Verifiable Secret Sharing Voting

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

Threshold Secret Sharing

Zelda has a secret $s \in \{0, 1\}^n$.

Def: Let $1 \le t \le m$. (t, L)-secret sharing is a way for Zelda to give strings to A_1, \ldots, A_L such that:

- 1. If any t get together than they can learn the secret.
- 2. If any t 1 get together they cannot learn the secret.

Cannot learn the secret Last lecture this was Info-Theoretic. This lecture we consider info-theoretic and comp-theoretic.

A Scenario

- 1. (5,9) Secret Sharing.
- 2. The secret is s. $p \sim s$. Zelda picks rand $r_4, r_3, r_2, r_1 \in \mathbb{Z}_p$, forms the poly $f(x) = r_4 x^4 + r_3 x^3 + r_2 x^2 + r_1 x + s$.

3. For $1 \le i \le 9$ Zelda gives A_i f(i).

A Scenario

- 1. (5,9) Secret Sharing.
- 2. The secret is s. $p \sim s$. Zelda picks rand $r_4, r_3, r_2, r_1 \in \mathbb{Z}_p$, forms the poly $f(x) = r_4 x^4 + r_3 x^3 + r_2 x^2 + r_1 x + s$.
- 3. For $1 \le i \le 9$ Zelda gives A_i f(i).

 A_2, A_4, A_7, A_8, A_9 get together. BUT the do not trust each other!

- 1. A_2 thinks that A_7 is a traitor!
- 2. A_7 thinks A_4 will confuse them just for the fun of it.
- 3. A_8 and A_9 got into a knife fight over who proved that the muffin problem always has a rational solution. (Used same knife that was used to cut the muffins in $\frac{5}{12}$: $\frac{7}{12}$ ratio.)

4. The list goes on

A Scenario

- 1. (5,9) Secret Sharing.
- 2. The secret is s. $p \sim s$. Zelda picks rand $r_4, r_3, r_2, r_1 \in \mathbb{Z}_p$, forms the poly $f(x) = r_4 x^4 + r_3 x^3 + r_2 x^2 + r_1 x + s$.
- 3. For $1 \le i \le 9$ Zelda gives A_i f(i).

 A_2, A_4, A_7, A_8, A_9 get together. BUT the do not trust each other!

- 1. A_2 thinks that A_7 is a traitor!
- 2. A_7 thinks A_4 will confuse them just for the fun of it.
- 3. A_8 and A_9 got into a knife fight over who proved that the muffin problem always has a rational solution. (Used same knife that was used to cut the muffins in $\frac{5}{12}:\frac{7}{12}$ ratio.)
- 4. The list goes on

Hence we need to VERIFY that everyone is telling the truth. This is called VERIFIABLE secret sharing, or VSS.

- 1. Secret is s, |s| = n. Zelda finds $p \sim n$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .

3. Zelda picks rand
$$r_{t-1}, ..., r_1 \in Z_p$$

 $f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s.$

 For 1 ≤ i ≤ L Zelda gives A_i f(i), g, g^s. (We think discrete log is HARD so s not revealed.)

Recover: The usual – any group of t can determine the polynomial f and hence the constant term.

Verify: Once a group has s they compute g^s and see if it matches.

- 1. Secret is s, |s| = n. Zelda finds $p \sim n$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .

3. Zelda picks rand
$$r_{t-1}, ..., r_1 \in Z_p$$

 $f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s.$

 For 1 ≤ i ≤ L Zelda gives A_i f(i), g, g^s. (We think discrete log is HARD so s not revealed.)

Recover: The usual – any group of t can determine the polynomial f and hence the constant term.

Verify: Once a group has *s* they compute g^s and see if it matches. If so then they **know** they have the correct secret.

- 1. Secret is s, |s| = n. Zelda finds $p \sim n$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .

3. Zelda picks rand
$$r_{t-1}, ..., r_1 \in Z_p$$

 $f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s.$

 For 1 ≤ i ≤ L Zelda gives A_i f(i), g, g^s. (We think discrete log is HARD so s not revealed.)

Recover: The usual – any group of t can determine the polynomial f and hence the constant term.

Verify: Once a group has *s* they compute g^s and see if it matches. If so then they **know** they have the correct secret. If no then they **know** someone is a **stinking rotten liar**

- 1. Secret is s, |s| = n. Zelda finds $p \sim n$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .

3. Zelda picks rand
$$r_{t-1}, ..., r_1 \in Z_p$$

 $f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s.$

 For 1 ≤ i ≤ L Zelda gives A_i f(i), g, g^s. (We think discrete log is HARD so s not revealed.)

