Correction on LWE

Small Vectors

Definition

Assume $n \in \mathbb{N}$ and p is a prime. Pick a random small $\vec{e} \in \mathbb{Z}_p^n$ means pick each component as a discrete Gaussian with mean 0 and variance to be specified.

*ロ * * ● * * ● * * ● * ● * ● * ●

LWE-KE. Two Security Parameters n, n'

1. Alice: rand prime p of length n', rand $n \times n$ matrix A over \mathbb{Z}_p .

- 2. Alice: rand $\vec{y} \in \mathbb{Z}_p^n$, small $\vec{e}_y \in \mathbb{Z}_p^n$. Sends $\vec{y}A + \vec{e}_y$.
- 3. Bob: rand $\vec{x} \in \mathbb{Z}_p^n$, small $\vec{e}_x \in \mathbb{Z}_p^n$. Sends $A\vec{x} + \vec{e}_x$.
- 4. Alice computes $a = \vec{y}(A\vec{x} + \vec{e}_x) = \vec{y}A\vec{x} + \vec{y} \cdot \vec{e}_x$.
- 5. Bob computes $b = (\vec{y}A + \vec{e}_y)\vec{x} = \vec{y}A\vec{x} + \vec{x}\cdot\vec{e}_y$.
- 6. They share $\vec{y}A\vec{x}$

LWE-KE. Two Security Parameters n, n'

1. Alice: rand prime p of length n', rand $n \times n$ matrix A over \mathbb{Z}_p .

- 2. Alice: rand $\vec{y} \in \mathbb{Z}_p^n$, small $\vec{e}_y \in \mathbb{Z}_p^n$. Sends $\vec{y}A + \vec{e}_y$.
- 3. Bob: rand $\vec{x} \in \mathbb{Z}_p^n$, small $\vec{e}_x \in \mathbb{Z}_p^n$. Sends $A\vec{x} + \vec{e}_x$.
- 4. Alice computes $a = \vec{y}(A\vec{x} + \vec{e}_x) = \vec{y}A\vec{x} + \vec{y} \cdot \vec{e}_x$.
- 5. Bob computes $b = (\vec{y}A + \vec{e}_y)\vec{x} = \vec{y}A\vec{x} + \vec{x}\cdot\vec{e}_y$.
- 6. They share $\vec{y}A\vec{x}$

Hey! That does not make sense! Neither one has $\vec{y}A\vec{x}$!

LWE-KE

Alice has
$$a = \vec{y}(A\vec{x} + \vec{e}_x) = \vec{y}A\vec{x} + \vec{y} \cdot \vec{e}_x$$
.
Bob has $b = (\vec{y}A + \vec{e}_y)\vec{x} = yA\vec{x} + \vec{x} \cdot e_y$.
Since \vec{e}_x, \vec{e}_y small, $a \sim b$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 - のへで

LWE-KE

Alice has $a = \vec{y}(A\vec{x} + \vec{e}_x) = \vec{y}A\vec{x} + \vec{y} \cdot \vec{e}_x$. Bob has $b = (\vec{y}A + \vec{e}_y)\vec{x} = yA\vec{x} + \vec{x} \cdot e_y$. Since \vec{e}_x, \vec{e}_y small, $a \sim b$.

SO WHAT! $a \sim b$??? What does \sim even mean over \mathbb{Z}_p ? What kind of DELETED – WE ARE BEING TAPED is this? Discuss

LWE-KE

Alice has $a = \vec{y}(A\vec{x} + \vec{e}_x) = \vec{y}A\vec{x} + \vec{y} \cdot \vec{e}_x$. Bob has $b = (\vec{y}A + \vec{e}_v)\vec{x} = yA\vec{x} + \vec{x} \cdot e_v$. Since \vec{e}_x, \vec{e}_y small, $a \sim b$. SO WHAT! $a \sim b$??? What does \sim even mean over \mathbb{Z}_p ? What kind of DELETED – WE ARE BEING TAPED is this? Discuss CALM DOWN! If pick variance cleverly then with high prob either $a, b \in \{0, 1, 2, \dots, p/4\} \cup \{3p/4, \dots, p-1\}$ ("close to 0"), OR $a, b \in \{p/4 + 1, \dots, 3p/4 - 1\}$ ("close to p/2") (Paper with this on course website under notes.)

LWE-KE. Two Security Parameters n, n'

- 1. Alice: rand prime p of length n', rand $n \times n$ matrix A over \mathbb{Z}_p .
- 2. Alice: rand $\vec{y} \in \mathbb{Z}_p^n$, small $\vec{e}_y \in \mathbb{Z}_p^n$. Sends $\vec{y}A + \vec{e}_y$.
- 3. Bob: rand $\vec{x} \in \mathbb{Z}_p^n$, small $\vec{e}_x \in \mathbb{Z}_p^n$. Sends $A\vec{x} + \vec{e}_x$.
- 4. Alice computes $a = \vec{y}(A\vec{x} + \vec{e}_x) = \vec{y}A\vec{x} + \vec{y} \cdot \vec{e}_x$. If $a \in \{0, \dots, p/4\} \cup \{3p/4, \dots, p-1\}, s_A = 0$, else $s_A = 1$.
- 5. Bob computes $b = (\vec{y}A + \vec{e}_y)\vec{x} = \vec{y}A\vec{x} + \vec{x} \cdot \vec{e}_y$. If $b \in \{0, ..., p/4\} \cup \{3p/4, ..., p-1\}, s_B = 0$, else $s_B = 1$.
- 6. With high prob $s_A = s_B$. That is the bit they share.

