Public Key Crypto: Math Needed and DH

September 4, 2019
Private-Key Ciphers

What do the following all have in common?
1. Shift Cipher
2. Affine Cipher
3. Vig Cipher
4. General Sub
5. General 2-char sub
6. Matrix Cipher
7. Playfair Cipher
8. Rail Cipher
9. One-Time Pad
Private-Key Ciphers

What do the following all have in common?
1. Shift Cipher
2. Affine Cipher
3. Vig Cipher
4. General Sub
5. General 2-char sub
6. Matrix Cipher
7. Playfair Cipher
8. Rail Cipher
9. One-Time Pad

Alice and Bob need to meet! (Hence Private Key.)
Private-Key Ciphers

What do the following all have in common?

1. Shift Cipher
2. Affine Cipher
3. Vig Cipher
4. General Sub
5. General 2-char sub
6. Matrix Cipher
7. Playfair Cipher
8. Rail Cipher
9. One-Time Pad

Alice and Bob need to **meet!** (Hence Private Key.)
Can Alice and Bob to establish a key without meeting?
Private-Key Ciphers

What do the following all have in common?

1. Shift Cipher
2. Affine Cipher
3. Vig Cipher
4. General Sub
5. General 2-char sub
6. Matrix Cipher
7. Playfair Cipher
8. Rail Cipher
9. One-Time Pad

Alice and Bob need to meet! (Hence *Private Key.*)

Can Alice and Bob to establish a key without meeting?

Yes! And that is the key to public-key cryptography.
Private-Key Ciphers

What do the following all have in common?

1. Shift Cipher
2. Affine Cipher
3. Vig Cipher
4. General Sub
5. General 2-char sub
6. Matrix Cipher
7. Playfair Cipher
8. Rail Cipher
9. One-Time Pad

Alice and Bob need to meet! (Hence Private Key.)

Can Alice and Bob to establish a key without meeting?
Yes! And that is the key to public-key cryptography.

Aim: We present three such schemes.
General Philosophy

A good crypto system is such that:

1. The computational task to encrypt and decrypt is easy.
2. The computational task to crack is hard.

Caveats:

1. Hard to achieve information-theoretic hardness (1-time pad).
3. Can use hardness assumptions (e.g., factoring is hard)
What is Easy? What is Hard?

How hard is a problem based on the length of the input

Examples

1. SAT on a formula with n variables seems to require $2^{\Omega(n)}$ steps.
2. Polynomial vs Exp time is our notion of easy vs hard.
3. Factoring n can be done in $O(\sqrt{n})$ time: Discuss. Easy!
What is Easy? What is Hard?

How hard is a problem based on the length of the input?

Examples

1. SAT on a formula with n variables seems to require $2^{\Omega(n)}$ steps.

2. Polynomial vs Exp time is our notion of easy vs hard.

3. Factoring n can be done in $O(\sqrt{n})$ time: Discuss. Easy!

 NO!!: n is of length $\lg n + O(1)$ (henceforth just $\lg n$).

 $\sqrt{n} = 2^{(0.5)\lg n}$. Exponential. Slightly better algs known.

Upshot: For numeric problems length is $\lg n$. For Encryption need

 ▶ Alice and Bob can Enc and Enc in time $\leq (\log n)^{O(1)}$.

 ▶ Eve needs time $\geq c^{O(\log n)}$ to crack.

What We Count: We will count arithmetic operations as taking 1 time step. This could be an issue with enormous numbers. Nor our problem.
Math Needed for Both Diffie-Helman and RSA

September 4, 2019
Notation

Let p be a prime.

1. \mathbb{Z}_p is the numbers $\{0, \ldots, p - 1\}$ with modular addition and multiplication.

2. \mathbb{Z}^*_p is the numbers $\{1, \ldots, p - 1\}$ with modular multiplication.
Exponentiation mod p

Problem: Given a, n, p find a^n (mod p)

First Attempt

1. $x_0 = a$
2. For $i = 1$ to n, $x_i = ax_{i-1}$.
3. Let $x = x_n$ (mod p).
4. Output x.

Is this a good idea?
Exponentiation mod p

Problem: Given a, n, p find $a^n \pmod{p}$

First Attempt

1. $x_0 = a$
2. For $i = 1$ to n, $x_i = ax_{i-1}$.
3. Let $x = x_n \pmod{p}$.
4. Output x.

Is this a good idea? Its called First Attempt, so no.
Exponentiation mod p

Problem: Given a, n, p find $a^n \pmod{p}$

First Attempt

1. $x_0 = a$
2. For $i = 1$ to n, $x_i = ax_{i-1}$.
3. Let $x = x_n \pmod{p}$.
4. Output x.

Is this a good idea? Its called First Attempt, so no. Takes n steps and also x gets really large.
Exponentiation mod p

Problem: Given a, n, p find $a^n \pmod{p}$

First Attempt

1. $x_0 = a$
2. For $i = 1$ to n, $x_i = ax_{i-1}$.
3. Let $x = x_n \pmod{p}$.
4. Output x.

Is this a good idea? Its called First Attempt, so no.

Takes n steps and also x gets really large.

Can mod p every step so x not large. But still takes n steps.
Example of a Good Algorithm

Want $3^{64} \pmod{101}$. All arithmetic is mod 101.