Recover: The usual – any group of t can determine the polynomial f and hence the constant term.

Verify: Once a group has *s* they compute g^s and see if it matches. If so then they **know** they have the correct secret. If no then they **know** someone is a **stinking rotten liar**

- 1. If verify *s* there may still be two liars who cancel out.
- 2. If do not agree they do not know who the liar was.
- 3. Does not serve as a deterrent.

- 1. Secret is s, |s| = n. Zelda finds $p \sim n$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .

3. Zelda picks rand
$$r_{t-1}, \ldots, r_1 \in \mathbb{Z}_p$$
.

$$f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s.$$

- 4. For $1 \le i \le L$ Zelda gives A_i f(i).
- Zelda gives to EVERYONE the values g^{f(1)}, ..., g^{f(L)}, g. (We think discrete log is HARD so f(i) not revealed.)

Recover: The usual – any group of *t* can blah blah.

Verify: If A_i says f(i) = 17, they can all then check of g^{17} is what Zelda said $g^{f(i)}$ is.

- 1. Secret is s, |s| = n. Zelda finds $p \sim n$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .

3. Zelda picks rand
$$r_{t-1}, \ldots, r_1 \in \mathbb{Z}_p$$
.

$$f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s.$$

- 4. For $1 \le i \le L$ Zelda gives A_i f(i).
- Zelda gives to EVERYONE the values g^{f(1)}, ..., g^{f(L)}, g. (We think discrete log is HARD so f(i) not revealed.)

Recover: The usual – any group of *t* can blah blah.

Verify: If A_i says f(i) = 17, they can all then check of g^{17} is what Zelda said $g^{f(i)}$ is.

If so then they **know** A_i is truthful.

- 1. Secret is s, |s| = n. Zelda finds $p \sim n$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .
- 3. Zelda picks rand $r_{t-1}, ..., r_1 \in \mathbb{Z}_p$. $f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s$.
- 4. For $1 \le i \le L$ Zelda gives A_i f(i).
- Zelda gives to EVERYONE the values g^{f(1)}, ..., g^{f(L)}, g. (We think discrete log is HARD so f(i) not revealed.)

Recover: The usual - any group of t can blah blah.

Verify: If A_i says f(i) = 17, they can all then check of g^{17} is what Zelda said $g^{f(i)}$ is.

If so then they **know** A_i is truthful.

If not then they **know** A_i is a **stinking rotten liar**.

- 1. Secret is s, |s| = n. Zelda finds $p \sim n$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .

3. Zelda picks rand
$$r_{t-1}, \ldots, r_1 \in \mathbb{Z}_p$$
.
 $f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s$.

- 4. For $1 \le i \le L$ Zelda gives A_i f(i).
- Zelda gives to EVERYONE the values g^{f(1)}, ..., g^{f(L)}, g. (We think discrete log is HARD so f(i) not revealed.)

Recover: The usual - any group of t can blah blah.

Verify: If A_i says f(i) = 17, they can all then check of g^{17} is what Zelda said $g^{f(i)}$ is. If so then they **know** A_i is truthful.

If not then they know A_i is a stinking rotten liar.

- 1. PRO: If someone lies they know right away.
- 2. PRO: Serves as a deterrent.
- 3. CON: *L* public strings A LOT!, may need to update.

- 1. Secret is s, |s| = n. Zelda finds $p \sim n$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .
- 3. Zelda picks rand $r_{t-1}, ..., r_1 \in Z_p$, $f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s$.
- 4. For $1 \le i \le L$ Zelda gives A_i f(i).
- 5. Zelda gives to EVERYONE the values $g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g$. (We think discrete log is HARD so r_i not revealed.)

Recover: The usual – any group of t can blah blah. **Verify:** A_i reveals f(i) = 17. Group computes: g^{17} and: $(g^{r_{t-1}})^{i^{t-1}} \times (g^{r_{t-2}})^{i^{t-2}} \times \cdots \times (g^{r_1})^{i^1} \times (g^s)^{i^0}$ $= g^{r_{t-1}i^{t-1}+r_{t-2}i^{t-2}+\cdots+r_1i^{1+s}} = g^{f(i)}$

- 1. Secret is s, |s| = n. Zelda finds $p \sim n$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .
- 3. Zelda picks rand $r_{t-1}, ..., r_1 \in Z_p$, $f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s$.
- 4. For $1 \le i \le L$ Zelda gives A_i f(i).
- 5. Zelda gives to EVERYONE the values $g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g$. (We think discrete log is HARD so r_i not revealed.)

