FINAL REVIEW-ADMIN
Final Review-Admin

1) Final is Saturday Dec 14 1:30-3:30 in IRB 0318 (usual class)
2) Can bring one sheet of notes.
 Can: use both sides, type it, put whatever you want on it.
 Can: copy a classmates, cram entire course–Bad Ideas
 Can cram THIS talk on it-Bad Idea P
3) No calculators allowed. Numbers will be small or given to you.
4) Coverage: Slides/HW (includes Alice and Bob and Cards).
5) Not on Exam: LWE, My Book Talk, NSA talk, Bridge.
6) We hope to grade it and post it Saturday Afternoon.
7) If can’t take the exam tell me ASAP.
8) Advice: Understand rather than memorize.
FINAL REVIEW-CONTENT
Alice, Bob, and Eve

- Alice sends a message to Bob in code.
- Eve overhears it.
- We want Eve to not get any information.

There are many aspects to this:

- Information-Theoretic Security.
- Computational-Theoretic Security (Hardness Assumption)
- The NY,NY problem: Do not always code m the same way.
- Private Key or Public key
- Kerckhoff’s principle: Eve knows cryptosystem.
- History: How much computing power does Eve have?
Private Key Ciphers
Single Letter Sub Ciphers

1. Shift cipher: $f(x) = x + s$. $s \in \{0, \ldots, 25\}$.
2. Affine cipher: $f(x) = ax + b$. $a, b \in \{0, \ldots, 25\}$. a rel prime 26.
3. Keyword Shift: From keyword and shift create random-looking perm of $\{a, \ldots, z\}$.
4. Keyword Mixed: From keyword create random-looking perm of $\{a, \ldots, z\}$.
5. Gen Sub Cipher: Take random perm of $\{a, \ldots, z\}$.
All Single Letter Sub Ciphers Crackable

Important: Algorithm Is-English.

1. Input(T) a text
2. Find f_T, the freq vector of T
3. Find $x = f_T \cdot f_E$ where f_E is freq vector for English
4. If $x \geq 0.06$ then output YES. If $x \leq 0.04$ then output NO. If $0.04 < x < 0.06$ then something is wrong.

1. Shift, Affine have small key space: can try all keys and see when Is-English says YES.
2. For others use Freq analysis, e.g., e is most common letter.
3. If message is numbers (e.g., Credit Cards) or ASCII (e.g., Byte-Shift) there are still patterns so can use freq analysis.
Randomized Shift

How to NOT encode the same \(m \) the same way:

Randomized shift: Key is a function \(f : S \rightarrow S \).

1. To send message \((m_1, \ldots, m_L)\) (each \(m_i \) is a character)
 1.1 Pick random \(r_1, \ldots, r_L \in S \). For \(1 \leq i \leq L \) compute \(s_i = f(r_i) \).
 1.2 Send \(((r_1; m_1 + s_1), \ldots, (r_L; m_L + s_L))\)

2. To decode message \(((r_1; c_1), \ldots, (r_L; c_L))\)
 2.1 For \(1 \leq i \leq L \) \(s_i = f(r_i) \).
 2.2 Find \((c_1 - s_1, \ldots, c_L - s_L)\)

Note: Can be cracked.
More Advanced Ciphers

1. Vigenère cipher (Can get more out of the phrase using LCM)
2. Book Cipher
3. Matrix Cipher
4. Playfair, Railfence, Autokey
5. General 2-letter sub.

All have their PROS and CONS but all are, in the real world, crackable (today).
One-time pad

1. Let $\mathcal{M} = \{0, 1\}^n$

2. Gen: choose a uniform key $k \in \{0, 1\}^n$

3. $Enc_k(m) = k \oplus m$

4. $Dec_k(c) = k \oplus c$

5. Correctness:

$$Dec_k(Enc_k(m)) = k \oplus (k \oplus m)$$
$$= (k \oplus k) \oplus m$$
$$= m$$
PROS AND CONS Of One-time pad

1. If Key is N bits long can only send N bits.
2. \oplus is FAST!
3. The one-time pad is uncrackable. YEAH!
4. Generating truly random bits is hard. BOO!
5. Psuedo-random can be insecure – I did example of cracking linear Congruential generators.
Public Key Ciphers

Eve can go . . .
Public Key Cryptography

Alice and Bob never have to meet!
All arithmetic is mod p. The following can be done quickly.