$x_0 = 3$

$x_1 = x_0^2 \equiv 9$. This is 3^2.

$x_2 = x_1^2 \equiv 9^2 \equiv 81$. This is 3^4.

$x_3 = x_2^2 \equiv 81^2 \equiv 97$. This is 3^8.

$x_4 = x_3^2 \equiv 97^2 \equiv 16$. This is 3^{16}.

$x_5 = x_4^2 \equiv 16^2 \equiv 54$. This is 3^{32}.

$x_6 = x_5^2 \equiv 54^2 \equiv 88$. This is 3^{64}.

So in 6 steps we got the answer!
Exponentiation mod p

Example of a Good Algorithm

Want 3^{64} (mod 101). All arithmetic is mod 101.

$x_0 = 3$

$x_1 = x_0^2 ≡ 9$. This is 3^2.

$x_2 = x_1^2 ≡ 9^2 ≡ 81$. This is 3^4.

$x_3 = x_2^2 ≡ 81^2 ≡ 97$. This is 3^8.

$x_4 = x_3^2 ≡ 97^2 ≡ 16$. This is 3^{16}.

$x_5 = x_4^2 ≡ 16^2 ≡ 54$. This is 3^{32}.

$x_6 = x_5^2 ≡ 54^2 ≡ 88$. This is 3^{64}.

So in 6 steps we got the answer!

Discuss how many steps this take for $a^n \ (p)$.

Discuss how we can generalize to when n is not a power of 2.
Exponentiation mod p

Example of a Good Algorithm

Want 3^{64} (mod 101). All arithmetic is mod 101.

$x_0 = 3$

$x_1 = x_0^2 \equiv 9$. This is 3^2.

$x_2 = x_1^2 \equiv 9^2 \equiv 81$. This is 3^4.

$x_3 = x_2^2 \equiv 81^2 \equiv 97$. This is 3^8.

$x_4 = x_3^2 \equiv 97^2 \equiv 16$. This is 3^{16}.

$x_5 = x_4^2 \equiv 16^2 \equiv 54$. This is 3^{32}.

$x_6 = x_5^2 \equiv 54^2 \equiv 88$. This is 3^{64}.

So in 6 steps we got the answer!

Discuss how many steps this take for $a^n \pmod{p}$. Answer: $\sim \lg n$.
Exponentiation mod p

Example of a Good Algorithm
Want $3^{64} \pmod{101}$. All arithmetic is mod 101.

$x_0 = 3$
$x_1 = x_0^2 \equiv 9$. This is 3^2.
$x_2 = x_1^2 \equiv 9^2 \equiv 81$. This is 3^4.
$x_3 = x_2^2 \equiv 81^2 \equiv 97$. This is 3^8.
$x_4 = x_3^2 \equiv 97^2 \equiv 16$. This is 3^{16}.
$x_5 = x_4^2 \equiv 16^2 \equiv 54$. This is 3^{32}.
$x_6 = x_5^2 \equiv 54^2 \equiv 88$. This is 3^{64}.

So in 6 steps we got the answer!

Discuss how many steps this take for $a^n \ (p)$. Answer: $\sim \lg n$.
Discuss how we can generalize to when n is not a power of 2.
Repeated Squaring Algorithm

All arithmetic is mod p.

1. Input (a, n, p)
2. Convert n to base 2: $n = 2^{n_L} + \cdots + 2^{n_0}$.
3. $x_0 = a$
4. For $i = 1$ to n_L, $x_i = x_{i-1}^2$.
5. (Now have $a^{2^{n_0}}, \ldots, a^{2^{n_L}}$) Answer is $a^{2^{n_0}} \times \cdots \times a^{2^{n_L}}$

Number of operations: $O(\log n)$.
Diffie-Helman Key Exchange

September 4, 2019
Generators mod p

Let's take powers of 3 mod 7. All arithmetic is mod 7.

$3^0 \equiv 1$
$3^1 \equiv 3$
$3^2 \equiv 3 \times 3^1 \equiv 9 \equiv 2$
$3^3 \equiv 3 \times 3^2 \equiv 3 \times 2 \equiv 6$
$3^4 \equiv 3 \times 3^3 \equiv 3 \times 6 \equiv 18 \equiv 4$
$3^5 \equiv 3 \times 3^4 \equiv 3 \times 4 \equiv 12 \equiv 5$
$3^6 \equiv 3 \times 3^5 \equiv 3 \times 5 \equiv 15 \equiv 1$

$\{3^0, 3^1, 3^2, 3^3, 3^4, 3^5, 3^6\} = \{1, 2, 3, 4, 5, 6\}$ Not in order
Generators mod p

Lets take powers of 3 mod 7. All arithmetic is mod 7.

$3^0 \equiv 1$

$3^1 \equiv 3$

$3^2 \equiv 3 \times 3^1 \equiv 9 \equiv 2$

$3^3 \equiv 3 \times 3^2 \equiv 3 \times 2 \equiv 6$

$3^4 \equiv 3 \times 3^3 \equiv 3 \times 6 \equiv 18 \equiv 4$

$3^5 \equiv 3 \times 3^4 \equiv 3 \times 4 \equiv 12 \equiv 5$

$3^6 \equiv 3 \times 3^5 \equiv 3 \times 5 \equiv 15 \equiv 1$

$\{3^0, 3^1, 3^2, 3^3, 3^4, 3^5, 3^6\} = \{1, 2, 3, 4, 5, 6\}$ Not in order

3 is a generator for \mathbb{Z}_7.

