Correction on LWE

[^0]
Small Vectors

Definition

Assume $n \in \mathbb{N}$ and p is a prime. Pick a random small $\vec{e} \in \mathbb{Z}_{p}^{n}$ means pick each component as a discrete Gaussian with mean 0 and variance to be specified.

LWE-KE. Two Security Parameters n, n^{\prime}

1. Alice: rand prime p of length n^{\prime}, rand $n \times n$ matrix A over \mathbb{Z}_{p}.
2. Alice: rand $\vec{y} \in \mathbb{Z}_{p}^{n}$, small $\vec{e}_{y} \in \mathbb{Z}_{p}^{n}$. Sends $\vec{y} A+\vec{e}_{y}$.
3. Bob: rand $\vec{x} \in \mathbb{Z}_{p}^{n}$, small $\vec{e}_{x} \in \mathbb{Z}_{p}^{n}$. Sends $A \vec{x}+\vec{e}_{x}$.
4. Alice computes $a=\vec{y}\left(A \vec{x}+\vec{e}_{x}\right)=\vec{y} A \vec{x}+\vec{y} \cdot \vec{e}_{x}$.
5. Bob computes $b=\left(\vec{y} A+\vec{e}_{y}\right) \vec{x}=\vec{y} A \vec{x}+\vec{x} \cdot \vec{e}_{y}$.
6. They share $\vec{y} A \vec{x}$

LWE-KE. Two Security Parameters n, n^{\prime}

1. Alice: rand prime p of length n^{\prime}, rand $n \times n$ matrix A over \mathbb{Z}_{p}.
2. Alice: rand $\vec{y} \in \mathbb{Z}_{p}^{n}$, small $\vec{e}_{y} \in \mathbb{Z}_{p}^{n}$. Sends $\vec{y} A+\vec{e}_{y}$.
3. Bob: rand $\vec{x} \in \mathbb{Z}_{p}^{n}$, small $\vec{e}_{x} \in \mathbb{Z}_{p}^{n}$. Sends $A \vec{x}+\vec{e}_{x}$.
4. Alice computes $a=\vec{y}\left(A \vec{x}+\vec{e}_{x}\right)=\vec{y} A \vec{x}+\vec{y} \cdot \vec{e}_{x}$.
5. Bob computes $b=\left(\vec{y} A+\vec{e}_{y}\right) \vec{x}=\vec{y} A \vec{x}+\vec{x} \cdot \vec{e}_{y}$.
6. They share $\vec{y} A \vec{x}$

Hey! That does not make sense! Neither one has $\vec{y} A \vec{x}$!

LWE-KE

Alice has $a=\vec{y}\left(A \vec{x}+\vec{e}_{x}\right)=\vec{y} A \vec{x}+\vec{y} \cdot \vec{e}_{x}$.
Bob has $b=\left(\vec{y} A+\vec{e}_{y}\right) \vec{x}=y A \vec{x}+\vec{x} \cdot e_{y}$.
Since \vec{e}_{x}, \vec{e}_{y} small, $a \sim b$.

LWE-KE

Alice has $a=\vec{y}\left(A \vec{x}+\vec{e}_{x}\right)=\vec{y} A \vec{x}+\vec{y} \cdot \vec{e}_{x}$.
Bob has $b=\left(\vec{y} A+\vec{e}_{y}\right) \vec{x}=y A \vec{x}+\vec{x} \cdot e_{y}$.
Since \vec{e}_{x}, \vec{e}_{y} small, $a \sim b$.
SO WHAT! $a \sim b$??? What does \sim even mean over \mathbb{Z}_{p} ? What kind of DELETED - WE ARE BEING TAPED is this? Discuss

LWE-KE

Alice has $a=\vec{y}\left(A \vec{x}+\vec{e}_{x}\right)=\vec{y} A \vec{x}+\vec{y} \cdot \vec{e}_{x}$.
Bob has $b=\left(\vec{y} A+\vec{e}_{y}\right) \vec{x}=y A \vec{x}+\vec{x} \cdot e_{y}$.
Since \vec{e}_{x}, \vec{e}_{y} small, $a \sim b$.
SO WHAT! $a \sim b$??? What does \sim even mean over \mathbb{Z}_{p} ? What kind of DELETED - WE ARE BEING TAPED is this? Discuss

CALM DOWN! If pick variance cleverly then with high prob either
$a, b \in\{0,1,2, \ldots, p / 4\} \cup\{3 p / 4, \ldots, p-1\}$ ("close to 0 "), OR
$a, b \in\{p / 4+1, \ldots, 3 p / 4-1\}$ ("close to $p / 2$ ")
(Paper with this on course website under notes.)

LWE-KE. Two Security Parameters n, n^{\prime}

1. Alice: rand prime p of length n^{\prime}, rand $n \times n$ matrix A over \mathbb{Z}_{p}.
2. Alice: rand $\vec{y} \in \mathbb{Z}_{p}^{n}$, small $\vec{e}_{y} \in \mathbb{Z}_{p}^{n}$. Sends $\vec{y} A+\vec{e}_{y}$.
3. Bob: rand $\vec{x} \in \mathbb{Z}_{p}^{n}$, small $\vec{e}_{x} \in \mathbb{Z}_{p}^{n}$. Sends $A \vec{x}+\vec{e}_{x}$.
4. Alice computes $a=\vec{y}\left(A \vec{x}+\vec{e}_{x}\right)=\vec{y} A \vec{x}+\vec{y} \cdot \vec{e}_{x}$. If $a \in\{0, \ldots, p / 4\} \cup\{3 p / 4, \ldots, p-1\}, s_{A}=0$, else $s_{A}=1$.
5. Bob computes $b=\left(\vec{y} A+\vec{e}_{y}\right) \vec{x}=\vec{y} A \vec{x}+\vec{x} \cdot \vec{e}_{y}$. If $b \in\{0, \ldots, p / 4\} \cup\{3 p / 4, \ldots, p-1\}, s_{B}=0$, else $s_{B}=1$.
6. With high prob $s_{A}=s_{B}$. That is the bit they share.