1. Given (a, n, p) compute $a^n \pmod{p}$. Repeated Squaring. (1) $\leq 2 \lg n$ always, (2) $\leq \lg n + O(1)$ if n close to 2^{2^m}.

2. Given n, find a safe prime of length n and a generator g.

3. Given a, b rel prime find inverse of $a \pmod{b}$: Euclidean alg.

4. Given a_1, \ldots, a_L and b_1, \ldots, b_L, b_i’s rel prime, find $x \equiv a_i \pmod{b_i}$.

5. Given (a, p) find \sqrt{a}’s. We did $p \equiv 3 \pmod{4}$ case.

6. Given (a, N) and p, q such that $N = pq$, find \sqrt{a}’s.
Number Theory Assumptions

1. Discrete Log is hard.
2. Factoring is hard.
3. Given \((a, N)\), find \(\sqrt{a}\) without being given factors of \(N\) is hard. (This is equiv to factoring.)

Note: We usually don’t assume these but instead assume close cousins.
The Diffie-Helman Key Exchange

Alice and Bob will share a secret s.

1. Alice finds a (p, g), p of length n, g gen for \mathbb{Z}_p. Arith mod p.
2. Alice sends (p, g) to Bob in the clear (Eve can see it).
3. Alice picks random $a \in \{1, \ldots, p - 1\}$. Alice computes g^a and sends it to Bob in the clear (Eve can see it).
4. Bob picks random $b \in \{1, \ldots, p - 1\}$. Bob computes g^b and sends it to Alice in the clear (Eve can see it).
5. Alice computes $(g^b)^a = g^{ab}$.
6. Bob computes $(g^a)^b = g^{ab}$.
7. g^{ab} is the shared secret.
The Diffie-Helman Key Exchange

Alice and Bob will share a secret s.

1. Alice finds a (p, g), p of length n, g gen for \mathbb{Z}_p. Arith mod p.
2. Alice sends (p, g) to Bob in the clear (Eve can see it).
3. Alice picks random $a \in \{1, \ldots, p - 1\}$. Alice computes g^a and sends it to Bob in the clear (Eve can see it).
4. Bob picks random $b \in \{1, \ldots, p - 1\}$. Bob computes g^b and sends it to Alice in the clear (Eve can see it).
5. Alice computes $(g^b)^a = g^{ab}$.
6. Bob computes $(g^a)^b = g^{ab}$.
7. g^{ab} is the shared secret.

Definition

Let f be $f(p, g, g^a, g^b) = g^{ab}$.

Hardness assumption: f is hard to compute.
ElGamal is DH with a Twist

1. Alice and Bob do Diffie Helman.
2. Alice and Bob share secret \(s = g^{ab} \).
3. Alice and Bob compute \((g^{ab})^{-1} \mod p\).
4. To send \(m \), Alice sends \(c = mg^{ab} \).
5. To decrypt, Bob computes
 \[c(g^{ab})^{-1} \equiv mg^{ab}(g^{ab})^{-1} \equiv m \]

We omit discussion of Hardness assumption (HW)
Let n be a security parameter

1. Alice picks two primes p, q of length n and computes $N = pq$.

2. Alice computes $\phi(N) = \phi(pq) = (p - 1)(q - 1)$. Denote by R

3. Alice picks an $e \in \{\frac{R}{3}, \ldots, \frac{2R}{3}\}$ that is relatively prime to R. Alice finds d such that $ed \equiv 1 \pmod{R}$.

4. Alice broadcasts (N, e). (Bob and Eve both see it.)

5. Bob: To send $m \in \{1, \ldots, N - 1\}$, send $m^e \pmod{N}$.

6. If Alice gets $m^e \pmod{N}$ she computes

$$ (m^e)^d \equiv m^{ed} \equiv m^{ed} \pmod{R} \equiv m^1 \pmod{R} \equiv m $$
Definition: Let f be $f(N, e) = d$, where $N = pq$, and

$$ed \equiv 1 \pmod{(p-1)(q-1)}$$

Hardness assumption (HA): f is hard to compute.
Plain RSA Bytes!

The RSA given above is referred to as Plain RSA. Insecure! m is always coded as $m^e \pmod{N}$.

Make secure by padding: $m \in \{0, 1\}^{L_1}, r \in \{0, 1\}^{L_2}$.

