
Finding Gens: Third Attempt

Theorem: If g is not a generator then there exists x that
(1) x is a maxfac of p − 1 and (2) g x = 1.

Given prime p, find a gen for Z∗
p

1. Input p

2. Factor p − 1. Let MF be the set of its maxfacs.

3. For g =
⌈p
3

⌉
to
⌊
2p
3

⌋
Compute g x for all x ∈ MF . If any = 1 then g not
generator. If none are 1 then output g and stop.

Is this a good algorithm?

PRO: As noted before, O(1) iterations.
PRO: Every iter – O(|MF |(log p)) ops. |MF | = O(log p). GREAT,
this improves over Attempt 2.
BIG CON: We still need to factor p − 1? Really? Darn!

Finding Gens: Third Attempt

Theorem: If g is not a generator then there exists x that
(1) x is a maxfac of p − 1 and (2) g x = 1.

Given prime p, find a gen for Z∗
p

1. Input p

2. Factor p − 1. Let MF be the set of its maxfacs.

3. For g =
⌈p
3

⌉
to
⌊
2p
3

⌋
Compute g x for all x ∈ MF . If any = 1 then g not
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO: As noted before, O(1) iterations.

PRO: Every iter – O(|MF |(log p)) ops. |MF | = O(log p). GREAT,
this improves over Attempt 2.
BIG CON: We still need to factor p − 1? Really? Darn!

Finding Gens: Third Attempt

Theorem: If g is not a generator then there exists x that
(1) x is a maxfac of p − 1 and (2) g x = 1.

Given prime p, find a gen for Z∗
p

1. Input p

2. Factor p − 1. Let MF be the set of its maxfacs.

3. For g =
⌈p
3

⌉
to
⌊
2p
3

⌋
Compute g x for all x ∈ MF . If any = 1 then g not
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO: As noted before, O(1) iterations.
PRO: Every iter – O(|MF |(log p)) ops. |MF | = O(log p). GREAT,
this improves over Attempt 2.

BIG CON: We still need to factor p − 1? Really? Darn!

Finding Gens: Third Attempt

Theorem: If g is not a generator then there exists x that
(1) x is a maxfac of p − 1 and (2) g x = 1.

Given prime p, find a gen for Z∗
p

1. Input p

2. Factor p − 1. Let MF be the set of its maxfacs.

3. For g =
⌈p
3

⌉
to
⌊
2p
3

⌋
Compute g x for all x ∈ MF . If any = 1 then g not
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO: As noted before, O(1) iterations.
PRO: Every iter – O(|MF |(log p)) ops. |MF | = O(log p). GREAT,
this improves over Attempt 2.
BIG CON: We still need to factor p − 1? Really? Darn!

Factoring is Hard. Or is it?

Problem for third method: factoring is hard. But:

1. If Alice picks p, q large and gives Eve pq, then factoring pq
seems to be hard.

2. If a Random process generates n then factoring n probably
easy (e.g., half the time it’s even!).

We want p − 1 to be easy to factor. We don’t have an adversary
like Alice, but we also don’t have a random process either.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We need to make things happen. We need to make p − 1 easy to
factor.

Factoring is Hard. Or is it?

Problem for third method: factoring is hard. But:

1. If Alice picks p, q large and gives Eve pq, then factoring pq
seems to be hard.

2. If a Random process generates n then factoring n probably
easy (e.g., half the time it’s even!).

We want p − 1 to be easy to factor. We don’t have an adversary
like Alice, but we also don’t have a random process either.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We need to make things happen. We need to make p − 1 easy to
factor.

Factoring is Hard. Or is it?

Problem for third method: factoring is hard. But:

1. If Alice picks p, q large and gives Eve pq, then factoring pq
seems to be hard.

2. If a Random process generates n then factoring n probably
easy (e.g., half the time it’s even!).

We want p − 1 to be easy to factor. We don’t have an adversary
like Alice, but we also don’t have a random process either.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We need to make things happen. We need to make p − 1 easy to
factor.

Factoring is Hard. Or is it?

Problem for third method: factoring is hard. But:

1. If Alice picks p, q large and gives Eve pq, then factoring pq
seems to be hard.

2. If a Random process generates n then factoring n probably
easy (e.g., half the time it’s even!).

We want p − 1 to be easy to factor. We don’t have an adversary
like Alice, but we also don’t have a random process either.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We need to make things happen. We need to make p − 1 easy to
factor.

Factoring is Hard. Or is it?

Problem for third method: factoring is hard. But:

1. If Alice picks p, q large and gives Eve pq, then factoring pq
seems to be hard.

2. If a Random process generates n then factoring n probably
easy (e.g., half the time it’s even!).

We want p − 1 to be easy to factor. We don’t have an adversary
like Alice, but we also don’t have a random process either.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We need to make things happen. We need to make p − 1 easy to
factor.

Factoring is Hard. Or is it?

Problem for third method: factoring is hard. But:

1. If Alice picks p, q large and gives Eve pq, then factoring pq
seems to be hard.

2. If a Random process generates n then factoring n probably
easy (e.g., half the time it’s even!).

We want p − 1 to be easy to factor. We don’t have an adversary
like Alice, but we also don’t have a random process either.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We need to make things happen. We need to make p − 1 easy to
factor.

Factoring is Hard. Or is it?

Problem for third method: factoring is hard. But:

1. If Alice picks p, q large and gives Eve pq, then factoring pq
seems to be hard.

2. If a Random process generates n then factoring n probably
easy (e.g., half the time it’s even!).

We want p − 1 to be easy to factor. We don’t have an adversary
like Alice, but we also don’t have a random process either.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We need to make things happen. We need to make p − 1 easy to
factor.

Finding Gens: Fourth Attempt

Idea: Pick p such that p − 1 = 2q where q is prime.
Given prime p, find a gen for Z∗

p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g =
⌈p
3

⌉
to
⌊
2p
3

⌋
Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?

PRO: As noted above O(1) iterations.
PRO: Every iteration does O(|F |(log p)) = O(log p) operations.
CON: Need both p and p−1

2 are primes.
We need to pick certain kinds of primes. Can do that!

Finding Gens: Fourth Attempt

Idea: Pick p such that p − 1 = 2q where q is prime.
Given prime p, find a gen for Z∗

p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g =
⌈p
3

⌉
to
⌊
2p
3

⌋
Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO: As noted above O(1) iterations.

PRO: Every iteration does O(|F |(log p)) = O(log p) operations.
CON: Need both p and p−1

2 are primes.
We need to pick certain kinds of primes. Can do that!

Finding Gens: Fourth Attempt

Idea: Pick p such that p − 1 = 2q where q is prime.
Given prime p, find a gen for Z∗

p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g =
⌈p
3

⌉
to
⌊
2p
3

⌋
Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO: As noted above O(1) iterations.
PRO: Every iteration does O(|F |(log p)) = O(log p) operations.

CON: Need both p and p−1
2 are primes.

We need to pick certain kinds of primes. Can do that!

Finding Gens: Fourth Attempt

Idea: Pick p such that p − 1 = 2q where q is prime.
Given prime p, find a gen for Z∗

p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g =
⌈p
3

⌉
to
⌊
2p
3

⌋
Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO: As noted above O(1) iterations.
PRO: Every iteration does O(|F |(log p)) = O(log p) operations.
CON: Need both p and p−1

2 are primes.