PRO: Hardness Assumption NOT number-theoretic (see orig slides) CON: Only 1 bit.

CON: As you know from hw06 THIS DID NOT WORK!!!!!!!!

Why didn't it work? Because the error term was still too big.

- Alice has $\vec{y}A\vec{x} + \vec{y} \cdot \vec{e}_x$. ERROR= $\vec{y} \cdot \vec{e}_x$.
- Bob has $\vec{y}A\vec{x} + \vec{x} \cdot \vec{e}_y$. ERROR- $\vec{x} \cdot \vec{e}_y$.

We need to make both of these ERROR's small Idea! Make \vec{y} and \vec{x} small!

LWE-KE. Two Security Parameters *n*, *n*'- OLD

- 1. Alice: rand prime p of length n', rand $n \times n$ matrix A over \mathbb{Z}_p .
- 2. Alice: rand $\vec{y} \in \mathbb{Z}_p^n$, small $\vec{e}_y \in \mathbb{Z}_p^n$. Sends $\vec{y}A + \vec{e}_y$.
- 3. Bob: rand $\vec{x} \in \mathbb{Z}_p^n$, small $\vec{e}_x \in \mathbb{Z}_p^n$. Sends $A\vec{x} + \vec{e}_x$.
- 4. Alice computes $a = \vec{y}(A\vec{x} + \vec{e}_x) = \vec{y}A\vec{x} + \vec{y} \cdot \vec{e}_x$. If $a \in \{0, \dots, p/4\} \cup \{3p/4, \dots, p-1\}, s_A = 0$, else $s_A = 1$.
- 5. Bob computes $b = (\vec{y}A + \vec{e}_y)\vec{x} = \vec{y}A\vec{x} + \vec{x} \cdot \vec{e}_y$. If $b \in \{0, ..., p/4\} \cup \{3p/4, ..., p-1\}, s_B = 0$, else $s_B = 1$.
- 6. With high prob $s_A = s_B$. That is the bit they share.

PRO: Hardness Assumption NOT number-theoretic (see orig slides) CON: Only 1 bit.

CON: As you know from hw06 THIS DID NOT WORK!!!!!!!!

LWE-KE. Two Security Parameters *n*, *n*[']- NEW

- 1. Alice: rand prime p of length n', rand $n \times n$ matrix A over \mathbb{Z}_p .
- 2. Alice: small $\vec{y} \in \mathbb{Z}_p^n$, small $\vec{e}_y \in \mathbb{Z}_p^n$. Sends $\vec{y}A + \vec{e}_y$.
- 3. Bob: small $\vec{x} \in \mathbb{Z}_p^n$, small $\vec{e}_x \in \mathbb{Z}_p^n$. Sends $A\vec{x} + \vec{e}_x$.
- 4. Alice computes $a = \vec{y}(A\vec{x} + \vec{e}_x) = \vec{y}A\vec{x} + \vec{y} \cdot \vec{e}_x$. If $a \in \{0, \dots, p/4\} \cup \{3p/4, \dots, p-1\}, s_A = 0$, else $s_A = 1$.
- 5. Bob computes $b = (\vec{y}A + \vec{e}_y)\vec{x} = \vec{y}A\vec{x} + \vec{x} \cdot \vec{e}_y$. If $b \in \{0, ..., p/4\} \cup \{3p/4, ..., p-1\}, s_B = 0$, else $s_B = 1$.
- 6. With high prob $s_A = s_B$. That is the bit they share.

PRO: Hardness Assumption NOT number-theoretic (see orig slides) CON: Only 1 bit.

PRO: Nathan Coded it up and IT WORKS. Will be on next HW.

LWE-KE. Practical Considerations

HW: version of LWE-KE where small means all comps in

$$\{0, 1, -1\} = \{0, 1, p - 1\}$$

- ▶ -1 picked with prob $\frac{1}{n}$.
- ▶ 0 picked with prob $\frac{n-2}{n}$.
- ▶ 1 picked with prob $\frac{1}{n}$.

(*n* is dimension of matrix)

PRO: Easier to Code up then dealing with Gaussians CON: No security proven. Not a known cipher. Its called: LWG-KE

which stands for ... can you guess?

LWE-KE. Practical Considerations

HW: version of LWE-KE where small means all comps in

$$\{0, 1, -1\} = \{0, 1, p - 1\}$$

- ▶ -1 picked with prob $\frac{1}{n}$.
- ▶ 0 picked with prob $\frac{n-2}{n}$.
- ▶ 1 picked with prob $\frac{1}{n}$.

(*n* is dimension of matrix)

PRO: Easier to Code up then dealing with Gaussians CON: No security proven. Not a known cipher. Its called: LWG-KE

which stands for ... can you guess? Learning with Gasarch- Key Exchange