To send $m \in \{0, 1\}^{L_1}$, pick rand $r \in \{0, 1\}^{L_2}$, send $(rm)^e$.
(NOTE- rm means r CONCAT with m here and elsewhere.)

DEC: Alice finds rm and takes rightmost L_1 bits.
Caveat: RSA still has issues when used in real world. They have been fixed. Maybe.
Attacks on RSA

1. Factoring Algorithms. Pollard $p - 1$, Pollard ρ, QS.
 Response: Pick larger p, q

2. If Zelda give $A_i (N_i, e)$:
 2.1 Low-e attack: **Response:** High e. Duh.
 2.2 $m^e < N_1 \cdots N_L$: **Response:** Pad m.

3. If Zelda give $A_i (N, e_i)$ and two of the e_i’s are rel prime, then Euclidean Alg Attack: **Response:** Give everyone diff N’s. Duh.

4. Timing Attacks: **Response:** Pad the amount of time used.

Caveat: Theory says use different e’s. Practice says use $e = 2^{16} + 1$ for speed.
Other Public Key Schemes

1. Rabin
 - PRO: equiv to factoring
 - CON: Alice cannot decode uniquely
 - CAVEAT: Blum-Williams Variant enables unique decoding

2. GM
 - PRO: equiv to hardness of \sqrt{pq}
 - CON: Can only send one bit

3. BG
 - PRO: equiv to factoring
 - No real CON
 - Might have caught on if history was different
Other Public Key Schemes

1. **Rabin** PRO- equiv to factoring, CON- Alice cannot decode uniquely. CAVEAT- Blum-Williams Variant enables unique decoding.
Other Public Key Schemes

1. **Rabin** PRO- equiv to factoring, CON- Alice cannot decode uniquely. CAVEAT-Blum-Williams Variant enables unique decoding.

2. **GM** PRO- equiv to hardness of sqrt mod pq. CON-Can only send one bit.
1. **Rabin** PRO- equiv to factoring, CON- Alice cannot decode uniquely. CAVEAT- Blum-Williams Variant enables unique decoding.

2. **GM** PRO- equiv to hardness of $\sqrt{\text{mod } pq}$. CON- Can only send one bit.

3. **BG** PRO- equiv to factoring. No real CON. Might have caught on if history was different.
Factoring Algorithms: Pollard
$p - 1$
Pollard $\rho - 1$ algorithm

Parameter B and hence also

$$M = \prod_{q \leq B, q \text{ prime}} q^{\lceil \log_q(B) \rceil}.$$

FOUND = FALSE
while NOT FOUND
a=RAND(1,N-1)
d=GCD(a^M-1,N)
if d=1 then increase B
if d=N then decrease B
if (d NE 1,N) then FOUND=TRUE
output(d)
Pollard \(\rho - 1 \) algorithm

Parameter \(B \) and hence also

\[
M = \prod_{q \leq B, q \text{ prime}} q^{\lceil \log_q(B) \rceil}.
\]

FOUND = FALSE
while NOT FOUND
 a=RAND(1,N-1)
 d=GCD(a^M-1,N)
 if d=1 then increase B
 if d=N then decrease B
 if (d NE 1,N) then FOUND=TRUE
output(d)

KEY If \(p - 1 \) divides \(M \) then \(a^M - 1 \equiv 0 \pmod{N} \) so \(GCD(a^M - 1, N) \) will yield factor.

NOTE Works well if \(p - 1 \) only has small factors so more likely \(p - 1 \) divides \(M \).
Factoring Algorithms: Pollard rho
Pollard \& Algorithm

Define $f_c(x) \leftarrow x \cdot x + c$. Looks random.

$x \leftarrow \text{RAND}(0, N-1)$, $c \leftarrow \text{RAND}(0, N-1)$, $y \leftarrow f_c(x)$
while TRUE
 $x \leftarrow f_c(x)$
 $y \leftarrow f_c(f_c(y))$
 $d \leftarrow \text{GCD}(x - y, N)$
 if $d \neq 1$ and $d \neq N$ then break
output(d)
Pollard ϕ Algorithm

Define $f_c(x) \leftarrow x \ast x + c$. Looks random.

