Theorem Example

Find x such that:

x ≡ 17 (mod 31) & x ≡ 20 (mod 37)

So x = 20, 074 is answer. Can we find a smaller x?
We only care about x (mod 31) and x (mod 37).
Note:

x ≡ 17 (mod 31) =⇒ x − 31× 37 ≡ 17 (mod 31)
x ≡ 20 (mod 37) =⇒ x − 31× 37 ≡ 20 (mod 37)

If x works then x − 31× 37 works. Iterate until get between 0 and
31× 37. Whats this called? Discuss x (mod 31× 37)

Upshot: Can take x = 20, 074 (mod 31× 37) = 629



Needed Math: Chinese Remainder Theorem L = 2 Case

1. Input a, b,N1,N2, N1,N2, rel primes. Want 0 ≤ x ≤ N1N2:

x ≡ a (mod N1)
x ≡ b (mod N2)

2. Find the inverse of N1 mod N2 and denote this N−11 .

3. Find the inverse of N2 mod N1 and denote this N−12 .

4. y = bN−11 N1 + aN−12 N2

Mod N1: 1st term is 0, 2nd term is a. So y ≡ a (mod N1).

Mod N2: 2nd term is 0, 1st term is b. So y ≡ b (mod N2).

5. x ≡ y (mod N1N2). (Convention that 0 ≤ x ≤ N1N2 − 1)



Needed Math: The Chinese Remainder Theorem

Theorem: If N1, . . . ,NL are rel prime, x1, . . . , xL are anything, then
there exists x with 0 ≤ x ≤ N1 · · ·NL such that
x ≡ x1 (mod N1)
x ≡ x2 (mod N2)
...
x ≡ xL (mod NL)

Proof: On HW.

Notation: CRT is Chinese Remainder Theorem.



Needed Math: The e Theorem, L = 2 case

Theorem: Assume N1,N2 are rel prime, e,m ∈ N. Let
0 ≤ x < N1N2 be the number from CRT such that
x ≡ me (mod N1)
x ≡ me (mod N2)
Then x ≡ me (mod N1N2). IF me < N1N2 then x = me .

Proof: There exists k1, k2 such that
x = me + k1N1 k1 ∈ Z, Could be negative
x = me + k2N2 k2 ∈ Z, Could be negative

Subtract to get k1N1 = k2N2. Since N1,N2 rel prime, N1 divides
k2, so k2 = kN1.
x = me + kN1N2. Hence x ≡ me (mod N1N2).
If 0 ≤ me < N1N2 then since 0 ≤ x ≤ N1N2 & x ≡ me , x = me .



Needed Math: The e Theorem, L = 2, Example

N = 31× 37 = 1147. m = 6, e = 4. Note that 64 = 1296 > 1147.
x ≡ 64 (mod 31)
x ≡ 64 (mod 37)
x = 149. So 149 ≡ 64 (mod 1147) but

149 = 64 − 1147, so

149 is NOT a power of 4.

N = 31× 37 = 1147. m = 5, e = 4. Note that 54 = 625 < 1147.
x ≡ 54 (mod 31)
x ≡ 54 (mod 37)
x = 625. So 625 ≡ 54 (mod 1147) but
625 < 1147, so x = 625 IS a power of 4.
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Needed Math: The e Theorem, General L

Theorem: Assume N1, . . . ,NL are rel prime, e,m ∈ N. Assume
there is an x (NOT necc ≤ N1 · · ·NL) such that

x ≡ me (mod N1)
...

...
x ≡ me (mod NL)

Then x ≡ me (mod N1 · · ·NL). If me < N1 · · ·NL then x = me .
Proof: Might be on a future HW, or Midterm, or Final, or any
combination of the three. Or might not.



Low Exponent Attack: Example

1) Na = 377, Nb = 391, Nc = 589. For Alice, Bob, Carol.
2) e = 3.
3) Zelda sends m to all three. Eve will find m. Note m < 377.