We need to pick certain kinds of primes. Can do that!

Finding Gens: Fourth Attempt

Idea: Pick p such that p − 1 = 2q where q is prime.
Given prime p, find a gen for Z∗

p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g =
⌈p
3

⌉
to
⌊
2p
3

⌋
Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO: As noted above O(1) iterations.
PRO: Every iteration does O(|F |(log p)) = O(log p) operations.
CON: Need both p and p−1

2 are primes.
We need to pick certain kinds of primes. Can do that!

Primality Testing

Primality Testing

Warning: The next few slides will culminate in a test for primality
that may FAIL. It is NOT used. But ideas are used in real
algorithm.

Lemma
p prime, 1 ≤ i ≤ p − 1, then p!

i!(p−i)! ∈ N and is divisible by p.

Proof.
Why is p!

i!(p−i)! ∈ N?
p!

i!(p−i)!? is the answer to a question that has a N solution:
How many ways can you choose i items out of p?

Why does p divide p!
i!(p−i)!?

p divides the numerator, p does not divide the denominator, and p
is prime. Hence p divides the number.

Note:
(p
i

)
= p!

(p−i)!i! .

Primality Testing

Warning: The next few slides will culminate in a test for primality
that may FAIL. It is NOT used. But ideas are used in real
algorithm.

Lemma
p prime, 1 ≤ i ≤ p − 1, then p!

i!(p−i)! ∈ N and is divisible by p.

Proof.
Why is p!

i!(p−i)! ∈ N?

p!
i!(p−i)!? is the answer to a question that has a N solution:

How many ways can you choose i items out of p?
Why does p divide p!

i!(p−i)!?
p divides the numerator, p does not divide the denominator, and p
is prime. Hence p divides the number.

Note:
(p
i

)
= p!

(p−i)!i! .

Primality Testing

Warning: The next few slides will culminate in a test for primality
that may FAIL. It is NOT used. But ideas are used in real
algorithm.

Lemma
p prime, 1 ≤ i ≤ p − 1, then p!

i!(p−i)! ∈ N and is divisible by p.

Proof.
Why is p!

i!(p−i)! ∈ N?
p!

i!(p−i)!? is the answer to a question that has a N solution:
How many ways can you choose i items out of p?

Why does p divide p!
i!(p−i)!?

p divides the numerator, p does not divide the denominator, and p
is prime. Hence p divides the number.

Note:
(p
i

)
= p!

(p−i)!i! .

Primality Testing

Warning: The next few slides will culminate in a test for primality
that may FAIL. It is NOT used. But ideas are used in real
algorithm.

Lemma
p prime, 1 ≤ i ≤ p − 1, then p!

i!(p−i)! ∈ N and is divisible by p.

Proof.
Why is p!

i!(p−i)! ∈ N?
p!

i!(p−i)!? is the answer to a question that has a N solution:
How many ways can you choose i items out of p?

Why does p divide p!
i!(p−i)!?

p divides the numerator, p does not divide the denominator, and p
is prime. Hence p divides the number.

Note:
(p
i

)
= p!

(p−i)!i! .

Primality Testing

Warning: The next few slides will culminate in a test for primality
that may FAIL. It is NOT used. But ideas are used in real
algorithm.

Lemma
p prime, 1 ≤ i ≤ p − 1, then p!

i!(p−i)! ∈ N and is divisible by p.

Proof.
Why is p!

i!(p−i)! ∈ N?
p!

i!(p−i)!? is the answer to a question that has a N solution:
How many ways can you choose i items out of p?

Why does p divide p!
i!(p−i)!?

p divides the numerator, p does not divide the denominator, and p
is prime. Hence p divides the number.

Note:
(p
i

)
= p!

(p−i)!i! .

Primality Testing

Lemma
(Binomial Theorem) For any n ∈ N, (x + y)n =

∑n
i=0

(n
i

)
x iyn−i

Lemma
(Fermat’s Little Theorem) If p prime, a ∈ N then ap ≡ a (mod p).

Proof.
Fix prime p. By induction on a. Base Case: 1p ≡ 1.
Ind Hyp: ap ≡ a (mod p)

Ind Step: (a + 1)p =
(p
p

)
ap +

(p
p−1

)
ap−1 + · · ·+

(p
1

)
a1 +

(p
0

)
a0.

By previous lemma
(p
1

)
≡
(p
2

)
≡ · · · ≡

(p
p−1

)
≡ 0. Hence

(a + 1)p ≡
(
p

0

)
ap +

(
p

p

)
a0 ≡ ap + 1 ≡ a + 1 Last ≡ by Ind Hyp

Fermat’s Little Theorem Special Case

RECALL:

Lemma
(Fermat’s Little Theorem) If p prime, a ∈ N then ap ≡ a (mod p).

We want to divide both sides by a to get ap−1 ≡ 1 (mod p). Can
we always do this? Discuss.

No. Need a 6≡ 0 (mod p). Okay, make that a premise:

Lemma
If p prime, a ∈ N, a 6≡ 0 (mod p), ap−1 ≡ 1 (mod p).

Fermat’s Little Theorem Special Case

RECALL:

Lemma
(Fermat’s Little Theorem) If p prime, a ∈ N then ap ≡ a (mod p).

We want to divide both sides by a to get ap−1 ≡ 1 (mod p). Can
we always do this? Discuss.

No. Need a 6≡ 0 (mod p). Okay, make that a premise:

Lemma
If p prime, a ∈ N, a 6≡ 0 (mod p), ap−1 ≡ 1 (mod p).

Primality Testing

Prior Slides: If p is prime and a ∈ N then ap ≡ a (mod p).
What has been observed: If p is NOT prime then USUALLY for
MOST a, ap 6≡ a (mod p).
Primality Algorithm:

1. Input p. (In algorithm all arithmetic is mod p.)

2. Form rand R ⊆ {2, . . . , p − 1} of size ∼ lg p

3. For each a ∈ R compute ap.

3.1 If ever get ap 6≡ a then p NOT PRIME (We are SURE.)
3.2 If for all a, ap ≡ a then PRIME (We are NOT SURE.)

Two reasons for our uncertainty

I If p is composite but we were unlucky with R.

I There are some composite p such that for all a, ap ≡ a.

Primality Testing – What is Really True

1. Exists algorithm that only has first problem, possible bad luck.

2. That algorithm has prob of failure ≤ 1
2p . Good enough!

3. Exists deterministic poly time algorithm but is much slower.

4. n is a Carmichael Number if, for all a, an ≡ a. These are the
numbers my algorithm FAILS on.

5. The first seven Carmichael Numbers:
561, 1105, 1729, 2465, 2821, 6601, 8911

6. Carmichael numbers are rare.

Generating Primes (also needed for RSA)

Take as given: Primality Testing is FAST.

First Attempt at, given L, generate a prime of length L.

1. Input(L)

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a true L-bit number)

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?

PRO: Math tells us returns a prime within 3L2 tries with high prob.
CON: Tests lots of numbers that are obv not prime—e.g, evens.

Generating Primes (also needed for RSA)

Take as given: Primality Testing is FAST.

First Attempt at, given L, generate a prime of length L.

