Verifiable Secret Sharing Voting

Threshold Secret Sharing

Zelda has a secret $s \in\{0,1\}^{n}$.
Def: Let $1 \leq t \leq m .(t, L)$-secret sharing is a way for Zelda to give strings to A_{1}, \ldots, A_{L} such that:

1. If any t get together than they can learn the secret.
2. If any $t-1$ get together they cannot learn the secret.

Cannot learn the secret Last lecture this was Info-Theoretic. This lecture we consider info-theoretic and comp-theoretic.

A Scenario

1. $(5,9)$ Secret Sharing.
2. The secret is s. $p \sim s$. Zelda picks rand $r_{4}, r_{3}, r_{2}, r_{1} \in \mathbb{Z}_{p}$, forms the poly $f(x)=r_{4} x^{4}+r_{3} x^{3}+r_{2} x^{2}+r_{1} x+s$.
3. For $1 \leq i \leq 9$ Zelda gives $A_{i} f(i)$.

A Scenario

1. $(5,9)$ Secret Sharing.
2. The secret is $s . p \sim s$. Zelda picks rand $r_{4}, r_{3}, r_{2}, r_{1} \in \mathbb{Z}_{p}$, forms the poly $f(x)=r_{4} x^{4}+r_{3} x^{3}+r_{2} x^{2}+r_{1} x+s$.
3. For $1 \leq i \leq 9$ Zelda gives $A_{i} f(i)$.
$A_{2}, A_{4}, A_{7}, A_{8}, A_{9}$ get together. BUT the do not trust each other!
4. A_{2} thinks that A_{7} is a traitor!
5. A_{7} thinks A_{4} will confuse them just for the fun of it.
6. A_{8} and A_{9} got into a knife fight over who proved that the muffin problem always has a rational solution. (Used same knife that was used to cut the muffins in $\frac{5}{12}: \frac{7}{12}$ ratio.)
7. The list goes on

A Scenario

1. $(5,9)$ Secret Sharing.
2. The secret is s. $p \sim s$. Zelda picks rand $r_{4}, r_{3}, r_{2}, r_{1} \in \mathbb{Z}_{p}$, forms the poly $f(x)=r_{4} x^{4}+r_{3} x^{3}+r_{2} x^{2}+r_{1} x+s$.
3. For $1 \leq i \leq 9$ Zelda gives $A_{i} f(i)$.
$A_{2}, A_{4}, A_{7}, A_{8}, A_{9}$ get together. BUT the do not trust each other!
4. A_{2} thinks that A_{7} is a traitor!
5. A_{7} thinks A_{4} will confuse them just for the fun of it.
6. A_{8} and A_{9} got into a knife fight over who proved that the muffin problem always has a rational solution. (Used same knife that was used to cut the muffins in $\frac{5}{12}: \frac{7}{12}$ ratio.)
7. The list goes on

Hence we need to VERIFY that everyone is telling the truth. This is called VERIFIABLE secret sharing, or VSS.

First Attempt at (t, L) VSS

1. Secret is $s,|s|=n$. Zelda finds $p \sim n$.
2. Zelda finds a generator g for \mathbb{Z}_{p}.
3. Zelda picks rand $r_{t-1}, \ldots, r_{1} \in Z_{p}$ $f(x)=r_{t-1} x^{t-1}+\cdots+r_{1} x+s$.
4. For $1 \leq i \leq L$ Zelda gives $A_{i} f(i), g, g^{s}$.
(We think discrete log is HARD so s not revealed.)
Recover: The usual - any group of t can determine the polynomial f and hence the constant term.

Verify: Once a group has s they compute g^{s} and see if it matches.

First Attempt at (t, L) VSS

1. Secret is $s,|s|=n$. Zelda finds $p \sim n$.
2. Zelda finds a generator g for \mathbb{Z}_{p}.
3. Zelda picks rand $r_{t-1}, \ldots, r_{1} \in Z_{p}$ $f(x)=r_{t-1} x^{t-1}+\cdots+r_{1} x+s$.
4. For $1 \leq i \leq L$ Zelda gives $A_{i} f(i), g, g^{s}$.
(We think discrete log is HARD so s not revealed.)
Recover: The usual - any group of t can determine the polynomial f and hence the constant term.

Verify: Once a group has s they compute g^{s} and see if it matches. If so then they know they have the correct secret.