1. Zelda sends Alice 330. So m3 ≡ 330 (mod 377).

2. Zelda sends Bob 34. So m3 ≡ 34 (mod 391).

3. Zelda sends Carol 419. So m3 ≡ 419 (mod 589).

Eve sees all of this. Eve uses CRT to find 0 ≤ x < 377×391×589.
x ≡ 330 ≡ m3 (mod 377)
x ≡ 34 ≡ m3 (mod 391)
x ≡ 419 ≡ m3 (mod 589)
Eve finds such a number: x = 1, 061, 208.
By e-Theorem

x = 1, 061, 208 ≡ m3 (mod 377× 391× 589).



Low Exponent Attack: Example Continued

By e-Theorem

1, 061, 208 ≡ m3 (mod 377× 391× 589).

Most Important Fact: Recall that m ≤ 377. Hence note that:

m3 < 377× 377× 377 < 377× 391× 589
m3 ≡ 1, 061, 208 (mod 377× 391× 589)

AH-HA: m3 < NaNbNc . Hence
x = 1, 061, 208 = m3, so m = (1, 061, 208)1/3 = 102
Note: Cracked RSA without factoring.



Where did e = 3 Come Into This?

Since m < 377 we had:

m3 < 377× 377× 377 < 377× 391× 589

What if e = 4 was used? Then everything goes through until we
get to:

m4 < 377× 377× 377× 377

We need this to be < 377× 391× 589.
But its not. So we needed

e ≤ The number of people



Low Exponent Attack: Generalized

1) L people. Use N1 < · · · < NL. All Rel Prime.
2) e ≤ L
3) Zelda sends m to L people. Note m < N1.

4) You will finish this on HW. You will write psuedocode.

Can you run the algorithm even if e is not small? Discuss
Yes If me < N1 · · ·NL then it will WORK. But if not then you need
to report FAILURE.

Note: If m is small it is possible for e > L but still have
me < N1 · · ·NL. Another reason to pad your messages!
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Public Key
Cryptography:

NON-RSA Encryption



RSA

Let n be a security parameter

1. Alice: rand two primes p, q of length n and computes N = pq.

2. Alice computes φ(N) = φ(pq) = (p − 1)(q − 1). Denote by R

3. Alice: rand e ∈ {R3 , . . . ,
2R
3 } that is relatively prime to R.

Alice finds d such that ed ≡ 1 (mod R).

4. Alice broadcasts (N, e). (Bob and Eve both see it.)

5. Bob: send m ∈ {1, . . . ,N − 1}, send me (mod N).

6. Alice gets me (mod N). She computes

(me)d ≡ med ≡ med (mod R) ≡ m1 (mod R) ≡ m



Is RSA Hard to Crack?
Hardness Assumption (HA) for RSA: The following problem is
hard: Given (N, e, c) where N = pq and c ≡ me (mod N) for
some m, Find m.

Objection: HA not natural.
Objection: Contrast:

1. People have been trying to factor QUICKLY since the 1600’s.
Fermat has the first algorithm I know of.

2. People have been trying to crack RSA since the 1970’s.

3. A large part of that effort has been MORE effort on factoring.

4. Caveat: Lots of people, time, money have gone into trying to
crack RSA so the contrast is not as clear as it might seem.

Even so:
We Want: An Encryption scheme based on Factoring being hard.

Is there one? Vote: Yes, No, or Unk?

Yes. Rabin Encryption.
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Rabin Encryption



Math for Rabin Encryption – Square Roots Mod 7

1. Solve m2 ≡ 1 (mod 7)

m = 1, 6

2. Solve m2 ≡ 2 (mod 7) m = 3, 4

3. Solve m2 ≡ 3 (mod 7) NONE

4. Solve m2 ≡ 4 (mod 7) m = 2, 5

5. Solve m2 ≡ 5 (mod 7) NONE

6. Solve m2 ≡ 6 (mod 7) NONE

Since a2 = (−a)2 will always have, for all prime p,
p−1
2 elements of {1, . . . , p} have sqrts mod p.

p−1
2 elements of {1, . . . , p} do not have sqrts mod p.