1. Input(L)

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a true L-bit number)

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO: Math tells us returns a prime within 3L2 tries with high prob.

CON: Tests lots of numbers that are obv not prime—e.g, evens.

Generating Primes (also needed for RSA)

Take as given: Primality Testing is FAST.

First Attempt at, given L, generate a prime of length L.

1. Input(L)

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a true L-bit number)

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO: Math tells us returns a prime within 3L2 tries with high prob.
CON: Tests lots of numbers that are obv not prime—e.g, evens.

Generating Safe Primes

Definition
p is a safe prime if p is prime and p−1

2 is prime.

First Attempt at, given L, generate a safe prime of length L

1. Input(L)

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (note that x is a true L-bit number)

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?

PRO: Math tells us returns prime quickly with high prob.
CON: Tests lots of numbers that are obv not prime—e.g, evens.

Generating Safe Primes

Definition
p is a safe prime if p is prime and p−1

2 is prime.

First Attempt at, given L, generate a safe prime of length L

1. Input(L)

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (note that x is a true L-bit number)

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?
PRO: Math tells us returns prime quickly with high prob.

CON: Tests lots of numbers that are obv not prime—e.g, evens.

Generating Safe Primes

Definition
p is a safe prime if p is prime and p−1

2 is prime.

First Attempt at, given L, generate a safe prime of length L

1. Input(L)

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (note that x is a true L-bit number)

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?
PRO: Math tells us returns prime quickly with high prob.
CON: Tests lots of numbers that are obv not prime—e.g, evens.

Speed Prime-Finding: n 6≡ 0 mod 2

We picked any L− 1-bit string, including ones that end in 0, so
even which we know we don’t want.
IDEA: Pick L− 2 bit string, put 1 on its right and on its left.
Is this a good idea? Vote

PRO: Do not waste time testing even numbers.
CON: Does it really save that much time?
CAVEAT: Can we extend so we don’t test numbers div by 3?
Discuss
Yes

Speed Prime-Finding: n 6≡ 0 mod 2

We picked any L− 1-bit string, including ones that end in 0, so
even which we know we don’t want.
IDEA: Pick L− 2 bit string, put 1 on its right and on its left.
Is this a good idea? Vote

PRO: Do not waste time testing even numbers.

CON: Does it really save that much time?
CAVEAT: Can we extend so we don’t test numbers div by 3?
Discuss
Yes

Speed Prime-Finding: n 6≡ 0 mod 2

We picked any L− 1-bit string, including ones that end in 0, so
even which we know we don’t want.
IDEA: Pick L− 2 bit string, put 1 on its right and on its left.
Is this a good idea? Vote

PRO: Do not waste time testing even numbers.
CON: Does it really save that much time?

CAVEAT: Can we extend so we don’t test numbers div by 3?
Discuss
Yes

Speed Prime-Finding: n 6≡ 0 mod 2

We picked any L− 1-bit string, including ones that end in 0, so
even which we know we don’t want.
IDEA: Pick L− 2 bit string, put 1 on its right and on its left.
Is this a good idea? Vote

PRO: Do not waste time testing even numbers.
CON: Does it really save that much time?
CAVEAT: Can we extend so we don’t test numbers div by 3?
Discuss

Yes

Speed Prime-Finding: n 6≡ 0 mod 2

We picked any L− 1-bit string, including ones that end in 0, so
even which we know we don’t want.
IDEA: Pick L− 2 bit string, put 1 on its right and on its left.
Is this a good idea? Vote

PRO: Do not waste time testing even numbers.
CON: Does it really save that much time?
CAVEAT: Can we extend so we don’t test numbers div by 3?
Discuss
Yes

Speed Up Prime-Finding: 6≡ 0 mod 2 or 3

2 divides n iff (∃k)[n = 2k]
2 does not divide n iff (∃k)[n = 2k + 1]

3 divides n iff (∃k)[n = 3k]
3 does not divide n iff (∃k)(∃i ∈ {1, 2})[n = 3k + i]

How to get both?
Neither 2 nor 3 divides n iff (∃k)(∃i ∈ {1, 5})[n = 6k + i]

So need to generate numbers of the form 6k + 1 and 6k + 5.
Caveat: Might not get a prime of length L. We ignore this for now.

Speed Up Prime-Finding: 6≡ 0 mod 2 or 3

2 divides n iff (∃k)[n = 2k]
2 does not divide n iff (∃k)[n = 2k + 1]

3 divides n iff (∃k)[n = 3k]
3 does not divide n iff (∃k)(∃i ∈ {1, 2})[n = 3k + i]

How to get both?
Neither 2 nor 3 divides n iff (∃k)(∃i ∈ {1, 5})[n = 6k + i]

So need to generate numbers of the form 6k + 1 and 6k + 5.
Caveat: Might not get a prime of length L. We ignore this for now.

Speed Up Prime-Finding: 6≡ 0 mod 2 or 3

2 divides n iff (∃k)[n = 2k]
2 does not divide n iff (∃k)[n = 2k + 1]

3 divides n iff (∃k)[n = 3k]
3 does not divide n iff (∃k)(∃i ∈ {1, 2})[n = 3k + i]

How to get both?

Neither 2 nor 3 divides n iff (∃k)(∃i ∈ {1, 5})[n = 6k + i]

So need to generate numbers of the form 6k + 1 and 6k + 5.
Caveat: Might not get a prime of length L. We ignore this for now.

Speed Up Prime-Finding: 6≡ 0 mod 2 or 3

2 divides n iff (∃k)[n = 2k]
2 does not divide n iff (∃k)[n = 2k + 1]

3 divides n iff (∃k)[n = 3k]
3 does not divide n iff (∃k)(∃i ∈ {1, 2})[n = 3k + i]

How to get both?
Neither 2 nor 3 divides n iff (∃k)(∃i ∈ {1, 5})[n = 6k + i]

So need to generate numbers of the form 6k + 1 and 6k + 5.
Caveat: Might not get a prime of length L. We ignore this for now.

Speed Up Prime-Finding: 6≡ 0 mod 2 or 3

2 divides n iff (∃k)[n = 2k]
2 does not divide n iff (∃k)[n = 2k + 1]

3 divides n iff (∃k)[n = 3k]
3 does not divide n iff (∃k)(∃i ∈ {1, 2})[n = 3k + i]

How to get both?
Neither 2 nor 3 divides n iff (∃k)(∃i ∈ {1, 5})[n = 6k + i]

So need to generate numbers of the form 6k + 1 and 6k + 5.
Caveat: Might not get a prime of length L. We ignore this for now.

Speed Up Prime-Finding: 6≡ 0 mod 2,3

ALGORITHM: Pick an L− 3 bit string, add a 1 to the left, mult
by 6, add 1: get L-bit string which is of form 6k + 1. (Might be
L + 1 long.)
Is this a good idea? Vote

PRO: Do not waste time testing numbers ≡ 0 mod 2 or 3.
CON: Only use primes of form 6k + 1. Who knows, maybe such
primes are easy to deal with for Eve?
CAVEAT: Can we modify to avoid this problem?
Yes

Speed Up Prime-Finding: 6≡ 0 mod 2,3

ALGORITHM: Pick an L− 3 bit string, add a 1 to the left, mult
by 6, add 1: get L-bit string which is of form 6k + 1. (Might be
L + 1 long.)
Is this a good idea? Vote

PRO: Do not waste time testing numbers ≡ 0 mod 2 or 3.