$x \leftarrow RAND(0, N - 1)$, $c \leftarrow RAND(0, N - 1)$, $y \leftarrow f_c(x)$
while TRUE
 $x \leftarrow f_c(x)$
 $y \leftarrow f_c(f_c(y))$
 $d \leftarrow GCD(x - y, N)$
 if $d \neq 1$ and $d \neq N$ then break
output(d)

KEY p least prime that div N. View the sequence as being put into \equiv classes mod p. By Bday Paradox, 2 in the same box within $p^{1/2} \sim N^{1/4}$ steps. Hence exists $i \leq \sim N^{1/4}$ such ith and $2i$th congruent mod p, so get $GCD(x - y, N) \neq 1$.
Pollard ϕ Algorithm

Define $f_c(x) \leftarrow x \ast x + c$. Looks random.

$x \leftarrow \text{RAND}(0, N - 1)$, $c \leftarrow \text{RAND}(0, N - 1)$, $y \leftarrow f_c(x)$

while TRUE
 $x \leftarrow f_c(x)$
 $y \leftarrow f_c(f_c(y))$
 $d \leftarrow \text{GCD}(x - y, N)$
 if $d \neq 1$ and $d \neq N$ then break

output(d)

KEY p least prime that div N. View the sequence as being put into \equiv classes mod p. By Bday Paradox, 2 in the same box within $p^{1/2} \sim N^{1/4}$ steps. Hence exists $i \leq \sim N^{1/4}$ such ith and $2i$th congruent mod p, so get $\text{GCD}(x - y, N) \neq 1$.

Caveat Need the sequence to be truly random to prove it works. Don’t have that, but it works in practice.
Factoring Algorithms: Quad Sieve
Quad Sieve Alg

Given N let $x = \left\lfloor \sqrt{N} \right\rfloor$. All \equiv are mod N. B, M are params.
Quad Sieve Alg

Given N let $x = \lfloor \sqrt{N} \rfloor$. All \equiv are mod N. B, M are params.

$$(x + 0)^2 \equiv y_0 \quad \text{Try to } B\text{-Factor } y_0 \text{ to get parity } \vec{v}_0$$

$$\vdots$$

$$(x + M)^2 \equiv y_M \quad \text{Try to } B\text{-Factor } y_M \text{ to get parity } \vec{v}_M$$
Quad Sieve Alg

Given N let $x = \left\lfloor \sqrt{N} \right\rfloor$. All \equiv are mod N. B, M are params.

$$(x + 0)^2 \equiv y_0 \quad \text{Try to B-Factor y_0 to get parity } \vec{v}_0$$

$$\vdots$$

$$(x + M)^2 \equiv y_M \quad \text{Try to B-Factor y_M to get parity } \vec{v}_M$$

Some of the y_i were B-factored, but some were not. Let I be the set of all i such that y_i was B-factored.
Quad Sieve Alg

Given N let $x = \lfloor \sqrt{N} \rfloor$. All \equiv are mod N. B, M are params.

$$(x + 0)^2 \equiv y_0 \quad \text{Try to B-Factor } y_0 \text{ to get parity } \bar{v}_0$$

$$\vdots$$

$$(x + M)^2 \equiv y_M \quad \text{Try to B-Factor } y_M \text{ to get parity } \bar{v}_M$$

Some of the y_i were B-factored, but some were not. Let I be the set of all i such that y_i was B-factored.

Find $J \subseteq I$ such that $\sum_{i \in J} \bar{v}_i = 0$. Hence $\prod_{i \in J} y_i$ has all even exponents.

Important! Since $\prod_{i \in J} y_i$ has all even exponents, there exists $Y \prod_{i \in J} y_i = Y^2$. From this can get $X^2 \equiv Y^2 \pmod{N}$. DONE!
Quad Sieve Alg

Given N let $x = \lfloor \sqrt{N} \rfloor$. All \equiv are mod N. B, M are params.

$$(x + 0)^2 \equiv y_0 \quad \text{Try to B-Factor } y_0 \text{ to get parity } \vec{v}_0$$

$$\vdots$$

$$(x + M)^2 \equiv y_M \quad \text{Try to B-Factor } y_M \text{ to get parity } \vec{v}_M$$

Some of the y_i were B-factored, but some were not. Let I be the set of all i such that y_i was B-factored.

Find $J \subseteq I$ such that $\sum_{i \in J} \vec{v}_i = \vec{0}$.

Hence $\prod_{i \in J} y_i$ has all even exponents.