Note: Computing Square Roots Mod n will mean determining if
they exists and if so return all of them.
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Math for Rabin Encryption – Square Roots Mod p

Theorem: c has a sqrt mod p iff c(p−1)/2 − 1 ≡ 0.

c = m2 =⇒ c(p−1)/2 ≡ (m2)(p−1)/2 ≡ mp−1 ≡ 1.

The equation x (p−1)/2 − 1 ≡ 0 has (p − 1)/2 roots.
There are (p − 1)/2 numbers that have sqrts. Hence
If c does not have a sqrt root then c(p−1)/2 − 1 6≡ 0.

Theorem: If p ≡ 3 (mod 4) then easy to compute sqrt mod p.
Given c if c(p−1)/2 6≡ 1 NO. If ≡ 1 then:

(c(p+1)/4)2 ≡ c(p+1)/2 ≡ c(c(p−1)/2) ≡ c × 1 ≡ c .

So output c(p+1)/4 and other sqrt is p − c(p+1)/4.
Note: If p ≡ 1 (mod 4) also easy to do sqrt.
Upshot: Sqrt mod a prime is easy!



Math for Rabin Encryption – Square Roots Mod n

What about sqrt mod a composite. Try these:

1. Solve m2 ≡ 9 (mod 1147)

2. Solve m2 ≡ 101 (mod 1147)

1. Solve m2 ≡ 9 (mod 1147): Answers: 3, 34, 1113, 1144.

2. Solve m2 ≡ 101 (mod 1147): Answers: Hmmm.

Solve m2 ≡ 9 (mod 1147): 3, 1147− 3 = 1144 easy. If had 34
then 1147− 34 = 1144 easy. But how to get 34?

Vote: Is finding sqrts mod N hard? Yes, No, Unk?
Unk: Many computational questions in Number Theory are Unk.
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m2 ≡ 101 (mod 1147) 1147 = 31 ∗ 37

m2 ≡ 101 (mod 31). m2 ≡ 8 (mod 31): m ≡ ±15 (mod 31)
m2 ≡ 101 (mod 37). m2 ≡ 27 (mod 37) m ≡ ±8 (mod 37).
One approach: Want number m ∈ {1, . . . , 1146} such that
m ≡ 15 (mod 31)
m ≡ 8 (mod 37)
Use CRT to get:

m = 15918 ≡ 1007 (mod 1147)



Math for Rabin Encryption – Square Roots Mod n

By using ±15 (mod 31) and ±8 (mod 37) can find 4 sqrts.

Upshot: sqrts mod N easy if know the factors of n.
Upshot: Always get 0 or 2 or 4 sqrts if mod N = pq.

What about finding sqrts mod N where factors of N are not
known?

Normally I would say
The problem of finding sqrt mod N where the factors of N are not
known is believed to be hard.
This time I can say something stronger.
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Math for Rabin Encryption – Square Roots Mod n
How hard is sqrts mod N when factors of N not known?

Theorem: If finding sqrts mod N is easy then factoring is easy.

1. Given N = pq (p, q unknown) want to factor it.

2. Pick a rand c and find its sqrts.

3. If it doesn’t have ≥ 4 sqrts then goto step 2.

4. The four sqrts are of the form ±x and ±y . Now use x , y . We
know that

x2 ≡ y2 (mod N).

x2 − y2 ≡ 0 (mod N)

(x − y)(x + y) ≡ 0 (mod N)

GCD(x − y ,N) or GCD(x + y ,N) likely factor.
Discuss: Why did I use x , y instead of x ,−x?
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All you Need to Know for Rabin’s Scheme

1. Finding primes is easy.

2. Squaring is easy.

3. If N is factored then sqrt mod N is easy.

4. If N is not factored then sqrt mod N is thought to be hard
(equiv fo factoring).



Rabin’s Encryption Scheme

n is a security parameter

1. Alice gen p, q primes of length n. Let N = pq. Send N.

2. Encode: To send m, Bob sends c = m2 (mod N).

3. Decode: Alice can find m such that m2 ≡ c (mod N).

OH!
There will be two or four of them! What to do? Later.