(日) (日) (日) (日) (日) (日) (日) (日)

Recover: The usual – any group of t can blah blah. **Verify:** A_i reveals f(i) = 17. Group computes: g^{17} and: $(g^{r_{t-1}})^{i^{t-1}} \times (g^{r_{t-2}})^{i^{t-2}} \times \cdots \times (g^{r_1})^{i^1} \times (g^s)^{i^0}$ $= g^{r_{t-1}i^{t-1}+r_{t-2}i^{t-2}+\cdots+r_1i^{1+s}} = g^{f(i)}$ If this is g^{17} then A_i is truthful.

- 1. Secret is s, |s| = n. Zelda finds $p \sim n$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .
- 3. Zelda picks rand $r_{t-1}, ..., r_1 \in Z_p$, $f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s$.
- 4. For $1 \le i \le L$ Zelda gives A_i f(i).
- 5. Zelda gives to EVERYONE the values $g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g$. (We think discrete log is HARD so r_i not revealed.)

(日) (日) (日) (日) (日) (日) (日) (日)

Recover: The usual – any group of t can blah blah. **Verify:** A_i reveals f(i) = 17. Group computes: g^{17} and: $(g^{r_{t-1}})^{i^{t-1}} \times (g^{r_{t-2}})^{i^{t-2}} \times \cdots \times (g^{r_1})^{i^1} \times (g^s)^{i^0}$ $= g^{r_{t-1}i^{t-1}+r_{t-2}i^{t-2}+\cdots+r_1i^{1+s}} = g^{f(i)}$ If this is g^{17} then A_i is truthful. If not then A_i is dirty stinking liar.

- 1. Secret is s, |s| = n. Zelda finds $p \sim n$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .

3. Zelda picks rand
$$r_{t-1}, ..., r_1 \in Z_p$$
,
 $f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s$.

- 4. For $1 \le i \le L$ Zelda gives A_i f(i).
- Zelda gives to EVERYONE the values g^{r1}, ..., g^{rt-1}, g^s, g. (We think discrete log is HARD so r_i not revealed.)

Recover: The usual – any group of t can blah blah. **Verify:** A_i reveals f(i) = 17. Group computes: g^{17} and: $(g^{r_{t-1}})^{i^{t-1}} \times (g^{r_{t-2}})^{i^{t-2}} \times \cdots \times (g^{r_1})^{i^1} \times (g^s)^{i^0}$ $= g^{r_{t-1}i^{t-1}+r_{t-2}i^{t-2}+\cdots+r_1i^{1+s}} = g^{f(i)}$ If this is g^{17} then A_i is truthful. If not then A_i is dirty stinking liar.

- 1. **PRO:** If someone lies they know right away.
- 2. **PRO:** Serves as a deterrent.
- 3. **PRO:** *t* public strings, never need to update.
- 4. CAVEAT: Security see next slide.

The scheme above for VSS is by Paul Feldman.

A Practical Scheme for non-interactive Verifiable Secret Sharing

28th Conference on Foundations of Computer Science (FOCS)

1987

They give proof of security based on zero-knowledge protocols which are themselves based on blah blah.

Upshot: Pretty good Hardness Assumption.

Electronic Voting Using Public Key Crypto And Secret Sharing

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Math Needed For Paillier Public Key Encryption

- N = pq where p, q are primes.
- Let $m \in \mathbb{Z}_N$.
- Let $r \in \mathbb{Z}_N^*$ picked at random.
- Let $c = (1 + N)^m r^N \pmod{N^2}$. (NOTE mod N^2 not N)
- 1. Given *c*, *p*, *q*, determining *m* is EASY. (We omit proof but its not hard. In Katz's book.)

(日) (日) (日) (日) (日) (日) (日) (日) (日)

2. Given c, N, determining m is believed to be hard

The Paillier Public Key Encryption

n is a security parameter.

- 1. Alice picks p, q primes length n, let N = pq, broadcasts N.
- 2. To send $m \in \mathbb{Z}_N$ Bob picks random $r \in \mathbb{Z}_N^*$, broadcasts $(1+N)^m r^N \pmod{N^2}$
- 3. As noted in last slide, Alice can decode.
- 4. As noted in last slide, we think Eve cannot.

Hardness Assumption: The following is hard: given $a \in \mathbb{Z}_{N^2}$, is it an *N*th power. (That this is equivalent to breaking the scheme is not obvious. Not hard – it is in Katz's book.)