First Attempt at (t, L) VSS

1. Secret is $s,|s|=n$. Zelda finds $p \sim n$.
2. Zelda finds a generator g for \mathbb{Z}_{p}.
3. Zelda picks rand $r_{t-1}, \ldots, r_{1} \in Z_{p}$ $f(x)=r_{t-1} x^{t-1}+\cdots+r_{1} x+s$.
4. For $1 \leq i \leq L$ Zelda gives $A_{i} f(i), g, g^{s}$.
(We think discrete log is HARD so s not revealed.)
Recover: The usual - any group of t can determine the polynomial f and hence the constant term.

Verify: Once a group has s they compute g^{s} and see if it matches. If so then they know they have the correct secret. If no then they know someone is a stinking rotten liar

First Attempt at (t, L) VSS

1. Secret is $s,|s|=n$. Zelda finds $p \sim n$.
2. Zelda finds a generator g for \mathbb{Z}_{p}.
3. Zelda picks rand $r_{t-1}, \ldots, r_{1} \in Z_{p}$ $f(x)=r_{t-1} x^{t-1}+\cdots+r_{1} x+s$.
4. For $1 \leq i \leq L$ Zelda gives $A_{i} f(i), g, g^{s}$.
(We think discrete log is HARD so s not revealed.)
Recover: The usual - any group of t can determine the polynomial f and hence the constant term.

Verify: Once a group has s they compute g^{s} and see if it matches. If so then they know they have the correct secret. If no then they know someone is a stinking rotten liar

1. If verify s there may still be two liars who cancel out.
2. If do not agree they do not know who the liar was.
3. Does not serve as a deterrent.

Second Attempt at (t, L) VSS

1. Secret is $s,|s|=n$. Zelda finds $p \sim n$.
2. Zelda finds a generator g for \mathbb{Z}_{p}.
3. Zelda picks rand $r_{t-1}, \ldots, r_{1} \in \mathbb{Z}_{p}$. $f(x)=r_{t-1} x^{t-1}+\cdots+r_{1} x+s$.
4. For $1 \leq i \leq L$ Zelda gives $A_{i} f(i)$.
5. Zelda gives to EVERYONE the values $g^{f(1)}, \ldots, g^{f(L)}, g$. (We think discrete log is HARD so $f(i)$ not revealed.)

Recover: The usual - any group of t can blah blah.
Verify: If A_{i} says $f(i)=17$, they can all then check of g^{17} is what Zelda said $g^{f(i)}$ is.

Second Attempt at (t, L) VSS

1. Secret is $s,|s|=n$. Zelda finds $p \sim n$.
2. Zelda finds a generator g for \mathbb{Z}_{p}.
3. Zelda picks rand $r_{t-1}, \ldots, r_{1} \in \mathbb{Z}_{p}$. $f(x)=r_{t-1} x^{t-1}+\cdots+r_{1} x+s$.
4. For $1 \leq i \leq L$ Zelda gives $A_{i} f(i)$.
5. Zelda gives to EVERYONE the values $g^{f(1)}, \ldots, g^{f(L)}, g$. (We think discrete log is HARD so $f(i)$ not revealed.)

Recover: The usual - any group of t can blah blah.
Verify: If A_{i} says $f(i)=17$, they can all then check of g^{17} is what Zelda said $g^{f(i)}$ is.
If so then they know A_{i} is truthful.

Second Attempt at (t, L) VSS

1. Secret is $s,|s|=n$. Zelda finds $p \sim n$.
2. Zelda finds a generator g for \mathbb{Z}_{p}.
3. Zelda picks rand $r_{t-1}, \ldots, r_{1} \in \mathbb{Z}_{p}$. $f(x)=r_{t-1} x^{t-1}+\cdots+r_{1} x+s$.
4. For $1 \leq i \leq L$ Zelda gives $A_{i} f(i)$.
5. Zelda gives to EVERYONE the values $g^{f(1)}, \ldots, g^{f(L)}, g$. (We think discrete log is HARD so $f(i)$ not revealed.)

Recover: The usual - any group of t can blah blah.
Verify: If A_{i} says $f(i)=17$, they can all then check of g^{17} is what Zelda said $g^{f(i)}$ is.
If so then they know A_{i} is truthful.
If not then they know A_{i} is a stinking rotten liar.