PRO: Easy for Alice and Bob
BIG PRO: Factoring Hard is hardness assumption.
CON: Alice has to figure out which of the sqrts is correct message.
Caveat: If m is English text then Alice can tell which one it is.
Caveat: If not. Hmmm.
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How to Modify Rabin’s Encryption?

Lets looks at mod 21 = 3 ∗ 7.
12, 82, 132, 202 ≡ 1
22, 52, 162, 192 ≡ 4
32, 182 ≡ 9
42, 102, 112, 172 ≡ 16
62, 152 ≡ 15
72, 142 ≡ 7
92, 122 ≡ 18
Question: What do the red numbers have in common? Discuss

They all have square roots! They are all also on the RHS.
What is it about 21 that makes this work?
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A Theorem from Number Theory

Definition: A Blum Int is product of two primes ≡ 3 (mod 4).
Example: 21 = 3× 7.

Notation: SQN is the set of squares mod N. (Often called QRN .)
Example: If N = 21 then SQN = {1, 4, 7, 9, 15, 16, 18}.

Theorem: Assume N is a Blum Integer. Let m ∈ SQN . Then of
the two or four sqrts of m, only one is itself in SQN .
Proof: Omitted. Note: (1) not that hard, and (2) in Katz book.

We use Theorem to modify Rabin Encryption.



Rabin’s Encryption Scheme 2.0

(This modification by Blum and Williams BW.) n is sec param.

1. Alice gen p, q primes of length n such that p, q ≡ 3 (mod 4).
Let N = pq. Send N.

2. Encode: To send m ∈ SQN , Bob sends c = m2 (mod N).

3. Decode: Alice can find 2 or 4 m such that m2 ≡ c (mod N).
Take the m ∈ SQN .

PRO: Easy for Alice and Bob
Biggest PRO: Factoring Hard is Hardness Assumption (HA)
CON: Messages have to be in SQN .



HA for Rabin’s Encryption Scheme 1.0, 2.0

HA1 for Rabin 1.0: Given N = pq, m2 (mod N), finding m is hard.

Good News: HA1 equiv to: Given N = pq, factoring it is hard.

HA2 for Rabin 2.0: Given N = pq, p, q ≡ 3 (mod 4), m2

(mod N), m ∈ SQN , finding m is hard.

Good News: HA2 equiv to: Given N = pq, p, q ≡ 3 (mod 4),
factoring it is hard.

Caveat: The above only applies to ciphertext-only attacks. Eve
sees what Bob sends. What if Eve could do more?



Can Rabin’s Encryption Scheme Can Be Cracked?

n is a security parameter

1. Alice gen p, q primes of length n. Let N = pq. Send N.

2. Encode: To send m, Bob sends c = m2 (mod N).

3. Decode: Alice can find m such that m2 ≡ c (mod N). Picks
a poss out somehow.

Vote: Crackable, Uncrackable, Unk

Crackable:
Attack!: Eve picks an m and tricks Alice into sending message m
via m2 ≡ c . Eve is hoping that Bob will find another sqrt of m2.
Say Alice gets m′. Then
m2 − (m′)2 ≡ 0 (mod N).
(m −m′)(m + m′) ≡ 0 (mod N).
m−m′ or m + m′ may share factors with N so do gcd(m−m′,N)
and gcd(m + m′,N). Can factor N and hence – game over!
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What else to known

1. Original scheme had problem of which sqrt. BW fixed this but
by then RSA was pervasive.

2. RSA & Rabin both have issues that require padding.

3. RSA & Rabin both have attacks.

4. There are variants of Rabin that thwarts the attack above.
(a) one of them only allows 1 bit at a time, (b) one of them is
not provably equiv to factoring.