Nice Property of Paillier Encryption

Alice broadcasts N to B_1, B_2 . B_1 broadcasts $c_1 = ENC(m_1) = (1 + N)^{m_1} r_1^N$. B_2 broadcasts $c_2 = ENC(m_2) = (1 + N)^{m_2} r_2^N$.

Important Note:

$$c_1c_2 = (1+N)^{m_1}r_1^N(1+N)^{m_2}r_2^N = (1+N)^{m_1+m_2}(r_1r_2)^N$$

= $ENC(m_1+m_2)$

Scenario: If B_1 broadcasts c_1 , B_2 broadcasts c_2 , and Alice doesn't see it, but does see c_1c_2 , then Alice can determine $m_1 + m_2$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Nice Property of Paillier Encryption-II

Alice broadcasts N to $B_1, B_2, ..., B_5$. B_1 broadcasts $c_1 = ENC(m_1)$. B_2 broadcasts $c_2 = ENC(m_2)$.

 B_S broadcasts $c_S = ENC(m_S)$.

Important Note:

$$c_1 \cdots c_S = (1+N)^{m_1} r_1^N \cdots (1+N)^{m_S} r_S^N = (1+N)^{m_1+\cdots+m_S} (r_1 \cdots r_S)^N$$

$$= ENC(m_1 + \cdots + m_S)$$

Scenario: If B_1 broadcasts c_1, \ldots, B_S broadcasts c_S , and Alice doesn't see c_1, \ldots, c_S , but does see $c_1 \cdots c_S$, then Alice can determine $m_1 + \cdots + m_S$.

A and B supervise voting. B_1, \ldots, B_S vote NO (0) or YES (1).

- 1. Alice picks p, q primes length n, let N = pq, broadcasts N.
- 2. B_i votes $m_i \in \{0, 1\}$ and prepares c_i .
- 3. B_i send vote to Bob (NOT to Alice).
- 4. Bob computes $c = c_1 c_2 \cdots c_S$.
- 5. Bob gives c to Alice.

6. Alice can find $m_1 + \cdots + m_s$. If $< \frac{s}{2}$ then NO, otherwise YES.

Is there a problem with this? Discuss

A and B supervise voting. B_1, \ldots, B_S vote NO (0) or YES (1).

- 1. Alice picks p, q primes length n, let N = pq, broadcasts N.
- 2. B_i votes $m_i \in \{0, 1\}$ and prepares c_i .
- 3. B_i send vote to Bob (NOT to Alice).
- 4. Bob computes $c = c_1 c_2 \cdots c_s$.
- 5. Bob gives c to Alice.

6. Alice can find $m_1 + \cdots + m_s$. If $< \frac{s}{2}$ then NO, otherwise YES.

Is there a problem with this? **Discuss Problem:** If $S > N^2$ then sum might overflow and go back to 0. **Solution:** Make sure $N^2 > S$. Duh. **Security:** Neither Alice nor Bob knows how anyone voted.

A and B supervise voting. B_1, \ldots, B_S vote NO (0) or YES (1).

- 1. Alice picks p, q primes length n, let N = pq, broadcasts N.
- 2. B_i votes $m_i \in \{0, 1\}$ and prepares c_i .
- 3. B_i send vote to Bob (NOT to Alice).
- 4. Bob computes $c = c_1 c_2 \cdots c_s$.
- 5. Bob gives c to Alice.
- 6. Alice can find $m_1 + \cdots + m_s$. If $< \frac{s}{2}$ then NO, otherwise YES.

Is there a problem with this? **Discuss Problem:** If $S > N^2$ then sum might overflow and go back to 0. **Solution:** Make sure $N^2 > S$. Duh. **Security:** Neither Alice nor Bob knows how anyone voted. **Problem:** Alice could lie to make **The All Night Party** win.

A and B supervise voting. B_1, \ldots, B_S vote NO (0) or YES (1).

- 1. Alice picks p, q primes length n, let N = pq, broadcasts N.
- 2. B_i votes $m_i \in \{0, 1\}$ and prepares c_i .
- 3. B_i send vote to Bob (NOT to Alice).
- 4. Bob computes $c = c_1 c_2 \cdots c_S$.
- 5. Bob gives c to Alice.
- 6. Alice can find $m_1 + \cdots + m_s$. If $< \frac{s}{2}$ then NO, otherwise YES.