Generators mod p

Let's take powers of 3 mod 7. All arithmetic is mod 7.

- $3^0 \equiv 1$
- $3^1 \equiv 3$
- $3^2 \equiv 3 \times 3^1 \equiv 9 \equiv 2$
- $3^3 \equiv 3 \times 3^2 \equiv 3 \times 2 \equiv 6$
- $3^4 \equiv 3 \times 3^3 \equiv 3 \times 6 \equiv 18 \equiv 4$
- $3^5 \equiv 3 \times 3^4 \equiv 3 \times 4 \equiv 12 \equiv 5$
- $3^6 \equiv 3 \times 3^5 \equiv 3 \times 5 \equiv 15 \equiv 1$

\[
\{3^0, 3^1, 3^2, 3^3, 3^4, 3^5, 3^6\} = \{1, 2, 3, 4, 5, 6\} \text{ Not in order}
\]

3 is a generator for \mathbb{Z}_7.

Definition: If p is a prime and $\{g^0, g^1, \ldots, g^{p-1}\} = \{1, \ldots, p - 1\}$
then g is a generator for \mathbb{Z}_p.

Fact: 3 is a generator mod 101. All arithmetic is mod 101.
Discuss the following with your neighbor:

1. Find x such that $3^x \equiv 81$.
2. Find x such that $3^x \equiv 92$.
3. Find x such that $3^x \equiv 93$.

The second and third problem look hard. Are they? VOTE: Both hard, both easy, one of each, unknown to science.
Fact: 3 is a generator mod 101. All arithmetic is mod 101.
Discuss the following with your neighbor:

1. Find x such that $3^x \equiv 81$. $x = 4$ obv works.
Fact: 3 is a generator mod 101. All arithmetic is mod 101.

Discuss the following with your neighbor:

1. Find x such that $3^x \equiv 81$. $x = 4$ obv works.
2. Find x such that $3^x \equiv 92$

The second and third problem look hard. Are they? VOTE: Both hard, both easy, one of each, unknown to science.
Discrete Log-Example

Fact: 3 is a generator mod 101. All arithmetic is mod 101.
Discuss the following with your neighbor:

1. Find x such that $3^x \equiv 81$. $x = 4$ obv works.
2. Find x such that $3^x \equiv 92$ Try computing $3^0, 3^1, \ldots$, until you get 92. Might take ~ 100 steps.
Fact: 3 is a generator mod 101. All arithmetic is mod 101.
Discuss the following with your neighbor:

1. Find x such that $3^x \equiv 81$. $x = 4$ obv works.

2. Find x such that $3^x \equiv 92$ Try computing $3^0, 3^1, \ldots$, until you get 92. Might take ~ 100 steps. Shortcut?

The second and third problem look hard. Are they? VOTE: Both hard, both easy, one of each, unknown to science.
Fact: 3 is a generator mod 101. All arithmetic is mod 101.

Discuss the following with your neighbor:

1. Find \(x \) such that \(3^x \equiv 81 \). \(x = 4 \) obv works.
2. Find \(x \) such that \(3^x \equiv 92 \). Try computing \(3^0, 3^1, \ldots \), until you get 92. Might take \(\sim 100 \) steps. Shortcut?
3. Find \(x \) such that \(3^x \equiv 93 \).
Discrete Log-Example

Fact: 3 is a generator mod 101. All arithmetic is mod 101.

Discuss the following with your neighbor:

1. Find \(x \) such that \(3^x \equiv 81 \). \(x = 4 \) obv works.

2. Find \(x \) such that \(3^x \equiv 92 \). Try computing \(3^0, 3^1, \ldots \), until you get 92. Might take \(\sim 100 \) steps. Shortcut?

3. Find \(x \) such that \(3^x \equiv 93 \). Try computing \(3^0, 3^1, \ldots \), until you get 92. Might take \(\sim 100 \) steps.
Fact: 3 is a generator mod 101. All arithmetic is mod 101.

Discuss the following with your neighbor:

1. Find \(x\) such that \(3^x \equiv 81\). \(x = 4\) obv works.

2. Find \(x\) such that \(3^x \equiv 92\) Try computing \(3^0, 3^1, \ldots\), until you get 92. Might take \(\sim 100\) steps. Shortcut?

3. Find \(x\) such that \(3^x \equiv 93\) Try computing \(3^0, 3^1, \ldots\), until you get 92. Might take \(\sim 100\) steps. Shortcut?

The second and third problem look hard. Are they? VOTE: Both hard, both easy, one of each, unknown to science.
Fact: 3 is a generator mod 101. All arithmetic is mod 101.
Discuss the following with your neighbor:

1. Find x such that $3^x \equiv 81$. $x = 4$ obv works.

2. Find x such that $3^x \equiv 92$ Try computing $3^0, 3^1, \ldots$, until you get 92. Might take ~ 100 steps. Shortcut?