5. RSA solved its problems. Rabin could have (or perhaps did).

Alternate History: Had timing been different Rabin would have
been the one everyone uses.



Goldwasser-Micali (GM)
Encryption



Math Needed For GM Encryption

Definition

1. SQN is a number in ZN that does have a sqrt mod N

2. NSQN is a number in ZN that does not have a sqrt mod N
(often called QNRN).

Discuss: Let N = 35. Find all elements of SQN and NSQN .



Math Needed For GM Encryption

1. Given n, can gen rand primes of length n easily.

2. Given p, q let N = pq. Can gen a rand z ∈ NSQN easily.

3. SQN × SQN = SQN .

4. NSQN × SQN = NSQN .

5. Given p, q, c can determine if c is in SQpq easily.

6. Given N, c determining if c ∈ SQN seems hard.

Discuss: Lets do some examples mod 35! (thats not a factorial,
I’m excited about doing examples!)



GM Encryption

n is a security parameter. Will only send ONE bit. Bummer!

1. Alice: rand p, q primes of length n, z ∈ NSQN . Computes
N = pq. Send (N, z).

2. Encode: To send m ∈ {0, 1}, Bob: rand x ∈ ZN , sends
c = zmx2 (mod N). Note that:

2.1 If m = 0 then zmx2 = x2 ∈ SQN .
2.2 If m = 1 then zmx2 = zx2 ∈ NSQN .

3. Decode: Alice determines if c ∈ SQ or not. If YES then
m = 0. If NO then m = 1.

BIG PRO: Hardness assumption natural – next slide.
BIG CON: Messages have to be 1-bit long.
TIME: For one bit you need 4 logN steps.



GM Encryption Hardness Assumption (HA)

SQ problem: Given (c ,N) determine if c ∈ SQN .
HA: The SQ problem is computationally hard.
Note: SQ problem has been studied by Number Theorists for a
long time way before there was crypto. Hence it is a natural
problem.

PRO: SQ is legit, well studied (unlike RSA assumption)
CON: SQ studied by Number Theorists, not computationally.

Back to GM:
BIGGEST CON: They take life one bit at a time. Really?



Blum-Goldwasser
Encryption



Math You Need For Blum-Goldwasser Encryption

Definition

1. SQN is a number in ZN that does have a sqrt mod N

2. NSQN is a number in ZN that does not have a sqrt mod N



Math You Need For Blum-Goldwasser Encryption

(You have seen this before but good review.)

1. Given n, can gen rand primes of length n easily.

2. Given p, q let N = pq. Can gen a rand z ∈ NSQN easily.

3. SQN × SQN = SQN .

4. NSQN × SQN = NSQN .

5. Given p, q, c can determine if c is in SQpq easily.

6. Given N, c determining if c ∈ SQN seems hard.

7. LSB(x) is the least sig bit of x .



Blum-Goldwasser Enc. n Sec Param, L length of msg

1. Alice: p, q primes len n, p, q ≡ 3 (mod 4). N = pq. Send N.

2. Encode: Bob sends m ∈ {0, 1}L: rand r ∈ ZN

x1 = r2 mod N b1 = LSB(x1)
x2 = x21 mod N b2 = LSB(x2)

...
...

...
...

...
xL = x2L−1 mod N bL = LSB(xL)

Send c = ((m1 ⊕ b1, . . . ,mL ⊕ bL), xL).

3. Decode: From xL Alice gets xL−1, . . ., x1 by sqrt (since Alice
has p, q), then b1, . . . , bL, then m1, . . . ,mL.

BIG PRO: Hardness assumption – next slide.
TIME: For L bits need (L + 3) logN steps. Better than GM.



Blum-Goldwasser Encryption Hardness Assumption
(HA)

The sequence b0, b1, . . . , bL is the output of a known
psuedorandom generator called BBS (Blum-Blum-Shub).

BBS problem: Given xL compute bL, . . . , b1.

HA: BBS is computationally hard.

PRO: Natural in that BBS predates the cipher.
CON: BBS has not been around that long.