Second Attempt at (t, L) VSS

1. Secret is $s,|s|=n$. Zelda finds $p \sim n$.
2. Zelda finds a generator g for \mathbb{Z}_{p}.
3. Zelda picks rand $r_{t-1}, \ldots, r_{1} \in \mathbb{Z}_{p}$. $f(x)=r_{t-1} x^{t-1}+\cdots+r_{1} x+s$.
4. For $1 \leq i \leq L$ Zelda gives $A_{i} f(i)$.
5. Zelda gives to EVERYONE the values $g^{f(1)}, \ldots, g^{f(L)}, g$. (We think discrete log is HARD so $f(i)$ not revealed.)

Recover: The usual - any group of t can blah blah.
Verify: If A_{i} says $f(i)=17$, they can all then check of g^{17} is what Zelda said $g^{f(i)}$ is.
If so then they know A_{i} is truthful.
If not then they know A_{i} is a stinking rotten liar.

1. PRO: If someone lies they know right away.
2. PRO: Serves as a deterrent.
3. CON: L public strings A LOT!, may need to update.

Third Attempt at (t, L) VSS

1. Secret is $s,|s|=n$. Zelda finds $p \sim n$.
2. Zelda finds a generator g for \mathbb{Z}_{p}.
3. Zelda picks rand $r_{t-1}, \ldots, r_{1} \in Z_{p}$,

$$
f(x)=r_{t-1} x^{t-1}+\cdots+r_{1} x+s .
$$

4. For $1 \leq i \leq L$ Zelda gives $A_{i} f(i)$.
5. Zelda gives to EVERYONE the values $g^{r_{1}}, \ldots, g^{r_{t-1}}, g^{s}, g$. (We think discrete log is HARD so r_{i} not revealed.)
Recover: The usual - any group of t can blah blah.
Verify: A_{i} reveals $f(i)=17$. Group computes: g^{17} and:
$\left(g^{r_{t-1}}\right)^{t-1} \times\left(g^{r_{t-2}}\right)^{i^{t-2}} \times \cdots \times\left(g^{r_{1}}\right)^{i^{1}} \times\left(g^{s}\right)^{i^{0}}$
$=g^{r_{t-1} i^{t-1}+r_{t-2} i^{t-2}+\cdots+r_{1} i^{1}+s}=g^{f(i)}$

Third Attempt at (t, L) VSS

1. Secret is $s,|s|=n$. Zelda finds $p \sim n$.
2. Zelda finds a generator g for \mathbb{Z}_{p}.
3. Zelda picks rand $r_{t-1}, \ldots, r_{1} \in Z_{p}$,

$$
f(x)=r_{t-1} x^{t-1}+\cdots+r_{1} x+s .
$$

4. For $1 \leq i \leq L$ Zelda gives $A_{i} f(i)$.
5. Zelda gives to EVERYONE the values $g^{r_{1}}, \ldots, g^{r_{t-1}}, g^{s}, g$. (We think discrete log is HARD so r_{i} not revealed.)
Recover: The usual - any group of t can blah blah.
Verify: A_{i} reveals $f(i)=17$. Group computes: g^{17} and:
$\left(g^{r_{t-1}}\right)^{i t-1} \times\left(g^{r_{t-2}}\right)^{i^{t-2}} \times \cdots \times\left(g^{r_{1}}\right)^{i^{1}} \times\left(g^{s}\right)^{i^{0}}$
$=g^{r_{t-1} i^{t-1}+r_{t-2} i^{i-2}+\cdots+r_{1} i^{1}+s}=g^{f(i)}$
If this is g^{17} then A_{i} is truthful.

Third Attempt at (t, L) VSS

1. Secret is $s,|s|=n$. Zelda finds $p \sim n$.
2. Zelda finds a generator g for \mathbb{Z}_{p}.
3. Zelda picks rand $r_{t-1}, \ldots, r_{1} \in Z_{p}$,

$$
f(x)=r_{t-1} x^{t-1}+\cdots+r_{1} x+s .
$$

4. For $1 \leq i \leq L$ Zelda gives $A_{i} f(i)$.
5. Zelda gives to EVERYONE the values $g^{r_{1}}, \ldots, g^{r_{t-1}}, g^{s}, g$. (We think discrete log is HARD so r_{i} not revealed.)
Recover: The usual - any group of t can blah blah.
Verify: A_{i} reveals $f(i)=17$. Group computes: g^{17} and:
$\left(g^{r_{t-1}}\right)^{i t-1} \times\left(g^{r_{t-2}}\right)^{i t-2} \times \cdots \times\left(g^{r_{1}}\right)^{i^{1}} \times\left(g^{s}\right)^{i^{0}}$
$=g^{r_{t-1} i^{t-1}+r_{t-2} i^{i-2}+\cdots+r_{1} i^{1}+s}=g^{f(i)}$
If this is g^{17} then A_{i} is truthful.
If not then A_{i} is dirty stinking liar.