CON: Only use primes of form 6k + 1. Who knows, maybe such
primes are easy to deal with for Eve?
CAVEAT: Can we modify to avoid this problem?
Yes

Speed Up Prime-Finding: 6≡ 0 mod 2,3

ALGORITHM: Pick an L− 3 bit string, add a 1 to the left, mult
by 6, add 1: get L-bit string which is of form 6k + 1. (Might be
L + 1 long.)
Is this a good idea? Vote

PRO: Do not waste time testing numbers ≡ 0 mod 2 or 3.
CON: Only use primes of form 6k + 1. Who knows, maybe such
primes are easy to deal with for Eve?

CAVEAT: Can we modify to avoid this problem?
Yes

Speed Up Prime-Finding: 6≡ 0 mod 2,3

ALGORITHM: Pick an L− 3 bit string, add a 1 to the left, mult
by 6, add 1: get L-bit string which is of form 6k + 1. (Might be
L + 1 long.)
Is this a good idea? Vote

PRO: Do not waste time testing numbers ≡ 0 mod 2 or 3.
CON: Only use primes of form 6k + 1. Who knows, maybe such
primes are easy to deal with for Eve?
CAVEAT: Can we modify to avoid this problem?

Yes

Speed Up Prime-Finding: 6≡ 0 mod 2,3

ALGORITHM: Pick an L− 3 bit string, add a 1 to the left, mult
by 6, add 1: get L-bit string which is of form 6k + 1. (Might be
L + 1 long.)
Is this a good idea? Vote

PRO: Do not waste time testing numbers ≡ 0 mod 2 or 3.
CON: Only use primes of form 6k + 1. Who knows, maybe such
primes are easy to deal with for Eve?
CAVEAT: Can we modify to avoid this problem?
Yes

Speed Up Alg Prime-Finding: 6≡ 0 mod 2,3

IDEA: Pick an L− 3 bit string, add a 1 to the left, mult by 6, add
i ∈ {1, 5} picked at rand: get L-bit string which is of form 6k + 1
OR 6k + 5. (Might be L + 1 long.)
Is this a good idea? Vote

PRO: Do not waste time testing numbers ≡ 0 mod 2 or 3.
PRO: Do not get a prime of a certain form.
CON: Getting more complicated. Is it worth it? Do not know.
CAVEAT: Can we extend to 2,3,5? 2,3,5,7? etc.

Speed Up Alg Prime-Finding: 6≡ 0 mod 2,3

IDEA: Pick an L− 3 bit string, add a 1 to the left, mult by 6, add
i ∈ {1, 5} picked at rand: get L-bit string which is of form 6k + 1
OR 6k + 5. (Might be L + 1 long.)
Is this a good idea? Vote

PRO: Do not waste time testing numbers ≡ 0 mod 2 or 3.

PRO: Do not get a prime of a certain form.
CON: Getting more complicated. Is it worth it? Do not know.
CAVEAT: Can we extend to 2,3,5? 2,3,5,7? etc.

Speed Up Alg Prime-Finding: 6≡ 0 mod 2,3

IDEA: Pick an L− 3 bit string, add a 1 to the left, mult by 6, add
i ∈ {1, 5} picked at rand: get L-bit string which is of form 6k + 1
OR 6k + 5. (Might be L + 1 long.)
Is this a good idea? Vote

PRO: Do not waste time testing numbers ≡ 0 mod 2 or 3.
PRO: Do not get a prime of a certain form.

CON: Getting more complicated. Is it worth it? Do not know.
CAVEAT: Can we extend to 2,3,5? 2,3,5,7? etc.

Speed Up Alg Prime-Finding: 6≡ 0 mod 2,3

IDEA: Pick an L− 3 bit string, add a 1 to the left, mult by 6, add
i ∈ {1, 5} picked at rand: get L-bit string which is of form 6k + 1
OR 6k + 5. (Might be L + 1 long.)
Is this a good idea? Vote

PRO: Do not waste time testing numbers ≡ 0 mod 2 or 3.
PRO: Do not get a prime of a certain form.
CON: Getting more complicated. Is it worth it? Do not know.

CAVEAT: Can we extend to 2,3,5? 2,3,5,7? etc.

Speed Up Alg Prime-Finding: 6≡ 0 mod 2,3

IDEA: Pick an L− 3 bit string, add a 1 to the left, mult by 6, add
i ∈ {1, 5} picked at rand: get L-bit string which is of form 6k + 1
OR 6k + 5. (Might be L + 1 long.)
Is this a good idea? Vote

PRO: Do not waste time testing numbers ≡ 0 mod 2 or 3.
PRO: Do not get a prime of a certain form.
CON: Getting more complicated. Is it worth it? Do not know.
CAVEAT: Can we extend to 2,3,5? 2,3,5,7? etc.

Speed Up Prime-Finding: 6≡ 0 mod 2,3,5

2 divides n iff (∃k)[n = 2k]
2 does not divide n iff (∃k)[n = 2k + 1]

3 divides n iff (∃k)[n = 3k]
3 does not divide n iff (∃k)(∃i ∈ {1, 2})[n = 3k + i]
5 divides n iff (∃k)[n = 5k]
5 does not divide n iff (∃k)(∃i ∈ {1, 2, 3, 4})[n = 5k + i]

How to get all three? We use mod 30. We only want numbers of
the form

{30k + i : i ∈ {1, 7, 11, 13, 17, 19, 23, 29}}

Speed Up Prime-Finding: 6≡ 0 mod 2,3,5

2 divides n iff (∃k)[n = 2k]
2 does not divide n iff (∃k)[n = 2k + 1]

3 divides n iff (∃k)[n = 3k]
3 does not divide n iff (∃k)(∃i ∈ {1, 2})[n = 3k + i]

5 divides n iff (∃k)[n = 5k]
5 does not divide n iff (∃k)(∃i ∈ {1, 2, 3, 4})[n = 5k + i]

How to get all three? We use mod 30. We only want numbers of
the form

{30k + i : i ∈ {1, 7, 11, 13, 17, 19, 23, 29}}

Speed Up Prime-Finding: 6≡ 0 mod 2,3,5

2 divides n iff (∃k)[n = 2k]
2 does not divide n iff (∃k)[n = 2k + 1]

3 divides n iff (∃k)[n = 3k]
3 does not divide n iff (∃k)(∃i ∈ {1, 2})[n = 3k + i]
5 divides n iff (∃k)[n = 5k]
5 does not divide n iff (∃k)(∃i ∈ {1, 2, 3, 4})[n = 5k + i]

How to get all three?

