
HW 4 CMSC 456. Morally DUE Sep 30
NOTE- THE HW IS EIGHT PAGES LONG

1. (0 points) READ the syllabus- Content and Policy. READ my NOTES
on ciphers and on English. What is your name? What is the day and
time of the first midterm?

2. (25 points) Alice and Bob are going to use Diffie-Hellman. Bob wants
to save some time so instead of picking a RANDOM b ∈ {p

3
, 2p

3
} he

picks a b that is a power of 2 because he thinks that for such b, gb will
be easier to compute. (Alice still picks a ∈ {p

3
, 2p

3
} at random.)

(a) (10 points) Bob is right! Computing gb IS easier if b is a power of
2. Explain why.

(b) (15 points) If Eve knows that Bob is choosing only powers of 2,
she can find the shared secret in time (O(log p))c for some c. Show
how. What is c?

GOTO NEXT PAGE

1



3. (35 points) This is a programming problem. For this problem, you will
be writing two programs, which are described below. WARNING:
This problem is FIVE pages long.

(a) (15 points) Your first program will deal with primality testing.
This program will input two lines and will output two lines.

i. Begin by inputting two lines from standard input. The first
line will contain a positive integer p ≥ 7. The second line will
contain a path to a text file containing a bunch of integers,
one on each line. You will use the numbers in this file to
generate the random numbers used for primality testing (see
note below).

ii. For the first part of this program, you will run the primality
test algorithm described in the lecture slides to determine
(up to a high degree of certainty) whether p is prime. For
each trial, you will generate a random a ∈ {2, . . . , p− 1} and
will compute whether ap ≡ a (mod p). If all the trials pass,
output “true” to indicate that p is suspected to be prime.
If one of the trials fails, output “false” to indicate that p is
known not to be prime. You must run EXACTLY blog2 pc
trials, even if some trial fails early.

iii. (If your program previously outputted “false”, then output
“false” again and skip this part.) Now, you will use the same
primality test algorithm to determine (up to a high degree
of certainty) if (p − 1)/2 is prime. In other words, you will
determine if p is a “safe prime”. Output “true” or “false” as
before on a new line.

GO TO NEXT PAGE FOR MORE INFO ON THIS PROBLEM

2



NOTE: The primality testing algorithm requires you to compute
powers modulo some number. When doing so, you MUST use re-
peated squaring. You MAY NOT use library code (i.e., no “pow”
or “modpow” functions) to do this. If you do not follow these
directions, you will LOSE points.

NOTE: Because of how the autograder grades your output, you
MUST generate random numbers in the following specific way. If
you do not follow these directions carefully, your output may be
marked as incorrect. Whenever you need to generate a random
integer in the half-open interval [b, c), you must (1) read the next
available integer k from the file specified by the input path, and
then (2) compute

a = (k mod (c− b)) + b

as your random number. Once you have done this, discard k and
move to the next number in the file. You may assume all numbers
in the file are < 263.

GO TO NEXT PAGE FOR MORE INFO ON THIS PROBLEM

3



(b) (15 points) Your second program will deal with finding large “prob-
able prime” numbers. This program will input two lines and will
output six lines.

i. Begin by inputting two lines from standard input. The first
line will contain a positive integer 5 ≤ L ≤ 60. The second
line will contain a path to a text file containing a bunch of
numbers, as with the previous program.

ii. First, you will do the following. Generate (L − 1) bits ran-
domly, and then append a 1-bit to the left, yielding an L-bit
number k. If k is determined to be a safe prime (using the
same algorithm as in your first program), then output k on
the first line. Otherwise, repeat the process until you get a
safe prime. Output on the second line how many random k’s
you generated for this part.

iii. Next, you will do the following. Generate (L − 2) bits ran-
domly, and then append a 1-bit to both the left and right,
yielding an L-bit odd number k. If k is determined to be a
safe prime, then output k on the third line. Otherwise, repeat
the process until you get a safe prime. Output on the fourth
line how many random k’s you generated for this part.