Third Attempt at (t, L) VSS

1. Secret is $s,|s|=n$. Zelda finds $p \sim n$.
2. Zelda finds a generator g for \mathbb{Z}_{p}.
3. Zelda picks rand $r_{t-1}, \ldots, r_{1} \in Z_{p}$,

$$
f(x)=r_{t-1} x^{t-1}+\cdots+r_{1} x+s
$$

4. For $1 \leq i \leq L$ Zelda gives $A_{i} f(i)$.
5. Zelda gives to EVERYONE the values $g^{r_{1}}, \ldots, g^{r_{t-1}}, g^{s}, g$. (We think discrete log is HARD so r_{i} not revealed.)
Recover: The usual - any group of t can blah blah.
Verify: A_{i} reveals $f(i)=17$. Group computes: g^{17} and:
$\left(g^{r_{t-1}}\right)^{t-1} \times\left(g^{r_{t-2}}\right)^{i^{t-2}} \times \cdots \times\left(g^{r_{1}}\right)^{i^{1}} \times\left(g^{s}\right)^{i^{0}}$
$=g^{r_{t-1} i^{t-1}+r_{t-2} i^{t-2}+\cdots+r_{1} i^{1}+s}=g^{f(i)}$
If this is g^{17} then A_{i} is truthful.
If not then A_{i} is dirty stinking liar.
6. PRO: If someone lies they know right away.
7. PRO: Serves as a deterrent.
8. PRO: t public strings, never need to update.
9. CAVEAT: Security - see next slide.

Security and References

The scheme above for VSS is by Paul Feldman.
A Practical Scheme for non-interactive Verifiable Secret Sharing
28th Conference on Foundations of Computer Science (FOCS)
1987
They give proof of security based on zero-knowledge protocols which are themselves based on blah blah.
Upshot: Pretty good Hardness Assumption.

Electronic Voting Using Public Key Crypto And Secret Sharing

Math Needed For Paillier Public Key Encryption

- $N=p q$ where p, q are primes.
- Let $m \in \mathbb{Z}_{N}$.
- Let $r \in \mathbb{Z}_{N}^{*}$ picked at random.
- Let $c=(1+N)^{m} r^{N}\left(\bmod N^{2}\right) .\left(\right.$ NOTE $\left.\bmod N^{2} \operatorname{not} N\right)$

1. Given c, p, q, determining m is EASY. (We omit proof but its not hard. In Katz's book.)
2. Given c, N, determining m is believed to be hard

The Paillier Public Key Encryption

n is a security parameter.

1. Alice picks p, q primes length n, let $N=p q$, broadcasts N.
2. To send $m \in \mathbb{Z}_{N}$ Bob picks random $r \in \mathbb{Z}_{N}^{*}$, broadcasts $(1+N)^{m} r^{N}\left(\bmod N^{2}\right)$
3. As noted in last slide, Alice can decode.
4. As noted in last slide, we think Eve cannot.

Hardness Assumption: The following is hard: given $a \in \mathbb{Z}_{N^{2}}$, is it an N th power. (That this is equivalent to breaking the scheme is not obvious. Not hard - it is in Katz's book.)

Nice Property of Paillier Encryption

Alice broadcasts N to B_{1}, B_{2}.
B_{1} broadcasts $c_{1}=E N C\left(m_{1}\right)=(1+N)^{m_{1}} r_{1}^{N}$.
B_{2} broadcasts $c_{2}=E N C\left(m_{2}\right)=(1+N)^{m_{2}} r_{2}^{N}$.
Important Note:

$$
\begin{gathered}
c_{1} c_{2}=(1+N)^{m_{1}} r_{1}^{N}(1+N)^{m_{2}} r_{2}^{N}=(1+N)^{m_{1}+m_{2}}\left(r_{1} r_{2}\right)^{N} \\
=E N C\left(m_{1}+m_{2}\right)
\end{gathered}
$$

Scenario: If B_{1} broadcasts c_{1}, B_{2} broadcasts c_{2}, and Alice doesn't see it, but does see $c_{1} c_{2}$, then Alice can determine $m_{1}+m_{2}$.