We use mod 30. We only want numbers of
the form

{30k + i : i ∈ {1, 7, 11, 13, 17, 19, 23, 29}}

Speed Up Prime-Finding: 6≡ 0 mod 2,3,5

2 divides n iff (∃k)[n = 2k]
2 does not divide n iff (∃k)[n = 2k + 1]

3 divides n iff (∃k)[n = 3k]
3 does not divide n iff (∃k)(∃i ∈ {1, 2})[n = 3k + i]
5 divides n iff (∃k)[n = 5k]
5 does not divide n iff (∃k)(∃i ∈ {1, 2, 3, 4})[n = 5k + i]

How to get all three? We use mod 30. We only want numbers of
the form

{30k + i : i ∈ {1, 7, 11, 13, 17, 19, 23, 29}}

Speed Up Prime-Finding: 6≡ 0 mod 2,3, or 5

Let X = {1, 7, 11, 13, 17, 19, 23, 29}}.
ALGORITHM: Pick an L− 7 bit string, add a 1 to the left, mult
by 30, add one of {1, 7, 11, 13, 17, 19, 23, 29}.
Is this a good idea? Vote

PRO: Do not waste time testing numbers ≡ 0 mod 2 or 3 or 5.
CON: Number of bits around L, but could be off by a few.
CON: Too much trouble.

Speed Up Prime-Finding: 6≡ 0 mod 2,3, or 5

Let X = {1, 7, 11, 13, 17, 19, 23, 29}}.
ALGORITHM: Pick an L− 7 bit string, add a 1 to the left, mult
by 30, add one of {1, 7, 11, 13, 17, 19, 23, 29}.
Is this a good idea? Vote

PRO: Do not waste time testing numbers ≡ 0 mod 2 or 3 or 5.

CON: Number of bits around L, but could be off by a few.
CON: Too much trouble.

Speed Up Prime-Finding: 6≡ 0 mod 2,3, or 5

Let X = {1, 7, 11, 13, 17, 19, 23, 29}}.
ALGORITHM: Pick an L− 7 bit string, add a 1 to the left, mult
by 30, add one of {1, 7, 11, 13, 17, 19, 23, 29}.
Is this a good idea? Vote

PRO: Do not waste time testing numbers ≡ 0 mod 2 or 3 or 5.
CON: Number of bits around L, but could be off by a few.

CON: Too much trouble.

Speed Up Prime-Finding: 6≡ 0 mod 2,3, or 5

Let X = {1, 7, 11, 13, 17, 19, 23, 29}}.
ALGORITHM: Pick an L− 7 bit string, add a 1 to the left, mult
by 30, add one of {1, 7, 11, 13, 17, 19, 23, 29}.
Is this a good idea? Vote

PRO: Do not waste time testing numbers ≡ 0 mod 2 or 3 or 5.
CON: Number of bits around L, but could be off by a few.
CON: Too much trouble.

Summary of Where We Are

1. Finding primes p such that p − 1 = 2q, q a prime, EASY

2. Given such a p, finding generator g , EASY.

3. Given such a p, finding generator g ∈ {p3 ,
2p
3 } EASY.

4. Given p, g , a finding ga (mod p) EASY.

5. The following problem thought to be hard:
Input: prime p, generator g , Number a a, g ∈ {p3 ,

2p
3 }

Output: The x such that g x ≡ a (mod p)

The problem thought to be hard is essentially the discrete log
problem, though we have safeguarded against easy instances.

We
hope.

Summary of Where We Are

1. Finding primes p such that p − 1 = 2q, q a prime, EASY

2. Given such a p, finding generator g , EASY.

3. Given such a p, finding generator g ∈ {p3 ,
2p
3 } EASY.

4. Given p, g , a finding ga (mod p) EASY.

5. The following problem thought to be hard:
Input: prime p, generator g , Number a a, g ∈ {p3 ,

2p
3 }

Output: The x such that g x ≡ a (mod p)

The problem thought to be hard is essentially the discrete log
problem, though we have safeguarded against easy instances. We
hope.

Convention (Possibly Repeated)

For the rest of the slides on Diffie-Hellman Key Exchange there will
always be a prime p that we are considering.

ALL arithmetic done from that point on is mod p.

ALL numbers are in {1, . . . , p − 1}.

The Diffie-Hellman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

g ∈ {p3 , . . . ,
2p
3 }.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks rand a ∈ {p3 , . . . ,
2p
3 }. Alice computes ga (mod p)

and sends it to Bob in the clear (Eve can see it).

4. Bob picks rand b ∈ {p3 , . . . ,
2p
3 }. Bob computes gb (mod p)

and sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?

The Diffie-Hellman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

g ∈ {p3 , . . . ,
2p
3 }.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks rand a ∈ {p3 , . . . ,
2p
3 }. Alice computes ga (mod p)

and sends it to Bob in the clear (Eve can see it).

4. Bob picks rand b ∈ {p3 , . . . ,
2p
3 }. Bob computes gb (mod p)

and sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?

The Diffie-Hellman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

g ∈ {p3 , . . . ,
2p
3 }.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks rand a ∈ {p3 , . . . ,
2p
3 }. Alice computes ga (mod p)

and sends it to Bob in the clear (Eve can see it).

4. Bob picks rand b ∈ {p3 , . . . ,
2p
3 }. Bob computes gb (mod p)

and sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?

The Diffie-Hellman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

g ∈ {p3 , . . . ,
2p
3 }.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks rand a ∈ {p3 , . . . ,
2p
3 }. Alice computes ga (mod p)

and sends it to Bob in the clear (Eve can see it).

4. Bob picks rand b ∈ {p3 , . . . ,
2p
3 }. Bob computes gb (mod p)

and sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?

The Diffie-Hellman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

g ∈ {p3 , . . . ,
2p
3 }.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks rand a ∈ {p3 , . . . ,
2p
3 }. Alice computes ga (mod p)

and sends it to Bob in the clear (Eve can see it).

4. Bob picks rand b ∈ {p3 , . . . ,
2p
3 }. Bob computes gb (mod p)

and sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?

The Diffie-Hellman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

g ∈ {p3 , . . . ,
2p
3 }.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks rand a ∈ {p3 , . . . ,
2p
3 }. Alice computes ga (mod p)

and sends it to Bob in the clear (Eve can see it).

4. Bob picks rand b ∈ {p3 , . . . ,
2p
3 }. Bob computes gb (mod p)

and sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?

The Diffie-Hellman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

g ∈ {p3 , . . . ,
2p
3 }.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks rand a ∈ {p3 , . . . ,
2p
3 }. Alice computes ga (mod p)

and sends it to Bob in the clear (Eve can see it).

4. Bob picks rand b ∈ {p3 , . . . ,
2p
3 }. Bob computes gb (mod p)

and sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?

The Diffie-Hellman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

g ∈ {p3 , . . . ,
2p
3 }.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks rand a ∈ {p3 , . . . ,
2p
3 }. Alice computes ga (mod p)

and sends it to Bob in the clear (Eve can see it).

4. Bob picks rand b ∈ {p3 , . . . ,
2p
3 }. Bob computes gb (mod p)

and sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.

Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?

The Diffie-Hellman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

g ∈ {p3 , . . . ,
2p
3 }.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks rand a ∈ {p3 , . . . ,
2p
3 }. Alice computes ga (mod p)

and sends it to Bob in the clear (Eve can see it).

4. Bob picks rand b ∈ {p3 , . . . ,
2p
3 }. Bob computes gb (mod p)

and sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!

Question: Can Eve find out s?

The Diffie-Hellman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

g ∈ {p3 , . . . ,
2p
3 }.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks rand a ∈ {p3 , . . . ,
2p
3 }. Alice computes ga (mod p)

and sends it to Bob in the clear (Eve can see it).

4. Bob picks rand b ∈ {p3 , . . . ,
2p
3 }. Bob computes gb (mod p)

and sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?

Have Students DO The DH Key Exchange

Pick out two students who I will call Alice and Bob.

1. ALICE: Pick safe prime 256 ≤ p ≤ 511 (so length 9).

2. ALICE: Find a generator for Z∗
p that is not too big or small.

3. ALICE: Yell out (p, g).

4. ALICE: Pick a rand a ∈ Z∗
p that is not too big or small. Write

it down for later verification.

5. ALICE: Compute ga (mod p). YELL IT OUT.

6. BOB: Pick a rand b ∈ Z∗
p that is not too big or small. Write

it down for later verification.

7. BOB: Compute gb (mod p). YELL IT OUT.

8. ALICE: Compute (gb)a (mod p).

9. BOB: Compute (ga)b (mod p).

10. At the count of 3 both yell out your number at the same time.

Have Students DO The DH Key Exchange

Pick out two students who I will call Alice and Bob.

1. ALICE: Pick safe prime 256 ≤ p ≤ 511 (so length 9).

2. ALICE: Find a generator for Z∗
p that is not too big or small.

3. ALICE: Yell out (p, g).

4. ALICE: Pick a rand a ∈ Z∗
p that is not too big or small. Write

it down for later verification.

5. ALICE: Compute ga (mod p). YELL IT OUT.

6. BOB: Pick a rand b ∈ Z∗
p that is not too big or small. Write

it down for later verification.

7. BOB: Compute gb (mod p). YELL IT OUT.

8. ALICE: Compute (gb)a (mod p).

9. BOB: Compute (ga)b (mod p).

10. At the count of 3 both yell out your number at the same time.

Have Students DO The DH Key Exchange

Pick out two students who I will call Alice and Bob.

1. ALICE: Pick safe prime 256 ≤ p ≤ 511 (so length 9).

2. ALICE: Find a generator for Z∗
p that is not too big or small.

3. ALICE: Yell out (p, g).

4. ALICE: Pick a rand a ∈ Z∗
p that is not too big or small. Write

it down for later verification.

5. ALICE: Compute ga (mod p). YELL IT OUT.

6. BOB: Pick a rand b ∈ Z∗
p that is not too big or small. Write

it down for later verification.

7. BOB: Compute gb (mod p). YELL IT OUT.

8. ALICE: Compute (gb)a (mod p).

9. BOB: Compute (ga)b (mod p).

10. At the count of 3 both yell out your number at the same time.

Have Students DO The DH Key Exchange

Pick out two students who I will call Alice and Bob.

1. ALICE: Pick safe prime 256 ≤ p ≤ 511 (so length 9).

2. ALICE: Find a generator for Z∗
p that is not too big or small.

3. ALICE: Yell out (p, g).

4. ALICE: Pick a rand a ∈ Z∗
p that is not too big or small. Write

it down for later verification.

5. ALICE: Compute ga (mod p). YELL IT OUT.

6. BOB: Pick a rand b ∈ Z∗
p that is not too big or small. Write

it down for later verification.

7. BOB: Compute gb (mod p). YELL IT OUT.

8. ALICE: Compute (gb)a (mod p).

9. BOB: Compute (ga)b (mod p).

10. At the count of 3 both yell out your number at the same time.

Have Students DO The DH Key Exchange

Pick out two students who I will call Alice and Bob.

1. ALICE: Pick safe prime 256 ≤ p ≤ 511 (so length 9).

2. ALICE: Find a generator for Z∗
p that is not too big or small.

3. ALICE: Yell out (p, g).

4. ALICE: Pick a rand a ∈ Z∗
p that is not too big or small. Write

it down for later verification.

5. ALICE: Compute ga (mod p). YELL IT OUT.

6. BOB: Pick a rand b ∈ Z∗
p that is not too big or small. Write

it down for later verification.

7. BOB: Compute gb (mod p). YELL IT OUT.

8. ALICE: Compute (gb)a (mod p).

9. BOB: Compute (ga)b (mod p).

10. At the count of 3 both yell out your number at the same time.

Have Students DO The DH Key Exchange

Pick out two students who I will call Alice and Bob.

1. ALICE: Pick safe prime 256 ≤ p ≤ 511 (so length 9).

2. ALICE: Find a generator for Z∗
p that is not too big or small.

3. ALICE: Yell out (p, g).

4. ALICE: Pick a rand a ∈ Z∗
p that is not too big or small. Write

it down for later verification.

5. ALICE: Compute ga (mod p). YELL IT OUT.

6. BOB: Pick a rand b ∈ Z∗
p that is not too big or small. Write

it down for later verification.

7. BOB: Compute gb (mod p). YELL IT OUT.

8. ALICE: Compute (gb)a (mod p).

9. BOB: Compute (ga)b (mod p).

10. At the count of 3 both yell out your number at the same time.

Have Students DO The DH Key Exchange

Pick out two students who I will call Alice and Bob.

1. ALICE: Pick safe prime 256 ≤ p ≤ 511 (so length 9).

2. ALICE: Find a generator for Z∗
p that is not too big or small.

3. ALICE: Yell out (p, g).

4. ALICE: Pick a rand a ∈ Z∗
p that is not too big or small. Write

it down for later verification.

5. ALICE: Compute ga (mod p). YELL IT OUT.

6. BOB: Pick a rand b ∈ Z∗
p that is not too big or small. Write

it down for later verification.

7. BOB: Compute gb (mod p). YELL IT OUT.

8. ALICE: Compute (gb)a (mod p).

9. BOB: Compute (ga)b (mod p).

10. At the count of 3 both yell out your number at the same time.

Have Students DO The DH Key Exchange

Pick out two students who I will call Alice and Bob.

1. ALICE: Pick safe prime 256 ≤ p ≤ 511 (so length 9).

2. ALICE: Find a generator for Z∗
p that is not too big or small.

3. ALICE: Yell out (p, g).

4. ALICE: Pick a rand a ∈ Z∗
p that is not too big or small. Write

it down for later verification.

5. ALICE: Compute ga (mod p). YELL IT OUT.

6. BOB: Pick a rand b ∈ Z∗
p that is not too big or small. Write

it down for later verification.

7. BOB: Compute gb (mod p). YELL IT OUT.

8. ALICE: Compute (gb)a (mod p).

9. BOB: Compute (ga)b (mod p).

10. At the count of 3 both yell out your number at the same time.

Have Students DO The DH Key Exchange

Pick out two students who I will call Alice and Bob.

1. ALICE: Pick safe prime 256 ≤ p ≤ 511 (so length 9).

2. ALICE: Find a generator for Z∗
p that is not too big or small.

3. ALICE: Yell out (p, g).

4. ALICE: Pick a rand a ∈ Z∗
p that is not too big or small. Write

it down for later verification.

5. ALICE: Compute ga (mod p). YELL IT OUT.

6. BOB: Pick a rand b ∈ Z∗
p that is not too big or small. Write

it down for later verification.

7. BOB: Compute gb (mod p). YELL IT OUT.

8. ALICE: Compute (gb)a (mod p).

9. BOB: Compute (ga)b (mod p).

10. At the count of 3 both yell out your number at the same time.

Have Students DO The DH Key Exchange

Pick out two students who I will call Alice and Bob.

1. ALICE: Pick safe prime 256 ≤ p ≤ 511 (so length 9).

2. ALICE: Find a generator for Z∗
p that is not too big or small.

3. ALICE: Yell out (p, g).

4. ALICE: Pick a rand a ∈ Z∗
p that is not too big or small. Write

it down for later verification.

5. ALICE: Compute ga (mod p). YELL IT OUT.

6. BOB: Pick a rand b ∈ Z∗
p that is not too big or small. Write

it down for later verification.

7. BOB: Compute gb (mod p). YELL IT OUT.

8. ALICE: Compute (gb)a (mod p).

9. BOB: Compute (ga)b (mod p).

10. At the count of 3 both yell out your number at the same time.

Have Students DO The DH Key Exchange

Pick out two students who I will call Alice and Bob.

1. ALICE: Pick safe prime 256 ≤ p ≤ 511 (so length 9).

2. ALICE: Find a generator for Z∗
p that is not too big or small.

3. ALICE: Yell out (p, g).

4. ALICE: Pick a rand a ∈ Z∗
p that is not too big or small. Write

it down for later verification.

5. ALICE: Compute ga (mod p). YELL IT OUT.

6. BOB: Pick a rand b ∈ Z∗
p that is not too big or small. Write

it down for later verification.

7. BOB: Compute gb (mod p). YELL IT OUT.

8. ALICE: Compute (gb)a (mod p).

9. BOB: Compute (ga)b (mod p).

10. At the count of 3 both yell out your number at the same time.

Have Students DO The DH Key Exchange

Pick out two students who I will call Alice and Bob.

1. ALICE: Pick safe prime 256 ≤ p ≤ 511 (so length 9).

2. ALICE: Find a generator for Z∗
p that is not too big or small.

3. ALICE: Yell out (p, g).

4. ALICE: Pick a rand a ∈ Z∗
p that is not too big or small. Write

it down for later verification.

5. ALICE: Compute ga (mod p). YELL IT OUT.

6. BOB: Pick a rand b ∈ Z∗
p that is not too big or small. Write

it down for later verification.

7. BOB: Compute gb (mod p). YELL IT OUT.

8. ALICE: Compute (gb)a (mod p).

9. BOB: Compute (ga)b (mod p).

10. At the count of 3 both yell out your number at the same time.

What Do We Really Know about Diffie-Hellman?

If Eve can compute Discrete Log quickly then she can crack DH:

1. Eve sees ga, gb.

2. Eve computes Discrete Log to find a, b.

3. Eve computes gab (mod p).

Question: If Eve can crack DH then Eve can compute Discrete
Log. VOTE: Y, N, UNKNOWN TO SCIENCE.

Unknown to Science
Question: If Eve can crack DH then Eve can compute ???.

What Do We Really Know about Diffie-Hellman?

If Eve can compute Discrete Log quickly then she can crack DH:

1. Eve sees ga, gb.

2. Eve computes Discrete Log to find a, b.

3. Eve computes gab (mod p).

Question: If Eve can crack DH then Eve can compute Discrete
Log. VOTE: Y, N, UNKNOWN TO SCIENCE.

Unknown to Science

Question: If Eve can crack DH then Eve can compute ???.

What Do We Really Know about Diffie-Hellman?

If Eve can compute Discrete Log quickly then she can crack DH:

1. Eve sees ga, gb.

2. Eve computes Discrete Log to find a, b.

3. Eve computes gab (mod p).

Question: If Eve can crack DH then Eve can compute Discrete
Log. VOTE: Y, N, UNKNOWN TO SCIENCE.

Unknown to Science
Question: If Eve can crack DH then Eve can compute ???.

Hardness Assumption

Definition
Let DHF be the following function:
Input: p, g , ga, gb (note that a, b are not the input)

Outputs: gab.

Obvious Theorem: If Alice can crack Diffie-Hellman quickly then
Alice can compute DHF quickly.

Hardness assumption: DHF is hard to compute.

Hardness Assumption

Definition
Let DHF be the following function:
Input: p, g , ga, gb (note that a, b are not the input)

Outputs: gab.

Obvious Theorem: If Alice can crack Diffie-Hellman quickly then
Alice can compute DHF quickly.
Hardness assumption: DHF is hard to compute.

Possible Futures

1. DL found to be easy, so DH is cracked

2. DHF found to be easy, so DH is cracked

3. Slightly better but still exp algorithms for DHF are found so
Alice and Bob need to up their game, but DH still secure.
(JNIP this is the most likely.

JNIP is IMHO shifted by 1.
IMHO is In My Humble Opinion.)

4. DHF proven to be hard. KOJQ unlikely in your lifetime.

Possible Futures

1. DL found to be easy, so DH is cracked

2. DHF found to be easy, so DH is cracked

3. Slightly better but still exp algorithms for DHF are found so
Alice and Bob need to up their game, but DH still secure.
(JNIP this is the most likely. JNIP is IMHO shifted by 1.

IMHO is In My Humble Opinion.)

4. DHF proven to be hard. KOJQ unlikely in your lifetime.

Possible Futures

1. DL found to be easy, so DH is cracked

2. DHF found to be easy, so DH is cracked

3. Slightly better but still exp algorithms for DHF are found so
Alice and Bob need to up their game, but DH still secure.
(JNIP this is the most likely. JNIP is IMHO shifted by 1.
IMHO is In My Humble Opinion.)

4. DHF proven to be hard. KOJQ unlikely in your lifetime.

Diffie-Hellman over Other Domains

Can do Diffie-Hellman with other structures that have these
properties, that is, any Cyclic Group. In some cases this may be an
advantage in that Eve’s task is harder and Alice and Bob’s task is
not much harder.

Example: Elliptic Curve Diffie-Hellman (actually used).
Example: Braid Diffie-Hellman (not actually used).

Variants of Standard
Diffie-Helman

Recall the Diffie-Helman Key Exchange

1. Alice: rand (p, g), p of length L, g gen for Zp. Arith mod p.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice: rand a ∈ {p3 , . . . ,
2p
3 }, sends ga.

4. Bob: rand b ∈ {p3 , . . . ,
2p
3 }, sends gb.

5. Alice:(gb)a = gab. Bob:(ga)b = gab. gab is shared secret.

Why does Alice: rand a ∈ {p3 , . . . ,
2p
3 }.

Why not a ∈ {1, . . . , p − 1}? Discuss

If g is small and a is small then Eve can determine a from ga.
But: Eve can compute g1, . . . , gL and if she sees any of those she
knows.

Recall the Diffie-Helman Key Exchange

1. Alice: rand (p, g), p of length L, g gen for Zp. Arith mod p.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice: rand a ∈ {p3 , . . . ,
2p
3 }, sends ga.

4. Bob: rand b ∈ {p3 , . . . ,
2p
3 }, sends gb.

5. Alice:(gb)a = gab. Bob:(ga)b = gab. gab is shared secret.

Why does Alice: rand a ∈ {p3 , . . . ,
2p
3 }.

Why not a ∈ {1, . . . , p − 1}? Discuss
If g is small and a is small then Eve can determine a from ga.

But: Eve can compute g1, . . . , gL and if she sees any of those she
knows.

Recall the Diffie-Helman Key Exchange

1. Alice: rand (p, g), p of length L, g gen for Zp. Arith mod p.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice: rand a ∈ {p3 , . . . ,
2p
3 }, sends ga.

4. Bob: rand b ∈ {p3 , . . . ,
2p
3 }, sends gb.

5. Alice:(gb)a = gab. Bob:(ga)b = gab. gab is shared secret.

Why does Alice: rand a ∈ {p3 , . . . ,
2p
3 }.

Why not a ∈ {1, . . . , p − 1}? Discuss
If g is small and a is small then Eve can determine a from ga.
But: Eve can compute g1, . . . , gL and if she sees any of those she
knows.

Example

p = 1013
g = 5
a = 6
Eve computes ahead of time:
50 = 1
51 = 5
52 = 25
53 = 125
54 = 625
55 = 86
56 = 430
If Eve sees Alice 430 then she knows a = 6
Nothing special about a being small.

Example

p = 1013
g = 40
a ∈ {p3 , . . . ,

2p
3 } = {337, . . . , 674}

Note: We assume that Eve KNOWS these endpoints.
Eve computes
40337 ≡ 919
40338 ≡ 292
40339 ≡ 537
40340 ≡ 207
40341 ≡ 176
40342 ≡ 962
40343 ≡ 999
If Eve sees Alice send any of 919, 292, 537, 207, 176, 962, 999 then
she knows a
g was big, a was big. Didn’t help!

Of course, Eve has to get VERY LUCKY.

Example

p = 1013
g = 40
a ∈ {p3 , . . . ,

2p
3 } = {337, . . . , 674}

Note: We assume that Eve KNOWS these endpoints.
Eve computes
40337 ≡ 919
40338 ≡ 292
40339 ≡ 537
40340 ≡ 207
40341 ≡ 176
40342 ≡ 962
40343 ≡ 999
If Eve sees Alice send any of 919, 292, 537, 207, 176, 962, 999 then
she knows a
g was big, a was big. Didn’t help!
Of course, Eve has to get VERY LUCKY.

The Real Diffie-Helman

1. Alice finds a (p, g), p of length L, g gen for Zp. Arith mod p.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice: rand a ∈ {1, . . . , p − 1}, sends ga.

4. Bob: rand b ∈ {1, . . . , p − 1}, sends gb.

5. Alice:(gb)a = gab. Bob:(ga)b = gab. gab is shared secret.

Eve comp g1, . . . , gL. If a ∈ {1, . . . , L} Eve knows a.
Debatable Not really a problem:
Either

1. If L is small then Eve would have to get LUCKY to find a.

2. If L is large then Eve is doing LOTS OF computation.

Upshot: a, g small did not make attack much easier for Eve.

Is There Harm In Restricting a, b?

Does requiring a, b ∈ {p3 , . . . ,
2p
3 } help?

I Yes: Some obvious easy cases of DL are avoided.

I No: Eve can pre-compute any small number of cases anyway.

Does requiring a, b ∈ {p3 , . . . ,
2p
3 } hurt?

Key space is smaller, making it easier for Eve.
A matter of opinion. I think it helps. Others disagree.

Is There Harm In Restricting a, b?

Does requiring a, b ∈ {p3 , . . . ,
2p
3 } help?

I Yes: Some obvious easy cases of DL are avoided.

I No: Eve can pre-compute any small number of cases anyway.

Does requiring a, b ∈ {p3 , . . . ,
2p
3 } hurt?

Key space is smaller, making it easier for Eve.
A matter of opinion. I think it helps. Others disagree.

Is There Harm In Restricting a, b?

Does requiring a, b ∈ {p3 , . . . ,
2p
3 } help?

I Yes: Some obvious easy cases of DL are avoided.

I No: Eve can pre-compute any small number of cases anyway.

Does requiring a, b ∈ {p3 , . . . ,
2p
3 } hurt?

Key space is smaller, making it easier for Eve.
A matter of opinion. I think it helps. Others disagree.

Is There Harm In Restricting a, b?

Does requiring a, b ∈ {p3 , . . . ,
2p
3 } help?

I Yes: Some obvious easy cases of DL are avoided.

I No: Eve can pre-compute any small number of cases anyway.

Does requiring a, b ∈ {p3 , . . . ,
2p
3 } hurt?

Key space is smaller, making it easier for Eve.

A matter of opinion. I think it helps. Others disagree.

Is There Harm In Restricting a, b?

Does requiring a, b ∈ {p3 , . . . ,
2p
3 } help?

I Yes: Some obvious easy cases of DL are avoided.

I No: Eve can pre-compute any small number of cases anyway.

Does requiring a, b ∈ {p3 , . . . ,
2p
3 } hurt?

Key space is smaller, making it easier for Eve.
A matter of opinion. I think it helps. Others disagree.

How Important Is Public
Key?

Used Everywhere

Public key is mostly used for giving out keys to be used for
classical systems.
This makes the following work:

1. Amazon – Credit Cards

2. Ebay – Paypal

3. Facebook privacy – just kidding, Facebook has no privacy.

4. Every financial institution in the world.

5. Military – though less is known about this.

Used Everywhere

Public key is mostly used for giving out keys to be used for
classical systems.
This makes the following work:

1. Amazon – Credit Cards

2. Ebay – Paypal

3. Facebook privacy – just kidding, Facebook has no privacy.

4. Every financial institution in the world.

5. Military – though less is known about this.

Used Everywhere

Public key is mostly used for giving out keys to be used for
classical systems.
This makes the following work:

1. Amazon – Credit Cards

2. Ebay – Paypal

3. Facebook privacy – just kidding, Facebook has no privacy.

4. Every financial institution in the world.

5. Military – though less is known about this.

Used Everywhere

Public key is mostly used for giving out keys to be used for
classical systems.
This makes the following work:

1. Amazon – Credit Cards

2. Ebay – Paypal

3. Facebook privacy –

just kidding, Facebook has no privacy.

4. Every financial institution in the world.

5. Military – though less is known about this.

Used Everywhere

Public key is mostly used for giving out keys to be used for
classical systems.
This makes the following work:

1. Amazon – Credit Cards

2. Ebay – Paypal

3. Facebook privacy – just kidding, Facebook has no privacy.

4. Every financial institution in the world.

5. Military – though less is known about this.

Used Everywhere

Public key is mostly used for giving out keys to be used for
classical systems.
This makes the following work:

1. Amazon – Credit Cards

2. Ebay – Paypal

3. Facebook privacy – just kidding, Facebook has no privacy.

4. Every financial institution in the world.

5. Military – though less is known about this.

Used Everywhere

Public key is mostly used for giving out keys to be used for
classical systems.
This makes the following work:

1. Amazon – Credit Cards

2. Ebay – Paypal

3. Facebook privacy – just kidding, Facebook has no privacy.

4. Every financial institution in the world.

5. Military – though less is known about this.

Turing Awards

The Turing Award is The Nobel Prize of Computer Science.

Given out every year.

We note when someone mentioned in Public Key Crypto won.

1. 1976- Michael Rabin

2. 1995- Manuel Blum

3. 2002- Ron Rivest, Shamir, Len Adelman

4. 2012- Silvio Micali, Shaffi Goldwasser

5. 2015- Whitfield Diffie, Martin Helman

Future: Oded Regev? Jon Katz?

