HW 8 CMSC 456. Morally DUE Nov 4 SOLUTIONS NOTE- THE HW IS THREE PAGES LONG

- 1. (0 points) READ the syllabus- Content and Policy. What is your name? What is the day and time of the FINAL?
- 2. (30 points) Recall the following key exchange protocol:
 - (a) Alice generates rand prime p of length L, rand $S \times S$ matrix A over \mathbb{Z}_p . You can assume A is invertible.
 - (b) Alice sends (p, A, HAHA). All public. (HAHA is just our way of taunting Eve and telling her that even though she knows p and A, she can't find the shared secret. Actually, in this case we are wrong about that.)
 - (c) Alice generates rand row $\vec{y} \in \mathbb{Z}_p^S$. Sends $\vec{y}A$.
 - (d) Bob generate rand column $\vec{x} \in \mathbb{Z}_p^S$, Sends $A\vec{x}$.
 - (e) Alice computes $\vec{y}(A\vec{x}) = \vec{y}A\vec{x}$.
 - (f) Bob computes $(\vec{y}A)\vec{x} = \vec{y}A\vec{x}$.
 - (g) Alice and Bob have shared secret $\vec{y}A\vec{x}$

Eve only sees $(p, A, HAHA, \vec{y}A, A\vec{x})$. Give an attack that Eve can use to recover $\vec{y}A\vec{x}$.

SOLUTION TO PROBLEM TWO

Eve computes the inverse of the matrix A which we call A^{-1} .

She then computes $A^{-1}A\vec{x} = \vec{x}$.

Eve knows x and $\vec{y}A$ so she can compute $\vec{y}A\vec{x}$.

END OF SOLUTION TO PROBLEM TWO

GOTO NEXT PAGE

- 3. (40 points) Alice and Bob never did like working in mod p or any mod. So they decide to do the following version of Diffie-Hellman.
 - i. Security parameters are S, T.
 - ii. Alice picks a random $g \in \{2, \ldots, S\}$ and broadcasts g.
 - iii. Alice picks a random $a \in \{2, \ldots, T\}$ and broadcasts g^a .
 - iv. Bob picks a random $b \in \{2, \ldots, T\}$ and broadcasts g^b .
 - v. Alice computes $(g^b)^a = g^{ab}$.
 - vi. Bob computes $(g^a)^b = g^{ab}$.
 - vii. The shared secret key is g^{ab} .

We assume that $+, -, \times, \div$ take 1 step each (this is not realistic if S, T are large but this is a homework problem, not the NSA).

And NOW for the questions:

- (a) (10 points) Show that computing g^a can be done in $O(\log_2(T))$ steps.
- (b) (20 points) Give an algorithm that will, given a $g \in \{2, ..., S\}$ and number $x \in \{1, ..., Z\}$ (1) if $x = g^y$ for some $y \in \mathbb{N}$ then output y, (2) if $x \neq g^y$ for any $y \in \mathbb{N}$ then output OH, NO SUCH y. The algorithm has to be in time $(\log \log Z)^{O(1)}$. (S may play a role in the base of the log but we ignore this.) You can't just say take the logarithm base g, you have to do it using only the basic operations $+, -, \times, \div$.
- (c) (5 points) Eve only sees (g, g^a, g^b) . Show how she can efficiently find g^{ab} using Part (b). What is the runtime?
- (d) (5 points) From the above we see that doing Diffie Hellman over the naturals is insecure. Give one more reason why using it is a bad idea.

SOLUTION TO PROBLEM THREE

(a) Show that computing g^a can be done in $O(\log_2(T))$ steps. ANSWER: use repeated squaring. (b) Give an algorithm that will, given a $g \in \{2, ..., S\}$ and number $x \in \{1, ..., Z\}$ (1) if $x = g^y$ for some $y \in \mathbb{N}$ then output y, (2) if $x \neq g^y$ for any $y \in \mathbb{N}$ then output OH, NO SUCH y. The algorithm has to be in time $O(\log \log Z)$. (S may play a role in the base of the log but we ignore this.) You can't just say *take the logarithm base g*, you have to do it using only the basic operations $+, -, \times, \div$.

ANSWER: Compute g^2 , g^{2^2} , g^{2^3} , ... until you either hit x or exceed it.

If you hit it then you are DONE. AND as for time—since $x \leq Z$, since *i* is such that $g^{2^i} = x$ we have $i \leq O(\log \log Z)$.

If you exceed it then you have an i such that

$$g^{2^i} < x < g^{2^{i+1}}.$$

Do binary search on this interval to either find y such that $x = g^y$ OR find that there is no such y. The binary search is on an interval of size $2^{i+1} - 2^i = 2^i$, so it takes i steps. NOT SO FAST- each step is squaring the previous one, so takes ONE step. Oh, we're fine. So really $O(\log \log Z)$ steps.

- (c) Eve only sees (g, g^a, g^b) . Show how she can efficiently find g^{ab} using Part (b). What is the runtime? **ANSWER:** Since $g \leq S$ and $a \leq T$, $g^a \leq S^T$. Hence, the algorithm in part 2 takes $O(\log \log S^T)$ steps which is $O(\log(T \log S)) = O(\log T + \log \log S)$.
- (d) From the above we see that doing Diffie Hellman over the naturals is insecure. Give one more reason why using it is a bad idea. **ANSWER:** As S and T get larger the numbers g^a , g^b can get very large. So DH over \mathbb{N} would use too much space.

END OF SOLUTION TO PROBLEM THREE

GOTO NEXT PAGE FOR NEXT PROBLEM

- 4. (30 points) Alice and Bob are bridge partners. And they cheat! Here is their scheme:
 - If the first card is placed horizontally then the person placing it has 0 or 1 Ace.
 - If the first card is placed vertically then the person placing it has 2 or 3 or 4 Aces.

In this problem we will both (1) help Alice and Bob and (2) help the bridge community.

- (a) (15 points) Alice and Bob will be playing 20 games and are worried that their cheating may be discovered. Show how they can use a 1-time pad to make their cheating harder to discover.
- (b) (15 points) Change something about how Bridge is played so that Alice and Bob cannot use their method to cheat.

SOLUTION TO PROBLEM THREE

Solution Omitted.