Nice Property of Paillier Encryption-II

Alice broadcasts N to $B_{1}, B_{2}, \ldots, B_{S}$.
B_{1} broadcasts $c_{1}=\operatorname{ENC}\left(m_{1}\right)$.
B_{2} broadcasts $c_{2}=E N C\left(m_{2}\right)$.
B_{S} broadcasts $c_{S}=E N C\left(m_{S}\right)$.
Important Note:

$$
\begin{gathered}
c_{1} \cdots c_{S}=(1+N)^{m_{1}} r_{1}^{N} \cdots(1+N)^{m_{S}} r_{S}^{N}=(1+N)^{m_{1}+\cdots+m_{S}}\left(r_{1} \cdots r_{S}\right)^{N} \\
=E N C\left(m_{1}+\cdots+m_{S}\right)
\end{gathered}
$$

Scenario: If B_{1} broadcasts c_{1}, \ldots, B_{S} broadcasts c_{S}, and Alice doesn't see c_{1}, \ldots, c_{S}, but does see $c_{1} \cdots c_{S}$, then Alice can determine $m_{1}+\cdots+m_{S}$.

Application to Voting

A and B supervise voting. B_{1}, \ldots, B_{S} vote NO (0) or YES (1).

1. Alice picks p, q primes length n, let $N=p q$, broadcasts N.
2. B_{i} votes $m_{i} \in\{0,1\}$ and prepares c_{i}.
3. B_{i} send vote to Bob (NOT to Alice).
4. Bob computes $c=c_{1} c_{2} \cdots c_{s}$.
5. Bob gives c to Alice.
6. Alice can find $m_{1}+\cdots+m_{S}$. If $<\frac{S}{2}$ then NO, otherwise YES.

Is there a problem with this? Discuss

Application to Voting

A and B supervise voting. B_{1}, \ldots, B_{S} vote NO (0) or YES (1).

1. Alice picks p, q primes length n, let $N=p q$, broadcasts N.
2. B_{i} votes $m_{i} \in\{0,1\}$ and prepares c_{i}.
3. B_{i} send vote to Bob (NOT to Alice).
4. Bob computes $c=c_{1} c_{2} \cdots c_{s}$.
5. Bob gives c to Alice.
6. Alice can find $m_{1}+\cdots+m_{S}$. If $<\frac{S}{2}$ then NO, otherwise YES.

Is there a problem with this? Discuss
Problem: If $S>N^{2}$ then sum might overflow and go back to 0 .
Solution: Make sure $N^{2}>S$. Duh.
Security: Neither Alice nor Bob knows how anyone voted.

Application to Voting

A and B supervise voting. B_{1}, \ldots, B_{S} vote NO (0) or YES (1).

1. Alice picks p, q primes length n, let $N=p q$, broadcasts N.
2. B_{i} votes $m_{i} \in\{0,1\}$ and prepares c_{i}.
3. B_{i} send vote to Bob (NOT to Alice).
4. Bob computes $c=c_{1} c_{2} \cdots c_{s}$.
5. Bob gives c to Alice.
6. Alice can find $m_{1}+\cdots+m_{S}$. If $<\frac{S}{2}$ then NO, otherwise YES.

Is there a problem with this? Discuss
Problem: If $S>N^{2}$ then sum might overflow and go back to 0 .
Solution: Make sure $N^{2}>S$. Duh.
Security: Neither Alice nor Bob knows how anyone voted.
Problem: Alice could lie to make The All Night Party win.

Application to Voting

A and B supervise voting. B_{1}, \ldots, B_{S} vote NO (0) or YES (1).

1. Alice picks p, q primes length n, let $N=p q$, broadcasts N.
2. B_{i} votes $m_{i} \in\{0,1\}$ and prepares c_{i}.
3. B_{i} send vote to Bob (NOT to Alice).
4. Bob computes $c=c_{1} c_{2} \cdots c_{s}$.
5. Bob gives c to Alice.
6. Alice can find $m_{1}+\cdots+m_{S}$. If $<\frac{S}{2}$ then NO, otherwise YES.

Is there a problem with this? Discuss
Problem: If $S>N^{2}$ then sum might overflow and go back to 0 .
Solution: Make sure $N^{2}>S$. Duh.
Security: Neither Alice nor Bob knows how anyone voted.
Problem: Alice could lie to make The All Night Party win.
Problem: If Alice obtains c_{i} then she could find out how B_{i} voted.

