Example an Attack on RC4
Exposition by William Gasarch

1 RC4 Initialization

1. 16 byte Key \(k[0], \ldots, k[15]\). So each \(k[i]\) is an 8-bit number, hence between 0 and 255.

2. For \(i = 0\) to 255
 (a) \(S[i] := i\). \(S\) is 256 bytes.
 (b) \(k[i] = k[i \mod 16]\). \(k\) is now 256 bytes.

3. For \(i = 0\) to 255
 (a) \(j := j + S[i] + k[i]\)
 (b) Swap \(S[i]\) and \(S[j]\)

4. \(i := 0, j := 0, \text{Return } (S, i, j)\).

Let's say the first three bytes of the key were
\(k[0] = 3\)
\(k[1] = 255\)
\(k[2] = X\) (known)

We show that, from the first output bit after the init phase, Eve can learn \(k[3]\) 5% of the time.

After the first For loop is done we have the following:
1. For all \(0 \leq i \leq 255\), \(S[i] = i\).
2. For all \(0 \leq i \leq 255\), \(k[i]\) is defined. (I don’t think we need this part.)
3. \(j = 0\).

We are now in the second loop.

What happens when \(i = 0\)?
\(i = 0\)
\(j := j + S[i] + k[i] = 0 + S[0] + k[0] = 0 + 0 + 3 = 3\)
We swap \(S[i] = S[0]\) and \(S[j] = S[3]\) so now have
\(S[0] = 3\)
\(S[3] = 0\)
For all other \(i\), \(S[i] = i\).

What happens when \(i = 1\)?
\[i = 1 \]
We swap \(S[i] = S[1] \) and \(S[j] = S[3] \) so now have
\[S[0] = 3 \]
\[S[1] = 0 \]
\[S[3] = 1 \]
For all other \(i \), \(S[i] = i \).

What happens when \(i = 2 \)?
\[i = 2 \]
We swap \(S[i] = S[2] \) and \(S[j] = S[X + 5] \) so now have
\[S[0] = 3 \]
\[S[1] = 0 \]
\[S[2] = X + 5 \]
\[S[3] = 1 \]
\[S[X + 5] = 2 \]
For all other \(i \), \(S[i] = i \).

What happens when \(i = 3 \)?
\[i = 3 \]
We swap \(S[i] = S[3] \) and \(S[j] = S[X + 6 + k[3]] \) so now have
\[S[0] = 3 \]
\[S[1] = 0 \]
\[S[2] = X + 5 \]
\[S[X + 5] = 2 \]
\[S[X + 6 + k[3]] = 3 \]
For all other \(i \), \(S[i] = i \).

What happens when \(i \geq 4 \)?
When \(i \geq 4 \) we will be swapping \(S[i] \) with \(S[j] \). Note that if in the next 252 iterations \(j \neq 0, 1, 3 \) then the values above for \(S[0], S[1], S[3] \) will stay the same. Assuming \(j \) is uniform the prob that \(j \neq 0, 1, 3 \) is
\[(253/256)^{252} = 0.05. \] So 5% of the time \(j \neq 0, 1, 3 \). This may seem small but its not.
SO, 5% of the time we have:
\[S[0] = 3 \]
\[S[1] = 0 \]
\[S[3] = X + 6 + k[3] \] (NOTE - we know \(X \))
2 GetBits

1. Input (S, i, j) (The (S, i, j) are from init, so $i = j = 0$.
2. $i := i + 1$
3. $j := j + S[i]$
5. $t := S[i] + S[j]$
6. $y := S[t]$
7. Return$(S, i, j), y$

Lets say the S is as at the end of the last section so we have
$S[0] = 3$
$S[1] = 0$

Then in the first iteration of GetBits the following happens:
$i := i + 1$, so $i = 0 + 1 = 1$
$j := j + S[i]$, so $j = 0 + S[0] = 0$
Swap $S[0]$ and $S[1]$
$t = S[0] + S[1] = 3$

SO, when see first output byte you have a good notion of what $k[3]$ is.

3 But its only 5%. So What

Assume that the IV is prepended to the key (A terrible idea! This writeup is why its a terrible idea!). Also assume that the IV is 3 bytes long. So Alice and Bob are using

But effectively we know the first three bytes of the key but not the fourth one.
They will use the key for a long time and constantly change IV’s. Some of the IV’s (like $(3, 255, X)$) lead to a small prob of getting what we are now calling $k[0]$.

For each init vector that Eve sees she does the following:
1. See if that init vector leads to knowing $k[0]$ with prob more than uniform.
2. If so then record what $k[0]$ might be using the methods above.

After a while she will have A LOT of data. The real $k[0]$ will be obvious after enough data.