HW 5 CMSC 456. Morally DUE Oct 7 NOTE- THE HW IS FOUR PAGES LONG

- 1. (0 points) READ the syllabus- Content and Policy. What is your name? What is the day and time of the midterm?
- 2. (20 points)
 - (a) (20 points) Alice wants to find safe primes. She will, as usual, pick a random string of bits and test. She wants to make sure that if she tests p, then p is NOT even but ALSO $\frac{p-1}{2}$ is NOT even. How can she do this? Give pseudocode that will, given L, generate an arbitrary L bit number (it can be off by 1) such that if the number is p then both p and $\frac{p-1}{2}$ are odd.
 - (b) (0 points) Think about how Alice can also make sure that p and $\frac{p-1}{2}$ are not divisible by 3.
- 3. (20 points)
 - (a) (20 points) A Saadiq Prime is a prime p such that either p-1 = 2q where q is a prime OR p-1 = 6q where q is a prime. Give psuedocode for an EFFICIENT algorithm for the following: given a prime that you are promised is a Saadiq prime, find a generator for \mathbb{Z}_p^* .
 - (b) (0 points) Think about: Usually we look for a safe prime, and once we have it, we look for a generator. What is a PRO of instead looking for a Saadiq prime and then looking for a generator? What is a CON of doing so?
 - (c) (0 points) Think about how we may generalize the notion of Saadiq prime and how useful that would be.

GOTO NEXT PAGE FOR NEXT PROBLEM

4. (20 points)

For each $x \ge 1$,

- Let f(x) denote the number of primes $\leq x$
- Let g(x) denote the number of safe primes $\leq x$.
- Let h(x) denote the number of Saadiq primes $\leq x$.

And now for the actual problem

- (a) (5 points) Give a table of the values f(x), g(x), and h(x) for $x = 1000, 2000, \ldots, 10000$. Your data does not need to be 100% correct, but should be very close. (*Hint*: consider modifying your code from the previous programming assignment.)
- (b) (5 points) Find A, B so that $f(x) \approx \frac{Ax}{\ln x} + B$ fits the data pretty well. Sample x at every multiple of 100 up to 10000. (Recall that $\ln x$ is the natural log of x.)
- (c) (5 points) Find A, B so that $g(x) \approx \frac{Ax}{\ln x} + B$ fits the data pretty well. Sample x at every multiple of 100 up to 10000.
- (d) (5 points) Find A, B so that $h(x) \approx \frac{Ax}{\ln x} + B$ fits the data pretty well. Sample x at every multiple of 100 up to 10000.

GOTO NEXT PAGE

- 5. (25 points) Alice and Bob are going to do El Gamal with p = 89 and g = 30.
 - (a) (5 points) Alice picks a = 3 and Bob picks b = 6. What is the shared secret key s that they need to begin doing El Gamal?
 - (b) (5 points) Alice wants to send the message 43. What does she send? We will call what she sends c_{43} for later.
 - (c) (5 points) Alice wants to send the message 26. What does she send? We will call what she sends c_{26} for later.
 - (d) (5 points) Alice wants to send the message 69. What does she send? We will call what she sends c_{69} for later.
 - (e) (5 points) If you did the problems above correctly then you will note that $c_{43} + c_{26} \equiv c_{69} \pmod{89}$. Also note that 43 + 26 = 69. Is this a coincidence? Explain.

GOTO NEXT PAGE

- 6. (15 points) Compute the following and show your work. (You may use a calculator for simple operations such as multiplication.)
 - (a) (5 points) $7^{999,999,999,999,999} \pmod{100}$
 - (b) (5 points) $7^{999,999,999,999,999} \pmod{101}$
 - (c) (5 points) $7^{999,999,999,999,999} \pmod{102}$