Important! Since $\prod_{i \in J} y_i$ has all even exponents, there exists Y

$\prod_{i \in J} y_i = Y^2$. From this can get $X^2 \equiv Y^2 \pmod{N}$. DONE!
IDEA: Do the Factoring in Bulk

New Problem Given \(N, B, M, x \), want to \(B \)-factor
\[
(x + 0)^2 \pmod{N} \\
(x + 1)^2 \pmod{N} \\
\vdots \\
(x + M)^2 \pmod{N}
\]
We do an example on the next slide.
QS Example: \(N = 1147, \ M = 10, \ x = 34 \)

Need: for which \(0 \leq i \leq 10 \) is \((x + i)^2 \mod N \equiv 0 \ (\mod 2) \)?
QS Example: \(N = 1147, M = 10, x = 34 \)

Need: for which \(0 \leq i \leq 10 \) is \((x + i)^2 \mod N) \equiv 0 \pmod{2}\)?

Since \(1147 < 34^2 < (34 + 10)^2 < 2 \times 1147 \), for \(0 \leq i \leq 10 \).

\((34 + i)^2 \mod 1147 = (34 + i)^2 - 1147 \equiv i^2 - 1 \pmod{2}\).

\(i^2 - 1 \equiv 0 \pmod{2}\) if \(i \equiv 1 \pmod{2}\).
QS Example: $N = 1147$, $M = 10$, $x = 34$

Need: for which $0 \leq i \leq 10$ is $((x + i)^2 \mod N) \equiv 0 \pmod{2}$?

Since $1147 < 34^2 < (34 + 10)^2 < 2 \times 1147$, for $0 \leq i \leq 10$.
$(34 + i)^2 \mod 1147 = (34 + i)^2 - 1147 \equiv i^2 - 1 \pmod{2}$.
$i^2 - 1 \equiv 0 \pmod{2}$ if $i \equiv 1 \pmod{2}$.

Can do similar for any prime p.
Quad Sieve Alg

Given N let $x = \left\lceil \sqrt{N} \right\rceil$. All \equiv are mod N. B, M are params.

B-factor $(x + 0)^2 \pmod{N}, \ldots, (x + M)^2 \pmod{N}$ by Quad S.

Let $I \subseteq \{0, \ldots, M\}$ so that $(\forall i \in I), y_i$ is B-factored. Find $J \subseteq I$ such that $\sum_{i \in J} \vec{v}_i = \vec{0}$. Hence $\prod_{i \in J} y_i$ has all even exponents, so there exists Y

$$\prod_{i \in J} y_i = Y^2$$

$$\left(\prod_{i \in J} (x + i)\right)^2 \equiv \prod_{i \in J} y_i = Y^2 \pmod{N}$$

Let $X = \prod_{i \in J} (x + i) \pmod{N}$ and $Y = \prod_{i \in J} q_i^{e_i} \pmod{N}$.

$$X^2 - Y^2 \equiv 0 \pmod{N}.$$

$GCD(X - Y, N), GCD(X + Y, N)$ should yield factors.
Secret Sharing
Zelda has a secret $s \in \{0, 1\}^n$.

Def: Let $1 \leq t \leq m$. (t, L)-secret sharing is a way for Zelda to give strings to A_1, \ldots, A_L such that:

1. If any t get together than they can learn the secret.
2. If any $t - 1$ get together they cannot learn the secret.

Cannot learn the secret. Two flavors: (1) info-theoretic, (2) computational.

Note: Access Structure is a set of sets of students closed under superset. Can also look at Secret Sharing with other access structures.
Methods For Secret Sharing

Assume $|s| = n$.

1. Random String Method.
 - **PRO**: Can be used for ANY access structure.
 - **CON**: For Threshold Zelda may have to give Alice LOTS of strings

 - **PRO**: Zelda gives Alice a share of exactly n. Simple.
 - **CON**: Only used for threshold secret sharing
 - **CAVEAT**: For exactly n need weird math. Get $n + 1$ with normal math.

3. Geometry. Uses: t points in \mathbb{R}^t det. a $(t - 1)$-hyperplane.
 - **PRO**: Zelda gives Alice a share of exactly n. Simple.
 - **CON**: Only used for threshold secret sharing
 - **CON**: We didn’t cover it.
If demand Info-theoretic security then shares have to be $\geq |s|$.

We did that in class.

So we go to comp theoretic, next slide.
Short Shares

Thm: Assume there exists an α-SES. Assume that for message of length n, it is secure. Then, for all $1 \leq t \leq L$ there is a (t, L)-scheme for $|s| = n$ where each share is of size $\frac{n}{t} + \alpha n$.

