## Example an Attack on RC4 <br> Exposition by William Gasarch

## 1 RC4 Initialization

1. 16 byte Key $k[0], \ldots, k[15]$. So each $k[i]$ is an 8 -bit number, hence between 0 and 255.
2. For $i=0$ to 255
(a) $S[i]:=i . S$ is 256 bytes.
(b) $k[i]=k[i \bmod 16] . k$ is now 256 bytes.
3. For $i=0$ to 255
(a) $j:=j+S[i]+k[i]$
(b) Swap $S[i]$ and $S[j]$
4. $i:=0, j:=0$, Return $(S, i, j)$.

Lets say the first three bytes of the key were
$k[0]=3$
$k[1]=255$
$k[2]=X$ (known)
We show that, from the first output bit after the init phase, Eve can learn $k[3]$ $5 \%$ of the time.

After the first For loop is done we have the following:

1. For all $0 \leq i \leq 255, S[i]=i$.
2. For all $0 \leq i \leq 255, k[i]$ is defined. (I don't think we need this part.)
3. $j=0$.

We are now in the second loop.
What happens when $i=0$ ?
$i=0$
$j:=j+S[i]+k[i]=0+S[0]+k[0]=0+0+3=3$
We swap $S[i]=S[0]$ and $S[j]=S[3]$ so now have
$S[0]=3$
$S[3]=0$
For all other $i, S[i]=i$.
What happens when $i=1$ ?

```
\(i=1\)
\(j:=j+S[i]+k[i]=j+S[1]+k[1]=3+1+255=3\)
We swap \(S[i]=S[1]\) and \(S[j]=S[3]\) so now have
\(S[0]=3\)
\(S[1]=0\)
\(S[3]=1\)
For all other \(i, S[i]=i\).
```

What happens when $i=2$ ?
$i=2$
$j:=j+S[i]+k[i]=j+S[2]+k[2]=3+2+X=X+5$
We swap $S[i]=S[2]$ and $S[j]=S[X+5]$ so now have
$S[0]=3$
$S[1]=0$
$S[2]=X+5$
$S[3]=1$
$S[X+5]=2$
For all other $i, S[i]=i$.
What happens when $i=3$ ?
$i=3$
$j:=j+S[i]+k[i]=j+S[3]+k[3]=(X+5)+1+k[3]=X+6+k[3]$
We swap $S[i]=S[3]$ and $S[j=S[X+6+k[3]]$ so now have
$S[0]=3$
$S[1]=0$
$S[2]=X+5$
$S[3]=X+6+k[3]$
$S[X+5]=2$
$S[X+6+k[3]]=3$
For all other $i, S[i]=i$.
What happens when $i \geq 4$ ?
When $i \geq 4$ we will be swapping $S[i]$ with $S[j]$. Note that if in the next 252 iterations $j \neq 0,1,3$ then the values above for $S[0], S[1], S[3]$ will stay the same. Assuming $j$ is uniform the prob that $j \neq 0,1,3$ is
$(253 / 256)^{252}=0.05$. So $5 \%$ of the time $j \neq 0,1,3$. This may seem small but its not.

SO, $5 \%$ of the time we have:
$S[0]=3$
$S[1]=0$
$S[3]=X+6+k[3]($ NOTE - we know $X)$

## 2 GetBits

1. Input $(S, i, j)$ (The $(S, i, j)$ are from init, so $i=j=0$.
2. $i:=i+1$
3. $j:=j+S[i]$
4. Swap $S[i]$ and $S[j]$.
5. $t:=S[i]+S[j]$
6. $y:=S[t]$
7. Return $(S, i, j), y$

Lets say the $S$ is as at the end of the last section so we have
$S[0]=3$
$S[1]=0$
$S[3]=X+6+k[3]($ NOTE - we know $X)$
Then in the first iteration of GetBits the following happens:
$i:=i+1$, so $i=0+1=1$
$j:=j+S[i]$, so $j=0+S[0]=0$
Swap $S[0]$ and $S[1]$
$t=S[0]+S[1]=3$
$y:=S[t]=S[3]=X+6+k[3]$.
SO, when see first output byte you have a good notion of what $k[3]$ is.

## 3 But its only $5 \%$. So What

Assume that the IV is prepended to the key (A terrible idea! This writeup is why its a terrible idea!). Also assume that the IV is 3 bytes long. So Alice and Bob are using

$$
I V[0] I V[1] I V[2] k[0]
$$

But effectively we know the first three bytes of the key but not the fourth one.
They will use the key for a long time and constantly change IV's. Some of the IV's (like $(3,255, X)$ ) lead to a small prob of getting what we are now calling $k[0]$.

For each init vector that Eve sees she does the following:

1. See if that init vector leads to knowing $k[0]$ with prob more than uniform.
2. If so then record what $k[0]$ might be using the methods above.

After a while she will have A LOT of data. The real $k[0]$ will be obvious after enough data.