3. Find x such that $3^x \equiv 93$ Try computing $3^0, 3^1, \ldots$, until you get 92. Might take ~ 100 steps. Shortcut?

The second and third problem look hard. Are they? VOTE: Both hard, both easy, one of each, unknown to science.

$3^x \equiv 92$ easy. $3^x \equiv 93$ Not known how hard.
Discrete Log-Example: $3^2 \equiv 92 \pmod{101}$

Fact: 3 is a generator mod 101. All arithmetic is mod 101.
Find x such that $3^x \equiv 92$. Easy!

1. $92 \equiv 101 - 9 \equiv (-1)(9) \equiv (-1)3^2$.
2. $3^{50} \equiv -1$ (WHAT! Really?)
3. $92 \equiv 3^{50} \times 3^2 \equiv 3^{52}$. So $x = 52$ works.

Generalize:

1. If g is a generator of \mathbb{Z}_p then $g^{(p-1)/2} \equiv p - 1 \equiv -1$.
2. So finding x such that $g^x \equiv p - g^a \equiv -g^a$ is easy:

 $x = \frac{p-1}{2} + a$:

 $g^{\frac{p-1}{2}+a} = g^{\frac{p-1}{2}} g^a \equiv -g^a$.
Discrete Log-Example: \(3^2 \equiv 93 \pmod{101}\)

Fact: 3 is a generator mod 101. All arithmetic is mod 101. Is there a trick for \(g^x \equiv 93 \pmod{101}\)? Not that I know of.

What is known about complexity of discrete log?
Given \(g, a, p\) find \(x\) such that \(g^x \equiv a \pmod{p}\).

1. Naive algorithm is \(O(p)\) time.
2. There is a \(O(\sqrt{p})\) algorithm that also take space \(O(\sqrt{p})\).
3. There are \(O(\sqrt{p})\) algorithms that take less space.
5. DL is in Quantum-P.
My Opinion

How hard is DL and also factoring?

1. **Fact:** DL and Factoring are in QuantumP.
2. **Opinion:** Quantum computers that can do DL or Factoring faster than classical computers will not happen in my lifetime.

3. **Fact:** Classical algorithms that are better than the naive approach and use lots of hard number theory, some developed just for the purpose, have been discovered and implemented. Some are amenable to parallelism.

4. **Opinion:** The biggest threat to number-theoretic crypto is from fancy math combined with special purpose parallel software.

5. **Fact:** If computers can do DL and Factoring much better (but still exp in log \(n \)) then humans need only double or triple the length of their numbers. Still, Eve has made Alice and Bob work harder.

6. **Opinion:** When people really really need to up their game. They don’t. It won’t happen to me until it does.
My Opinion

How hard is DL and also factoring?

1. **Fact:** DL and Factoring are in QuantumP.
2. **Opinion:** Quantum computers that can do DL or Factoring faster than classical computers will not happen in my lifetime.

3. **Fact:** Classical algorithms that are better than the naive approach and use lots of hard number theory, some developed just for the purpose, have been discovered and implemented. Some are amenable to parallelism.

4. **Opinion:** The biggest threat to number-theoretic crypto is from fancy math combined with special purpose parallel software.

5. **Fact:** If computers can do DL and Factoring much better (but still exp in log n) then humans need only double or triple the length of their numbers. Still, Eve has made Alice and Bob work harder.

6. **Opinion:** When people really really need to up their game. They don't. It won't happen to me until it does.
My Opinion

How hard is DL and also factoring?

1. **Fact:** DL and Factoring are in QuantumP.
2. **Opinion:** Quantum computers that can do DL or Factoring faster than classical computers will not happen in my lifetime. In your lifetime.

3. **Fact:** Classical algorithms that are better than the naive approach and use lots of hard number theory, some developed just for the purpose, have been discovered and implemented. Some are amenable to parallelism.

4. **Opinion:** The biggest threat to number-theoretic crypto is from fancy math combined with special purpose parallel software.

5. **Fact:** If computers can do DL and Factoring much better (but still exp in log n) then humans need only double or triple the length of their numbers. Still, Eve has made Alice and Bob work harder.

6. **Opinion:** When people really really need to up their game. They don't. It won't happen to me until it does.
My Opinion

How hard is DL and also factoring?

1. Fact: DL and Factoring are in QuantumP.
2. Opinion: Quantum computers that can do DL or Factoring faster than classical computers will not happen in my lifetime. In your lifetime. Ever.
3. Fact: Classical algorithms that are better than the naive approach and use lots of hard number theory, some developed just for the purpose, have been discovered and implemented. Some are amenable to parallelism.
4. Opinion: The biggest threat to number-theoretic crypto is from fancy math combined with special purpose parallel software.
5. Fact: If computers can do DL and Factoring much better (but still exp in log n) then humans need only double or triple the length of their numbers. Still, Eve has made Alice and Bob work harder.
6. Opinion: When people really really need to up their game
My Opinion

How hard is DL and also factoring?

1. **Fact:** DL and Factoring are in QuantumP.
2. **Opinion:** Quantum computers that can do DL or Factoring faster than classical computers will not happen in my lifetime. In your lifetime. Ever.
3. **Fact:** Classical algorithms that are *better* than the naive approach and use lots of hard number theory, some developed just for the purpose, have been discovered and implemented. Some are amenable to parallelism.
4. **Opinion:** The biggest threat to number-theoretic crypto is from fancy math combined with special purpose parallel software.
5. **Fact:** If computers can do DL and Factoring much better (but still exp in log n) then humans need only double or triple the length of their numbers. Still, Eve has made Alice and Bob work harder.
6. **Opinion:** When people really really need to up their game. They don’t.
Definition Let \(p \) be a prime and \(g \) be a generator mod \(p \). The **Discrete Log Problem** is:
given \(y \), find \(x \) such that \(g^x = y \).

1. If \(g \) is small and \(y = g^a \) or \(y = p - g^a \) could be easy.
 - **Example:** \(7^x \equiv 49 \pmod{1009} \) is easy.
 - **Example:** \(7^x \equiv 1009 - 49 \pmod{1009} \) is easy.

2. If \(g, y \in \{\frac{p}{3}, \ldots, \frac{2p}{3}\} \) then problem suspected hard.
Consider What We Already Have Here

- Exponentiation is Easy.
- Discrete Log is thought to be Hard.
Consider What We Already Have Here

- Exponentiation is Easy.
- Discrete Log is thought to be Hard.

Can we come up with a crypto system where Alice and Bob do Exponentiation to encrypt and decrypt, while Eve has to do Discrete Log to crack it?
Consider What We Already Have Here

- Exponentiation is Easy.
- Discrete Log is thought to be Hard.

Can we come up with a crypto system where Alice and Bob do Exponentiation to encrypt and decrypt, while Eve has to do Discrete Log to crack it?

No. But we’ll come close.
Finding Generators

First Attempt at, given p, find a gen for \mathbb{Z}_p

1. Input p
2. For $g = 2$ to $p - 1$

 Compute $g^1, g^2, \ldots, g^{p-1}$ until either hit a repeat or finish. If repeats then g is NOT a generator, so goto the next g. If finishes then output g and stop.

PRO: $\sim p/2$ g’s are gens so $O(1)$ iterations.
CON: Computing g^1, \ldots, g^{p-1} is $O(p \log p)$ operations.
Finding Generators

Theorem: If \(g \) is not a generator then there exists \(x \) that
(1) \(x \) divides \(p - 1 \), (2) \(x \neq p - 1 \), and (3) \(g^x = 1 \).

Second Attempt at, given \(p \), find a gen for \(\mathbb{Z}_p \)

1. Input \(p \)
2. Factor \(p - 1 \). Let \(F \) be the set of its factors except \(p - 1 \).
3. For \(g = 2 \) to \(p - 1 \)
 - Compute \(g^x \) for all \(x \in F \). If any \(= 1 \) then \(g \) not generator.
 - If none are 1 then output \(g \) and stop.

Is this a good algorithm?
Theorem: If g is not a generator then there exists x that (1) x divides $p - 1$, (2) $x \neq p - 1$, and (3) $g^x = 1$.

Second Attempt at, given p, find a gen for \mathbb{Z}_p

1. Input p
2. Factor $p - 1$. Let F be the set of its factors except $p - 1$.
3. For $g = 2$ to $p - 1$
 - Compute g^x for all $x \in F$. If any $= 1$ then g not generator.
 - If none are 1 then output g and stop.

Is this a good algorithm?

PRO: As noted before, $O(1)$ iterations.
PRO: Every iter $- O(|F| (\log p))$ ops. $|F| \leq \log p$ so okay.
Finding Generators

Theorem: If \(g \) is not a generator then there exists \(x \) that
(1) \(x \) divides \(p - 1 \), (2) \(x \neq p - 1 \), and (3) \(g^x = 1 \).

Second Attempt at, given \(p \), find a gen for \(\mathbb{Z}_p \)

1. Input \(p \)
2. Factor \(p - 1 \). Let \(F \) be the set of its factors except \(p - 1 \).
3. For \(g = 2 \) to \(p - 1 \)
 - Compute \(g^x \) for all \(x \in F \). If any \(= 1 \) then \(g \) not generator.
 - If none are 1 then output \(g \) and stop.

Is this a good algorithm?

PRO: As noted before, \(O(1) \) iterations.

PRO: Every iter – \(O(|F| (\log p)) \) ops. \(|F| \leq \log p \) so okay.

BIG CON: Factoring \(p - 1 \)? Really? Darn!
Finding Generators

Idea: Pick p such that $p - 1 = 2q$ where q is prime.

Third Attempt at, given p, find a gen for \mathbb{Z}_p

1. Input p a prime such that $p - 1 = 2q$ where q is prime.
2. Factor $p - 1$. Let F be the set of its factors except $p - 1$. Thats EASY: $F = \{2, q\}$.
3. For $g = 2$ to $p - 1$

 Compute g^x for all $x \in F$. If any $= 1$ then g NOT generator. If none are 1 then output g and stop.

Is this a good algorithm?
Finding Generators

Idea: Pick p such that $p - 1 = 2q$ where q is prime.

Third Attempt at, given p, find a gen for \mathbb{Z}_p

1. Input p a prime such that $p - 1 = 2q$ where q is prime.

2. Factor $p - 1$. Let F be the set of its factors except $p - 1$.
 That's EASY: $F = \{2, q\}$.

3. For $g = 2$ to $p - 1$
 Compute g^x for all $x \in F$. If any $= 1$ then g NOT generator. If none are 1 then output g and stop.

Is this a good algorithm?

PRO: As noted above $O(1)$ iterations.

PRO: Every iteration does $O(|F| (\log p)) = O(\log p)$ operations.
Finding Generators

Idea: Pick p such that $p - 1 = 2q$ where q is prime.

Third Attempt at, given p, find a gen for \mathbb{Z}_p

1. Input p a prime such that $p - 1 = 2q$ where q is prime.

2. Factor $p - 1$. Let F be the set of its factors except $p - 1$.
 Thats EASY: $F = \{2, q\}$.

3. For $g = 2$ to $p - 1$

 Compute g^x for all $x \in F$. If any $= 1$ then g NOT generator. If none are 1 then output g and stop.

Is this a good algorithm?

PRO: As noted above $O(1)$ iterations.

PRO: Every iteration does $O(|F|\log p)) = O(\log p)$ operations.

CON: None. But need both p and $\frac{p-1}{2}$ are primes.
Warning: The next few slides will culminate in a test for primality that may FAIL. It is NOT used. But ideas are used in real algorithm.

Lemma

\[p \text{ prime, } 2 \leq i \leq p - 1, \text{ then } \frac{p!}{i!(p-i)!} \in \mathbb{N} \text{ and is divisible by } p. \]
Warning: The next few slides will culminate in a test for primality that may FAIL. It is NOT used. But ideas are used in real algorithm.

Lemma

\(p \) prime, \(2 \leq i \leq p - 1 \), then \(\frac{p!}{i!(p-i)!} \in \mathbb{N} \) and is divisible by \(p \).

Proof.

The expression is the answer to a question that has a \(\mathbb{N} \) solution:

How many ways can you choose \(i \) items out of \(p \)?

Since \(\frac{p!}{i!(p-i)!} \in \mathbb{N} \), \(p \) divides the numerator, \(p \) does not divide the denominator, \(p \) divides the number.

\[\binom{p}{i} = \frac{p!}{(p-i)!i!}. \]

Note: \(\binom{p}{i} = \frac{p!}{(p-i)!i!} \).
Primality Testing

Lemma

For any \(n \in \mathbb{N} \), \((x + y)^n = \sum_{i=0}^{n} \binom{n}{i} x^i y^{n-i}\)

Lemma

\(p \) prime, \(a \in \mathbb{N}, a^p \equiv a \pmod{p}. \)

Proof.

Fix prime \(p \). By induction on \(a \). Base Case: \(1^p \equiv 1 \).

Ind Hyp: \(a^p \equiv a \pmod{p}\)

Ind Step:

\[
(a + 1)^p = \sum_{i=0}^{n} \binom{p}{i} a^i 1^{p-i} = \sum_{i=0}^{p} \binom{p}{i} a^i \equiv a^p + a^0 \equiv a + 1
\]
Primality Testing

Prior Slides: If \(p \) is prime and \(a \in \mathbb{N} \) then \(a^p \equiv a \pmod{p} \).

What has been observed: If \(p \) is NOT prime then USUALLY for MOST \(a \), \(a^p \not\equiv a \pmod{p} \).

Primality Algorithm:

1. Input \(p \). (In algorithm all arithmetic is mod \(p \).)

2. Form random set \(R \) of \(a \in \{2, \ldots, p-1\} \) of size \(2 \lceil \lg p \rceil \)
 (Could take \(c \lceil \lg p \rceil \) for any \(c \). Use \(O(\lg p) \) so that this step is efficient.)

3. For each \(a \in R \) compute \(a^p \).
 3.1 If ever get \(a^p \not\equiv a \) then \(p \) NOT PRIME (We are SURE.)
 3.2 If for all \(a \), \(a^p \equiv a \) then PRIME (We are NOT SURE.)

Two reasons for our uncertainty

- If \(p \) is composite but we were unluckily with \(R \).
- There are some composite \(p \) such that for all \(a \), \(a^p \equiv a \).
Primality Testing – What is Really True

1. Exists algorithm that only has first problem, possible bad luck.
2. That algorithm has prob of failure $\leq \frac{1}{2^p}$. Good enough!
3. Exists deterministic poly time algorithm but is much slower.
4. n is a **Carmichael Numbers** if, for all a, $a^n \equiv a$. These are the numbers my algorithm FAILS on.
5. The first seven Carmichael Numbers:
 561, 1105, 1729, 2465, 2821, 6601, 8911
6. Carmichael numbers are rare.
Generating Primes (also needed for RSA)

Take as given: Primality Testing is FAST.

First Attempt at, given n, generate a prime of length L.

1. Input(L)
2. Pick $y \in \{0, 1\}^{L-1}$ at random.
3. $x = 1y$ (so x is a true L-bit number)
4. Test if x is prime.
5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?

PRO: NT tells us returns a prime within 3^{L^2} tries with high prob.

CON: None! Algorithm is fine! Can speed it up a bit.
Generating Primes (also needed for RSA)

Take as given: Primality Testing is FAST.

First Attempt at, given n, generate a prime of length L.

1. Input(L)
2. Pick $y \in \{0, 1\}^{L-1}$ at random.
3. $x = 1y$ (so x is a true L-bit number)
4. Test if x is prime.
5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?

PRO: NT tells us returns a prime within $3L^2$ tries with high prob.
Take as given: Primality Testing is FAST.

First Attempt at, given n, generate a prime of length L.

1. Input(L)
2. Pick $y \in \{0, 1\}^{L-1}$ at random.
3. $x = 1y$ (so x is a true L-bit number)
4. Test if x is prime.
5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?

PRO: NT tells us returns a prime within $3L^2$ tries with high prob.

CON: None! Algorithm is fine! Can speed it up a bit.
Generating Safe Primes

Definition

\(p \) is a safe prime if \(p \) is prime and \(\frac{p-1}{2} \) is prime.

First Attempt at, given \(n \), generate a safe prime of length \(L \)

1. Input(\(L \))
2. Pick \(y \in \{0, 1\}^{L-2}1 \) at random.
3. \(x = 1y \) (note that \(x \) is odd).
4. Test if \(x \) and \(\frac{x-1}{2} \) are prime.
5. If they both are then output \(x \) and stop, else goto step 2.

Is this a good algorithm?

PRO: NT tells us returns prime quickly with high prob. (Could not find bound.)

CON: None. Algorithm is fine! Can speed it up a bit (HW).
Generating Safe Primes

Definition

\(p \) is a safe prime if \(p \) is prime and \(\frac{p-1}{2} \) is prime.

First Attempt at, given \(n \), generate a safe prime of length \(L \)

1. Input(\(L \))
2. Pick \(y \in \{0, 1\}^{L-2} \) at random.
3. \(x = 1^y \) (note that \(x \) is odd).
4. Test if \(x \) and \(\frac{x-1}{2} \) are prime.
5. If they both are then output \(x \) and stop, else goto step 2.

Is this a good algorithm?

PRO: NT tells us returns prime quickly with high prob. (Could not find bound.)
Generating Safe Primes

Definition

p is a safe prime if p is prime and $\frac{p-1}{2}$ is prime.

First Attempt at, given n, generate a safe prime of length L

1. Input(L)
2. Pick $y \in \{0, 1\}^{L-2}1$ at random.
3. $x = 1y$ (note that x is odd).
4. Test if x and $\frac{x-1}{2}$ are prime.
5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?

PRO: NT tells us returns prime quickly with high prob. (Could not find bound.)

CON: None. Algorithm is fine! Can speed it up a bit (HW).
Speed Up The Algorithm To Find Primes: No Evens

We picked any $L - 1$-bit string, including ones that end in 0, so even which we know we don’t want.

IDEA: Pick an $L - 2$ bit string then mult by 2 and add 1 to get $L - 1$-bit string which is ODD (and when append 1 to the left still ODD).

Is this a good idea? Vote
Speed Up The Algorithm To Find Primes: No Evens

We picked *any* $L - 1$-bit string, including ones that end in 0, so even which we know we don’t want.

IDEA: Pick an $L - 2$ bit string then mult by 2 and add 1 to get $L - 1$-bit string which is ODD (and when append 1 to the left still ODD).

Is this a good idea? Vote

PRO: Do not waste time testing even numbers.

CON: Does it really save that much time?

CAVEAT: Can we extend to not test numbers div by 3? Discuss
We picked any $L - 1$-bit string, including ones that end in 0, so even which we know we don’t want.

IDEA: Pick an $L - 2$ bit string then mult by 2 and add 1 to get $L - 1$-bit string which is ODD (and when append 1 to the left still ODD).

Is this a good idea? Vote

PRO: Do not waste time testing even numbers.

CON: Does it really save that much time?

CAVEAT: Can we extend to not test numbers div by 3? Discuss

Yes
Speed Up The Algorithm To Find Primes: no $\equiv 0 \mod 2$ or 3

IDEA: Pick an $L-1$ bit string that has a 1 as left most, then mult by 6 and add 1 to get L-bit string which is of form $6k + 1$. $6k + 1 \not\equiv 0 \mod 2$ and $6k + 1 \not\equiv 0 \mod 3$. Is this a good idea? Vote
Speed Up The Algorithm To Find Primes: no \equiv 0 \mod 2 \text{ or } 3

IDEA: Pick an \(L - 1 \) bit string that has a 1 as left most, then mult by 6 and add 1 to get \(L \)-bit string which is of form \(6k + 1 \). \(6k + 1 \not\equiv 0 \pmod{2} \text{ and } 6k + 1 \not\equiv 0 \pmod{3} \). Is this a good idea?

Vote

PRO: Do not waste time testing numbers \(\equiv 0 \pmod{2} \text{ or } 3 \).

CON: Only use primes of form \(6k + 1 \). Who knows, maybe such primes are easy to deal with for Eve?

CAVEAT: Can we modify to avoid this problem
IDEA: Pick an $L - 1$ bit string that has a 1 as left most, then mult by 6 and add 1 to get L-bit string which is of form $6k + 1$. $6k + 1 \not\equiv 0 \pmod{2}$ and $6k + 1 \not\equiv 0 \pmod{3}$. Is this a good idea? Vote

PRO: Do not waste time testing numbers $\equiv 0 \pmod{2}$ or 3.

CON: Only use primes of form $6k + 1$. Who knows, maybe such primes are easy to deal with for Eve?

CAVEAT: Can we modify to avoid this problem

Yes
IDEA: Pick an $L - 1$ bit string that has a 1 as left most, then mult by 6 and add $a \in \{1, 5\}$ picked at random to get L-bit string which is of form $6k + 1$ or $6k + 5$.

$6k + 1 \not\equiv 0 \pmod{2}$ and $6k + 1 \not\equiv 0 \pmod{3}$.

$6k + 5 \not\equiv 0 \pmod{2}$ and $6k + 5 \not\equiv 0 \pmod{3}$.

Is this a good idea? Vote
IDEA: Pick an \(L - 1 \) bit string that has a 1 as left most, then mult by 6 and add \(a \in \{1, 5\} \) picked at random to get \(L \)-bit string which is of form \(6k + 1 \) or \(6k + 5 \).

\[
6k + 1 \not\equiv 0 \pmod{2} \quad \text{and} \quad 6k + 1 \not\equiv 0 \pmod{3}.
\]

\[
6k + 5 \not\equiv 0 \pmod{2} \quad \text{and} \quad 6k + 5 \not\equiv 0 \pmod{3}.
\]

Is this a good idea? Vote

PRO: Do not waste time testing numbers \(\equiv 0 \pmod{2} \) or \(\equiv 0 \pmod{3} \).

PRO: Do not get a prime of a certain form.

CON: Getting more complicated. Is it worth it? Do not know.

CAVEAT: Can we extend to numbers that are not div by 2,3,5? 2,3,5,7? etc.

Yes. Might be on HW.
The Diffie-Helman Key Exchange

Alice and Bob will share a secret s.

1. Alice finds a (p, g), p of length n, g gen for \mathbb{Z}_p. Arith mod p.
2. Alice sends (p, g) to Bob in the clear (Eve can see it).
3. Alice picks random $a \in \{\frac{p}{3}, \ldots, \frac{2p}{3}\}$. Alice computes g^a and sends it to Bob in the clear (Eve can see it).
4. Bob picks random $b \in \{\frac{p}{3}, \ldots, \frac{2p}{3}\}$. Bob computes g^b and sends it to Alice in the clear (Eve can see it).
5. Alice computes $(g^b)^a = g^{ab}$.
6. Bob computes $(g^a)^b = g^{ab}$.
7. g^{ab} is the shared secret.
The Diffie-Helman Key Exchange

Alice and Bob will share a secret s.

1. Alice finds a (p, g), p of length n, g gen for \mathbb{Z}_p. Arith mod p.
2. Alice sends (p, g) to Bob in the clear (Eve can see it).
3. Alice picks random $a \in \{p/3, \ldots, 2p/3\}$. Alice computes g^a and sends it to Bob in the clear (Eve can see it).
4. Bob picks random $b \in \{p/3, \ldots, 2p/3\}$. Bob computes g^b and sends it to Alice in the clear (Eve can see it).
5. Alice computes $(g^b)^a = g^{ab}$.
6. Bob computes $(g^a)^b = g^{ab}$.
7. g^{ab} is the shared secret.

PRO: Alice and Bob can execute the protocol easily.

Biggest PRO: Alice and Bob never had to meet!

Question: Can Eve find out s?
The Diffie-Helman Key Exchange

Alice and Bob will share a secret s.

1. Alice finds a (p, g), p of length n, g gen for \mathbb{Z}_p. Arith mod p.
2. Alice sends (p, g) to Bob in the clear (Eve can see it).
3. Alice picks random $a \in \{\frac{p}{3}, \ldots, \frac{2p}{3}\}$. Alice computes g^a and sends it to Bob in the clear (Eve can see it).
4. Bob picks random $b \in \{\frac{p}{3}, \ldots, \frac{2p}{3}\}$. Bob computes g^b and sends it to Alice in the clear (Eve can see it).
5. Alice computes $(g^b)^a = g^{ab}$.
6. Bob computes $(g^a)^b = g^{ab}$.
7. g^{ab} is the shared secret.

PRO: Alice and Bob can execute the protocol easily.

Biggest PRO: Alice and Bob never had to meet!
The Diffie-Helman Key Exchange

Alice and Bob will share a secret \(s \).

1. Alice finds a \((p, g)\), \(p \) of length \(n \), \(g \) gen for \(\mathbb{Z}_p \). Arith mod \(p \).
2. Alice sends \((p, g)\) to Bob in the clear (Eve can see it).
3. Alice picks random \(a \in \{\frac{p}{3}, \ldots, \frac{2p}{3}\} \). Alice computes \(g^a \) and sends it to Bob in the clear (Eve can see it).
4. Bob picks random \(b \in \{\frac{p}{3}, \ldots, \frac{2p}{3}\} \). Bob computes \(g^b \) and sends it to Alice in the clear (Eve can see it).
5. Alice computes \((g^b)^a = g^{ab} \).
6. Bob computes \((g^a)^b = g^{ab} \).
7. \(g^{ab} \) is the shared secret.

PRO: Alice and Bob can execute the protocol easily.

Biggest PRO: Alice and Bob never had to meet!

Question: Can Eve find out \(s \)?