GO TO NEXT PAGE FOR MORE ON THIS PROBLEM

4



iv. Lastly, you will do the following. Generate (L − 3) bits ran-
domly, and then append a 1-bit to the left, yielding an (L−2)-
bit number m. Then, obtain k = 6m + 5, which is roughly L
bits long. If k is determined to be a safe prime, then output
k on the fifth line. Otherwise, repeat the process until you
get a safe prime. Output on the sixth line how many random
m’s you generated for this part.

NOTE: To generate L bits, take the next integer k from the input
file and compute k (mod 2L). The bits of this integer are the bits
that you want. Discard k and move to the next number in the
file as usual. When generating random values, keep in mind that
you should only be passing through the file once per run of your
program.

(c) (5 points) Run your second program on values L = 10, 20, 30, 40.
You may generate your random numbers however you want for
this part. Record (in the table below) the average of how many
tries it takes to obtain a safe prime over 10 trials for each method
and value of L. Report this table along with the rest of your
homework. Your code should be uploaded separately (see below).

L Naive Method Odd Method 6k-method
10
20
30
40

GO TO NEXT PAGE FOR MORE ON THIS PROBLEM

5



You are free to choose from various programming languages to
complete this problem. By default, we support C, C++, Java,
Python2/3, and Ruby. Ask on Piazza if you want more options.
You will be submitting all code files you used to complete this
problem to the Gradescope assignment called “hw04 - problem
3”. Since you will probably want to submit multiple files, you
should merge all files into a single zip file and submit that zip file
to Gradescope. Upon submission, your code will be automatically
run on a Linux machine and tested against various test cases to
ensure correctness. You are allowed to submit your code as many
times as you want.

Regardless of the language you choose, your submission must in-
clude TWO bash scripts called run1 and run2 (no file extensions)
for running your first and second programs respectively. These
scripts must begin with the shebang #!/usr/bin/env bash on
the very first line. These scripts will be run each time the auto-
grader tries to run your code, so add to these files any commands
that are needed to run your code. This gives you greater flexibil-
ity regarding how you want to organize your code. Additionally,
if you are using a non-scripting language such as Java, also up-
load a bash script called build, also with shebang. This script
will be called once upon submission to compile your code before
execution.

If you have any questions or confusions, or if you encounter any
technical difficulties, feel free to ask for help on Piazza.

GOTO NEXT PAGE FOR NEXT PROBLEM FINALLY

6



4. (25 points) Find A ∈ N (N is the nonnegative integers) and
X ⊆ {0, 1, 2, . . . , A− 1} such that

{n ∈ N :(n 6≡ 0 (mod 2)) ∧
(n 6≡ 0 (mod 3)) ∧
(n 6≡ 0 (mod 5)) ∧
(n 6≡ 0 (mod 7))}

= {n ∈ N : (∃k ∈ N, i ∈ X)[n = Ak + i]}.

(Note: IF the problem was about 2, 3 instead of 2, 3, 5, 7 then A = 6
and X = {1, 5}.)

(a) (10 points) What is A? Make it as small as possible.

(b) (15 points) List all of the numbers in X that are NOT 1 and NOT
prime. Justify your answer.

(Note: IF the problem was about 2, 3 instead of 2, 3, 5, 7 then for (a)
the answer is 6 and for (b) the answer is ∅.)

GOTO NEXT PAGE

7



5. (15 points) Alice and Bob are going to do Diffie-Hellman with p = 89
and g = 30.

(a) (5 points) Alice picks a = 2 and Bob picks b = 5. What is the
shared secret key?

(b) (5 points) Alice picks a = 5 and Bob picks b = 2. What is the
shared secret key?

(c) (5 points) You should have gotten the same answer in parts 1 and
2 above. Is this a coincidence? Explain.

8