PRO: Hardness Assumption NOT number-theoretic (see orig slides)
CON: Only 1 bit.
CON: As you know from hw06 THIS DID NOT WORK!!!!!!!!!

LWE-KE. Two Security Parameters n, n^{\prime}. MODIFIED

Why didn't it work? Because the error term was still too big.

- Alice has $\vec{y} A \vec{x}+\vec{y} \cdot \vec{e}_{x} . \operatorname{ERROR}=\vec{y} \cdot \vec{e}_{x}$.
- Bob has $\vec{y} A \vec{x}+\vec{x} \cdot \vec{e}_{y}$. ERROR- $\vec{x} \cdot \vec{e}_{y}$.

We need to make both of these ERROR's small Idea! Make \vec{y} and \vec{x} small!

LWE-KE. Two Security Parameters $n, n^{\prime}-$ OLD

1. Alice: rand prime p of length n^{\prime}, rand $n \times n$ matrix A over \mathbb{Z}_{p}.
2. Alice: rand $\vec{y} \in \mathbb{Z}_{p}^{n}$, small $\vec{e}_{y} \in \mathbb{Z}_{p}^{n}$. Sends $\vec{y} A+\vec{e}_{y}$.
3. Bob: rand $\vec{x} \in \mathbb{Z}_{p}^{n}$, small $\vec{e}_{x} \in \mathbb{Z}_{p}^{n}$. Sends $A \vec{x}+\vec{e}_{x}$.
4. Alice computes $a=\vec{y}\left(A \vec{x}+\vec{e}_{x}\right)=\vec{y} A \vec{x}+\vec{y} \cdot \vec{e}_{x}$. If $a \in\{0, \ldots, p / 4\} \cup\{3 p / 4, \ldots, p-1\}, s_{A}=0$, else $s_{A}=1$.
5. Bob computes $b=\left(\vec{y} A+\vec{e}_{y}\right) \vec{x}=\vec{y} A \vec{x}+\vec{x} \cdot \vec{e}_{y}$. If $b \in\{0, \ldots, p / 4\} \cup\{3 p / 4, \ldots, p-1\}, s_{B}=0$, else $s_{B}=1$.
6. With high prob $s_{A}=s_{B}$. That is the bit they share.

PRO: Hardness Assumption NOT number-theoretic (see orig slides)
CON: Only 1 bit.
CON: As you know from hw06 THIS DID NOT WORK!!!!!!!!!

LWE-KE. Two Security Parameters $n, n^{\prime}-$ NEW

1. Alice: rand prime p of length n^{\prime}, rand $n \times n$ matrix A over \mathbb{Z}_{p}.
2. Alice: small $\vec{y} \in \mathbb{Z}_{p}^{n}$, small $\vec{e}_{y} \in \mathbb{Z}_{p}^{n}$. Sends $\vec{y} A+\vec{e}_{y}$.
3. Bob: small $\vec{x} \in \mathbb{Z}_{p}^{n}$, small $\vec{e}_{x} \in \mathbb{Z}_{p}^{n}$. Sends $A \vec{x}+\vec{e}_{x}$.
4. Alice computes $a=\vec{y}\left(A \vec{x}+\vec{e}_{x}\right)=\vec{y} A \vec{x}+\vec{y} \cdot \vec{e}_{x}$. If $a \in\{0, \ldots, p / 4\} \cup\{3 p / 4, \ldots, p-1\}, s_{A}=0$, else $s_{A}=1$.
5. Bob computes $b=\left(\vec{y} A+\vec{e}_{y}\right) \vec{x}=\vec{y} A \vec{x}+\vec{x} \cdot \vec{e}_{y}$. If $b \in\{0, \ldots, p / 4\} \cup\{3 p / 4, \ldots, p-1\}, s_{B}=0$, else $s_{B}=1$.
6. With high prob $s_{A}=s_{B}$. That is the bit they share.

PRO: Hardness Assumption NOT number-theoretic (see orig slides)
CON: Only 1 bit.
PRO: Nathan Coded it up and IT WORKS. Will be on next HW.

LWE-KE. Practical Considerations

HW: version of LWE-KE where small means all comps in

$$
\{0,1,-1\}=\{0,1, p-1\}
$$

- -1 picked with prob $\frac{1}{n}$.
- 0 picked with prob $\frac{n-2}{n}$.
- 1 picked with prob $\frac{1}{n}$.
(n is dimension of matrix)
PRO: Easier to Code up then dealing with Gaussians
CON: No security proven. Not a known cipher. Its called:
LWG-KE
which stands for ... can you guess?

LWE-KE. Practical Considerations

HW: version of LWE-KE where small means all comps in

$$
\{0,1,-1\}=\{0,1, p-1\}
$$

- -1 picked with prob $\frac{1}{n}$.
- 0 picked with prob $\frac{n-2}{n}$.
- 1 picked with prob $\frac{1}{n}$.
(n is dimension of matrix)
PRO: Easier to Code up then dealing with Gaussians
CON: No security proven. Not a known cipher. Its called:
LWG-KE
which stands for ... can you guess?
Learning with Gasarch- Key Exchange

[^0]:

