
Stream ciphers



Stream ciphers

Stream Ciphers are Psuedorandom Generators made practical!

They are better than PRG’s!

Are Stream Ciphers ciphers? Depends on who you ask.

Some people identify the stream cipher with the cipher that results
from using it as the pseudo-one-time-pad.

We will not do that.

However,

we are right, and they are wrong.



Stream ciphers

Stream Ciphers are Psuedorandom Generators made practical!

They are better than PRG’s!

Are Stream Ciphers ciphers? Depends on who you ask.

Some people identify the stream cipher with the cipher that results
from using it as the pseudo-one-time-pad.

We will not do that.

However,

we are right, and they are wrong.



Stream ciphers

Stream Ciphers are Psuedorandom Generators made practical!

They are better than PRG’s!

Are Stream Ciphers ciphers? Depends on who you ask.

Some people identify the stream cipher with the cipher that results
from using it as the pseudo-one-time-pad.

We will not do that.

However,

we are right, and they are wrong.



Stream ciphers

Stream Ciphers are Psuedorandom Generators made practical!

They are better than PRG’s!

Are Stream Ciphers ciphers? Depends on who you ask.

Some people identify the stream cipher with the cipher that results
from using it as the pseudo-one-time-pad.

We will not do that.

However,

we are right, and they are wrong.



Stream ciphers

Stream Ciphers are Psuedorandom Generators made practical!

They are better than PRG’s!

Are Stream Ciphers ciphers? Depends on who you ask.

Some people identify the stream cipher with the cipher that results
from using it as the pseudo-one-time-pad.

We will not do that.

However,

we are right, and they are wrong.



Stream ciphers

I As we defined them, PRGs are limited

I They have fixed-length output

I They produce output in “one shot”

I In practice, PRGs are based on stream ciphers

I Can be viewed as producing an “infinite” stream of
pseudorandom bits, on demand

I More flexible, more efficient



Stream ciphers

A Stream Cipher is a pair of efficient, deterministic algorithms
(Init, GetBits) such that:

1. Init does the following:

1.1 Input: private seed s, opt public Init Vector (IV) V
1.2 Output: initial state st0

2. GetBits does the following:

2.1 Input: current state st
2.2 Output: a bit y along with updated state st ′

Note In practice, y is a block rather than a bit.



Stream ciphers

I Can use (Init, GetBits) to generate any desired number of
output bits from an initial seed



Stream ciphers

I A stream cipher is secure (informally) if the output stream
generated from a uniform seed is pseudorandom

I I.e. regardless of how long the output stream is (so long as it
is polynomial)

I See book for formal definition



Do Stream Ciphers exist? Theoretical

A one-way function (perm) is function (perm): easy to compute,
hard to invert.
A one-way function (perm) with a hard core predicate is a function
(perm) that is easy to compute but hard to invert, and (say) the
middle bit of f −1(x) is hard to compute.

Chapter 7 shows:
∃ One way Perm =⇒ ∃ one way perm with a hcp.
∃ one way perm with hcp =⇒ ∃ PRG with expansion 1
∃ PRG with expa-1 =⇒ ∃ Stream Ciphers
Note: (1-way func =⇒ ∃ SC’s) known but much harder.
Note: Stream Cipher obtained this way too slow to use :-(
Note: Proof of concept valuable :-)



Do Stream Ciphers exist? Practical

Several attempt Stream Ciphers:

1. Linear Feedback Shift Registers. Fast! Used! Not Secure!

2. Trivium. Fast! Used! Empirically Secure?

3. Rivest Cipher 4. Fast! Used! No longer secure!

Note Seems impossible to get Stream Ciphers that are provably
(even using Hardness Assumptions) secure and practical.

Note But having the rigor gives the practitioners (1) a target to
shoot for, and (2) pitfalls to watch out for.



Example of Linear Feedback Shift Register

I Assume initial content of registers is 0100

I First 4 state transition: 0100→ 1010→ 0101→ 0010→ . . .

I First 3 output bits: 001 . . .



Linear Feedback Shift Registers (LFSR): Example
Degree 3 LFSR, 3 constants : c2, c1, c0 ∈ {0, 1}. + is mod 2.

Key is st0 is 3 bits: (s02 , s
0
1 , s

0
0 ). NO IV (for now).

st1 = (s12 , s
1
1 , s

1
0 ) = (c2s

0
2 + c1s

0
1 + c0s

0
0 , s

0
2 , s

0
1 ).

stt+1 = (st2, s
t
1, s

t
0) = (c2s

t
2 + c1s

t
1 + c0s

t
0, s

t
2, s

t
1).

In English: Bits shift right, left most bit is c-combo of prior bits.

y1 = s00 y2 = s01 y3 = s02

y4 = s12 = c2y3 + c1y2 + c0y1

yt = st−32 = c2yt−3 + c1yt−2 + c0yt−1

In English: yt is (1) left most bit of stt−3 & (2) c-combo of prior y .



Note the Two Definitions of yt

yt = st−33 = c2yt−3 + c1yt−2 + c0yt−1

1. yt = st−33 is why LFSRs are so fast to compute. Note that all
of the operations we do, shift and + mod 2 (also called ⊕)
are very quick. YEAH!

2. yt = c2yt−3 + c1yt−2 + c0yt−1 is why (later) LFSRs are
crackable. BOO!.



Note the Two Definitions of yt

yt = st−33 = c2yt−3 + c1yt−2 + c0yt−1

1. yt = st−33 is why LFSRs are so fast to compute. Note that all
of the operations we do, shift and + mod 2 (also called ⊕)
are very quick. YEAH!

2. yt = c2yt−3 + c1yt−2 + c0yt−1 is why (later) LFSRs are
crackable. BOO!.



Note the Two Definitions of yt

yt = st−33 = c2yt−3 + c1yt−2 + c0yt−1

1. yt = st−33 is why LFSRs are so fast to compute. Note that all
of the operations we do, shift and + mod 2 (also called ⊕)
are very quick. YEAH!

2. yt = c2yt−3 + c1yt−2 + c0yt−1 is why (later) LFSRs are
crackable. BOO!.



Linear Feedback Shift Registers (LFSR)
Degree n LFSR, n constants : cn−1, . . . , c0 ∈ {0, 1}. + is mod 2.

Key is st0 is n bits: (s0n−1, . . . , s
0
0 ). NO IV (for now).

st1 = (s1n−1, . . . , s
1
0 ) = (cn−1s

0
n−1 + · · ·+ c0s

0
0 , s

0
n−1, s

0
n−3, . . . , s

0
1 ).

stt+1 = (stn−1, . . . , s
t
0) = (cn−1s

t
n−1 + · · ·+ c0s

t
0, s

t
n−1, sn−2, . . . , s

t
1).

In English: Bits shift right, left most bit is c-combo of prior bits.

y1 = s00 · · · yn = s0n−1

yn = s1n = cn−1yn + · · ·+ c0y1

yt = st−nn = cn−1yt−n + · · ·+ c0yt−n

In English: yt is (1) left most bit of stt−n & (2) c-combo of prior y .



Note the Two Definitions of yt

yt = st−nn = cn−1yt−n + · · ·+ c0yt−n

1. yt = st−3n is why LFSR’ are so fast to compute yt . Note that
all of the operations we do, shift and + mod 2 (also called ⊕)
are very quick. YEAH!

2. yt = cn−1yt−n + · · ·+ c0yt−1 is why (later) LFSR’s are
crackable. BOO!.



Note the Two Definitions of yt

yt = st−nn = cn−1yt−n + · · ·+ c0yt−n

1. yt = st−3n is why LFSR’ are so fast to compute yt . Note that
all of the operations we do, shift and + mod 2 (also called ⊕)
are very quick. YEAH!

2. yt = cn−1yt−n + · · ·+ c0yt−1 is why (later) LFSR’s are
crackable. BOO!.



Note the Two Definitions of yt

yt = st−nn = cn−1yt−n + · · ·+ c0yt−n

1. yt = st−3n is why LFSR’ are so fast to compute yt . Note that
all of the operations we do, shift and + mod 2 (also called ⊕)
are very quick. YEAH!

2. yt = cn−1yt−n + · · ·+ c0yt−1 is why (later) LFSR’s are
crackable. BOO!.



LFSR with IV

LFSR of degree n is defined by cn−1, . . . , c0 all in {0, 1}

Key is st ′0 is n bits. IV is n bits IV . st0 = st ′0 ⊕ IV .
All the rest is the same.
In English: XOR the private key with the public IV.
Why do this? Next Slide.



Two Ways to Use Stream Ciphers

Two Ways to Use Stream Ciphers. We illustrate with LFSR.

1. Syn Mode Alice gen and send private key. Bob sends message
of length L, using y1 · · · yL. Bob uses key to get y1 · · · yL and
decode. Bob responds with message of length M using
yL+1 · · · yL+M . They both keep in sync.

2. Unsyn Mode Alice gen and send private key. Alice sends
public IV. Bob sends message of length L AND IV. Alice uses
key and IV to get y1 · · · yL and can decode. Alice sends
message of length M AND IV. Bob uses Key and IV to get
y1 · · · yM and can decode. They do not have to be in sync.

When to use which? Discuss

1. Use Sync if all communication will be in one session and
communication is clear.

2. Use Unsync if Alice talks Monday, Bob replies Tuesday
perhaps on a diff device or if Comm is noisy.



Two Ways to Use Stream Ciphers

Two Ways to Use Stream Ciphers. We illustrate with LFSR.

1. Syn Mode Alice gen and send private key. Bob sends message
of length L, using y1 · · · yL. Bob uses key to get y1 · · · yL and
decode. Bob responds with message of length M using
yL+1 · · · yL+M . They both keep in sync.

2. Unsyn Mode Alice gen and send private key. Alice sends
public IV. Bob sends message of length L AND IV. Alice uses
key and IV to get y1 · · · yL and can decode. Alice sends
message of length M AND IV. Bob uses Key and IV to get
y1 · · · yM and can decode. They do not have to be in sync.

When to use which? Discuss

1. Use Sync if all communication will be in one session and
communication is clear.

2. Use Unsync if Alice talks Monday, Bob replies Tuesday
perhaps on a diff device or if Comm is noisy.



LFSRs as stream ciphers

I Key + IV used to initialize the state of the LFSR

I Every clock tick:

1. State Updated
2. Bit output



LFSRs

1. State (and output) “cycles” if state ever repeated

2. Maximal-length LFSR cycles through all 2n− 1 nonzero states

3. Known how to set feedback coefficients so as to achieve
maximal length

4. Maximal-length LFSRs have good statistical properties . . .

5. Are LFSRs secure? Vote YES, NO, UNKNOWN TO
SCIENCE.

NO.



LFSRs

1. State (and output) “cycles” if state ever repeated

2. Maximal-length LFSR cycles through all 2n− 1 nonzero states

3. Known how to set feedback coefficients so as to achieve
maximal length

4. Maximal-length LFSRs have good statistical properties . . .

5. Are LFSRs secure? Vote YES, NO, UNKNOWN TO
SCIENCE. NO.



Example of Bad Security

Degree 3. c0, c1, c2 unknown. s00 , s
0
1 , s

0
2 unknown.

y1 = s00
y2 = s01
y3 = s02

y4 = c2y3 + c1y2 + c0y1
y5 = c2y4 + c1y3 + c0y2
y6 = c2y5 + c1y4 + c0y3

3 linear equations in 3 variables. Can find c0, c1, c2. Cracked!

For n-degree LFSR can crack after 2n iterations.
Moral: Linearity is bad cryptography.



Example of Bad Security

Degree 3. c0, c1, c2 unknown. s00 , s
0
1 , s

0
2 unknown.

y1 = s00
y2 = s01
y3 = s02

y4 = c2y3 + c1y2 + c0y1
y5 = c2y4 + c1y3 + c0y2
y6 = c2y5 + c1y4 + c0y3

3 linear equations in 3 variables. Can find c0, c1, c2. Cracked!

For n-degree LFSR can crack after 2n iterations.
Moral: Linearity is bad cryptography.



Example of Bad Security

Degree 3. c0, c1, c2 unknown. s00 , s
0
1 , s

0
2 unknown.

y1 = s00
y2 = s01
y3 = s02

y4 = c2y3 + c1y2 + c0y1
y5 = c2y4 + c1y3 + c0y2
y6 = c2y5 + c1y4 + c0y3

3 linear equations in 3 variables. Can find c0, c1, c2. Cracked!

For n-degree LFSR can crack after 2n iterations.
Moral: Linearity is bad cryptography.



LFSR and Linearity

Linearity makes LFSR’s fast

Linearity makes LFSR’s crackable

Its that old saying:

He who lives by linearity, dies by linearity.



LFSR and Linearity

Linearity makes LFSR’s fast

Linearity makes LFSR’s crackable

Its that old saying:

He who lives by linearity, dies by linearity.



The Essence of Crypto

Recall: The Essence of Crypto is to make computation

1. Easy for Alice and Bob.

2. Hard for Eve.

LFSR makes computation easy for all three!



Nonlinear Feedback Shift Registers (FSRs)

I Add nonlinearity to prevent attacks

I Nonlinear feedback

I Output is a nonlinear function of the state

I Multiple (coupled) LFSRs

I . . . or any combination of the above

I Still want to preserve statistical properties of the output, and
long cycle length



Nonlinear Feedback Shift Registers

Assume n even. + is mod 2.
Let f (x1, . . . , xn) = x1x2 + x3x4 + · · · xn−1xn.
st0 is n bits: (s0n−1, . . . , s

0
0 ).

For i = 1 to ∞

sti = (s in−1, . . . , s
i
0) = (f (s i−1n−1, . . . , s

i−1
0 ), s i−1n−1, s

i−1
n−2, . . . , s

i−1
1 )

yi = s i0

In English: Bits shift right, left bit is f of bits at last stage.
Is this a good stream cipher? Vote Y (with HA), N, UN

UN: I made up this cipher last month for example of nonlinear.



Nonlinear Feedback Shift Registers

Assume n even. + is mod 2.
Let f (x1, . . . , xn) = x1x2 + x3x4 + · · · xn−1xn.
st0 is n bits: (s0n−1, . . . , s

0
0 ).

For i = 1 to ∞

sti = (s in−1, . . . , s
i
0) = (f (s i−1n−1, . . . , s

i−1
0 ), s i−1n−1, s

i−1
n−2, . . . , s

i−1
1 )

yi = s i0

In English: Bits shift right, left bit is f of bits at last stage.
Is this a good stream cipher? Vote Y (with HA), N, UN
UN:

I made up this cipher last month for example of nonlinear.



Nonlinear Feedback Shift Registers

Assume n even. + is mod 2.
Let f (x1, . . . , xn) = x1x2 + x3x4 + · · · xn−1xn.
st0 is n bits: (s0n−1, . . . , s

0
0 ).

For i = 1 to ∞

sti = (s in−1, . . . , s
i
0) = (f (s i−1n−1, . . . , s

i−1
0 ), s i−1n−1, s

i−1
n−2, . . . , s

i−1
1 )

yi = s i0

In English: Bits shift right, left bit is f of bits at last stage.
Is this a good stream cipher? Vote Y (with HA), N, UN
UN: I made up this cipher last month for example of nonlinear.



Trivium

I Designed by De Cannière and Preneel in 2006 as part of
eSTREAM competition

I Intended to be simple and efficient (especially in hardware)

I Essentially no attacks better than brute-force search are
known



Trivium Hardware Abstractly



Trivium Hardware For Real



Trivium

I Three coupled Feedback Shift Regisers (FSR) of degree 93,
84, and 111.

I Initialization:

I 80-bit key in left-most registers of first FSR

I 80-bit IV in left-most registers of second FSR

I Remaining registers set to 0, except for three right-most
registers of third FSR

I run for 4 x 288 clock ticks to finish init.



Trivium-Initialization

K1, . . . ,K80 Random
IV1, . . . , IV80 Random
(a1, . . . , a93)← (K1, . . . ,K80, 0, . . . , 0)
(b1, . . . , s84)← (IV1, . . . , IV80, 0, . . . , 0)
(c1, . . . , s111)← (0, . . . , 0, 1, 1, 1)
For i = 1 to 4× 288 do

1. t1 ← a86 + a91a92 + b79

2. t2 ← b70 + b83b84 + c1 + c87

3. t3 ← c66 + c100c110 + c111 + a69

4. (a1, . . . , a93)← (t3, a1, . . . , a91)

5. (b1, . . . , b83)← (t1, b1, . . . , b82)

6. (c1, . . . , s111)← (t2, c1, . . . , c110)

Note no random bits output. This is just initialization.



Trivium-Iteration

We omit superscripts for readability.
For i = 1 to N do

1. yi = a66 + a93 + b70 + b75 + c66 + c111 (ith random bit).

2. t1 ← a86 + a91a92 + b79

3. t2 ← b70 + b83b84 + c1 + c87

4. t3 ← c66 + c100c110 + c111 + a69

5. (a1, . . . , a93)← (t3, a1, . . . , a92)

6. (b1, . . . , b83)← (t1, b1, . . . , s83)

7. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note the three diff parts of s are three coupled nonlinear FSR.



Trivium based on LFSR though not LFSR

Note:

1. t1, t2, t3 are nonlinear combos of prior bits.

2. (a1, . . . , a93)← (t3, a1, . . . , a92)

3. (b1, . . . , b83)← (t1, s1 . . . , s82)

4. (c1, . . . , s111)← (t2, s1, . . . , s110)

Since t1, t2, t3 nonlinear, Trivium is NOT LFSR
But

Shift to the right and left most bit is BLAH

is very much like LFSR.

Benefit: Shifting is Fast!



Facts About Trivium

1) Has been build in hardware with 3488 logic gates. Small! Fast!

2) So far has not been broken. That we know of!

3) Naive method is 280 steps. Guess all keys.

4) If only do ∼ 700 init steps then Cube Attack is 268 steps.

5) Seems to have long period but hard to know:

1. Nonlin makes it hard to predict. Good for practical A and B.

2. Nonlin makes it hard to analyze. Bad for theorists A and B.

6) Trivium is also the name of a rock band!

7) Two Papers on Trivium on course website



Why the name Trivium?

We quote the paper

The word trivium is Latin for “the three-fold way”, and
refers to the three-fold symmetry of TRIVIUM. The
adjective trivial which was derived from it, has a
connotation of simplicity, which is also one of the
characteristics of TRIVIUM.

(Quote continued on next slide)



Why the name Trivium?

Moreover, with some imagination, one might recognize
the shape of a Trivial Pursuit board in Fig. 1

(Quote continued on next slide)



Why the name Trivium?

While we admit this respect “Mercedes” would have been
a more appropriate name.



Why the name Trivium?

Finally, the name provides a nice title for a subsequence
cryptanalysis paper: “Three Trivial Attacks on Trivium”.