1. Zelda does $k \leftarrow GEN(n)$. Note $|k| = \alpha n$.
2. $u = ENC_k(s)$. Let $u = u_0 \cdots u_{t-1}$, $|u_i| \sim \frac{n}{t}$.
3. Let $p \sim 2^{n/t}$. Zelda forms poly over \mathbb{Z}_p:

 $$f(x) = u_{t-1}x^{t-1} + \cdots + u_1x + u_0$$

4. Let $q \sim 2^{\alpha n}$. Zelda forms poly over \mathbb{Z}_q by choosing $r_{t-1}, \ldots, r_1 \in \{0, \ldots, q-1\}$ at random and then:

 $$g(x) = r_{t-1}x^{t-1} + \cdots + r_1x + k$$

5. Zelda gives $A_i, (f(i), g(i))$. Length: $\sim \frac{n}{t} + \alpha n$.
Verifiable Secret Sharing VSS

Cannot do it if demand info-theoretic security.
That was a HW.
So we go to comp theoretic, next slide.
Verifiable Secret Sharing

1. Secret is s, $|s| = n$. Zelda finds $p \sim n$.
2. Zelda finds a generator g for \mathbb{Z}_p.
3. Zelda picks rand r_{t-1}, \ldots, r_1,
 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s. \]
4. For $1 \leq i \leq L$ Zelda gives $A_i f(i)$.
5. Zelda gives to EVERYONE the values $g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g$.
 (We think discrete log is HARD so r_i not revealed.)

Recover: The usual – any group of t can blah blah.
Verify: A_i reveals $f(i) = 17$. Group computes:
1) g^{17}.
2) $(g^{r_{t-1}})^{i_{t-1}} \times (g^{r_{t-2}})^{i_{t-2}} \times \cdots (g^{r_1})^{i_1} \times (g^s)^{i_0} = g^{f(i)}$
If this is g^{17} then A_i is truthful. If not then A_i is dirty stinking liar.
Alice and Bob and Love
The Problem

1. Alice has bit a, Bob has bit b, and they want to compute $a \land b$. They have a many decks of cards. At the end of the protocol:
 1.1 They both know $a \land b$.
 1.2 If $a = 0$ then A does not know b.
 1.3 If $b = 0$ then B does not know a.
 1.4 If $a = 1$ then since A knows a and $a \land b$, A knows b.
 1.5 If $b = 1$ then since B knows b and $a \land b$, B knows a.

2. Alice, Bob, Cards, and Love is Fair Game for the final. For example, I could ask you to extend to $a \land b \land c$.
All cards are face down.

1. The cards ♠♠♥ are on the table.
The 3-Card Solution by Karun Singh

All cards are face down.

1. The cards ♠♣♥ are on the table.
2. Bob is not in the room.
3. After A
 Y TVT
 N

4. After B
 Y
 N

TVT
The 3-Card Solution by Karun Singh

All cards are face down.

1. The cards ♠♠♥ are on the table.
2. Bob is not in the room.
3. Alice is not in the room.
 B-YES: Switch cards 1 and 2. B-NO: No switch.
All cards are face down.

1. The cards ♠♠♥ are on the table.
2. Bob is not in the room.
3. Alice is not in the room.
 B-YES: Switch cards 1 and 2. B-NO: No switch.
4. Not done yet, but let’s see what we got.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>After A</th>
<th>After B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>♠♥♣♣</td>
<td>♥♣♣♣</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>♠♥♣♣</td>
<td>♣♣♣♣</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>♣♣♥♣</td>
<td>♣♣♥♣</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>♣♣♥♣</td>
<td>♣♣♥♣</td>
</tr>
</tbody>
</table>
The 3-Card Solution by Singh, cont

The cards are face down.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>After A</th>
<th>After B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>♣️❤️♣️</td>
<td>❤️♣️♣️</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>♣️❤️♣️</td>
<td>♣️❤️♣️</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>♣️♣️❤️</td>
<td>♣️♣️❤️</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>♣️♣️❤️</td>
<td>♣️♣️❤️</td>
</tr>
</tbody>
</table>

Just reveal the first card:
- If it’s ❤️ then 2nd date!
- If not then no 2nd date!
Good Luck on the Exam!

Good Luck on the Exam!