Application to Voting

Alice and Bob joined by reps from each party Q_{1}, \ldots, Q_{t}.

1. Alice picks p, q primes length n, let $N=p q$, broadcasts N.
2. B_{i} votes $m_{i} \in\{0,1\}$ and prepares c_{i}.
3. B_{i} sends vote to Bob (NOT Alice, Q_{1}, \ldots, Q_{t}).
4. Bob computes $c=c_{1} c_{2} \cdots c_{S}$ and broadcasts c.
5. Alice: VSS (t, t) - secret p, people Q_{1}, \ldots, Q_{t}.
6. Q_{1}, \ldots, Q_{t} have p, q. They compute $D E C(c)$.
7. Q_{1}, \ldots, Q_{t} agree on the winner.

Security: Neither Alice nor Bob knows how anyone voted.

Application to Voting

Alice and Bob joined by reps from each party Q_{1}, \ldots, Q_{t}.

1. Alice picks p, q primes length n, let $N=p q$, broadcasts N.
2. B_{i} votes $m_{i} \in\{0,1\}$ and prepares c_{i}.
3. B_{i} sends vote to Bob (NOT Alice, Q_{1}, \ldots, Q_{t}).
4. Bob computes $c=c_{1} c_{2} \cdots c_{S}$ and broadcasts c.
5. Alice: $\operatorname{VSS}(t, t)$ - secret p, people Q_{1}, \ldots, Q_{t}.
6. Q_{1}, \ldots, Q_{t} have p, q. They compute $D E C(c)$.
7. Q_{1}, \ldots, Q_{t} agree on the winner.

Security: Neither Alice nor Bob knows how anyone voted. Security: The outcome is correct since all Q_{1}, \ldots, Q_{t} verify.

Application to Voting

Alice and Bob joined by reps from each party Q_{1}, \ldots, Q_{t}.

1. Alice picks p, q primes length n, let $N=p q$, broadcasts N.
2. B_{i} votes $m_{i} \in\{0,1\}$ and prepares c_{i}.
3. B_{i} sends vote to Bob (NOT Alice, Q_{1}, \ldots, Q_{t}).
4. Bob computes $c=c_{1} c_{2} \cdots c_{S}$ and broadcasts c.
5. Alice: $\operatorname{VSS}(t, t)$ - secret p, people Q_{1}, \ldots, Q_{t}.
6. Q_{1}, \ldots, Q_{t} have p, q. They compute $D E C(c)$.
7. Q_{1}, \ldots, Q_{t} agree on the winner.

Security: Neither Alice nor Bob knows how anyone voted. Security: The outcome is correct since all Q_{1}, \ldots, Q_{t} verify. Problem: If any Q_{j} obtains c_{i} then Q_{j} could find out how B_{i} voted.

Application to Voting

Alice and Bob joined by reps from each party Q_{1}, \ldots, Q_{t}.

1. Alice picks p, q primes length n, let $N=p q$, broadcasts N.
2. B_{i} votes $m_{i} \in\{0,1\}$ and prepares c_{i}.
3. B_{i} sends vote to Bob (NOT Alice, Q_{1}, \ldots, Q_{t}).
4. Bob computes $c=c_{1} c_{2} \cdots c_{S}$ and broadcasts c.
5. Alice: $\operatorname{VSS}(t, t)$ - secret p, people Q_{1}, \ldots, Q_{t}.
6. Q_{1}, \ldots, Q_{t} have p, q. They compute $D E C(c)$.
7. Q_{1}, \ldots, Q_{t} agree on the winner.

Security: Neither Alice nor Bob knows how anyone voted. Security: The outcome is correct since all Q_{1}, \ldots, Q_{t} verify. Problem: If any Q_{j} obtains c_{i} then Q_{j} could find out how B_{i} voted.
Problem: This can be solved. Omitted. In Katz's book.

For More on Secret Sharing

Google Scholar is a website of all papers (or at least most) I went there and googled
"Secret Sharing"
How many papers are on it?
VOTE

1. between 1 and 100
2. between 100 and 1000
3. between 1000 and 10,000
4. between 10,000 and 20,000
5. over 20,000

For More on Secret Sharing

Google Scholar is a website of all papers (or at least most) I went there and googled
"Secret Sharing"
How many papers are on it?
VOTE

1. between 1 and 100
2. between 100 and 1000
3. between 1000 and 10,000
4. between 10,000 and 20,000
5. over 20,000

58,000.