Is there a problem with this? **Discuss Problem:** If $S > N^2$ then sum might overflow and go back to 0. **Solution:** Make sure $N^2 > S$. Duh. **Security:** Neither Alice nor Bob knows how anyone voted. **Problem:** Alice could lie to make **The All Night Party** win. **Problem:** If Alice obtains c_i then she could find out how B_i voted.

Alice and Bob joined by reps from each party Q_1, \ldots, Q_t .

- 1. Alice picks p, q primes length n, let N = pq, broadcasts N.
- 2. B_i votes $m_i \in \{0, 1\}$ and prepares c_i .
- 3. B_i sends vote to Bob (NOT Alice, Q_1, \ldots, Q_t).
- 4. Bob computes $c = c_1 c_2 \cdots c_S$ and broadcasts c.
- 5. Alice: VSS (t, t) secret p, people Q_1, \ldots, Q_t .
- 6. Q_1, \ldots, Q_t have p, q. They compute DEC(c).
- 7. Q_1, \ldots, Q_t agree on the winner.

Security: Neither Alice nor Bob knows how anyone voted.

Alice and Bob joined by reps from each party Q_1, \ldots, Q_t .

- 1. Alice picks p, q primes length n, let N = pq, broadcasts N.
- 2. B_i votes $m_i \in \{0, 1\}$ and prepares c_i .
- 3. B_i sends vote to Bob (NOT Alice, Q_1, \ldots, Q_t).
- 4. Bob computes $c = c_1 c_2 \cdots c_S$ and broadcasts c.
- 5. Alice: VSS (t, t) secret p, people Q_1, \ldots, Q_t .
- 6. Q_1, \ldots, Q_t have p, q. They compute DEC(c).
- 7. Q_1, \ldots, Q_t agree on the winner.

Security: Neither Alice nor Bob knows how anyone voted. **Security:** The outcome is correct since all Q_1, \ldots, Q_t verify.

Alice and Bob joined by reps from each party Q_1, \ldots, Q_t .

- 1. Alice picks p, q primes length n, let N = pq, broadcasts N.
- 2. B_i votes $m_i \in \{0, 1\}$ and prepares c_i .
- 3. B_i sends vote to Bob (NOT Alice, Q_1, \ldots, Q_t).
- **4**. Bob computes $c = c_1 c_2 \cdots c_S$ and broadcasts c.
- 5. Alice: VSS (t, t) secret p, people Q_1, \ldots, Q_t .
- 6. Q_1, \ldots, Q_t have p, q. They compute DEC(c).
- 7. Q_1, \ldots, Q_t agree on the winner.

Security: Neither Alice nor Bob knows how anyone voted. **Security:** The outcome is correct since all Q_1, \ldots, Q_t verify. **Problem:** If any Q_j obtains c_i then Q_j could find out how B_i voted.

Alice and Bob joined by reps from each party Q_1, \ldots, Q_t .

- 1. Alice picks p, q primes length n, let N = pq, broadcasts N.
- 2. B_i votes $m_i \in \{0, 1\}$ and prepares c_i .
- 3. B_i sends vote to Bob (NOT Alice, Q_1, \ldots, Q_t).
- 4. Bob computes $c = c_1 c_2 \cdots c_S$ and broadcasts c.
- 5. Alice: VSS (t, t) secret p, people Q_1, \ldots, Q_t .
- 6. Q_1, \ldots, Q_t have p, q. They compute DEC(c).
- 7. Q_1, \ldots, Q_t agree on the winner.

Security: Neither Alice nor Bob knows how anyone voted. **Security:** The outcome is correct since all Q_1, \ldots, Q_t verify. **Problem:** If any Q_j obtains c_i then Q_j could find out how B_i voted.

Problem: This can be solved. Omitted. In Katz's book.

For More on Secret Sharing

Google Scholar is a website of all papers (or at least most) I went there and googled

"Secret Sharing"

(日) (日) (日) (日) (日) (日) (日) (日) (日)

How many papers are on it? VOTE

- 1. between 1 and 100
- 2. between 100 and 1000
- 3. between 1000 and 10,000
- 4. between 10,000 and 20,000
- 5. over 20,000

For More on Secret Sharing

Google Scholar is a website of all papers (or at least most) I went there and googled

"Secret Sharing"

(日) (日) (日) (日) (日) (日) (日) (日) (日)

How many papers are on it? VOTE

- 1. between 1 and 100
- 2. between 100 and 1000
- 3. between 1000 and 10,000
- 4. between 10,000 and 20,000
- 5. over 20,000

58,000.